Abstract

The two-mode entangled state is an important basic non-classical state and it has been used in many quantum communication projects. We propose a new quantum communication scheme with a two-mode entangled state which can transmit signals encoded by a thermal-state light field. Also, instead of locking several phases in the whole process, we use only one locking servo system at the final stage. The locking error signal comes from the measured quantum variances by using the quantum noise locking method. A proof-of-principle derivation shows that it is very convenient to achieve the secure condition against individual attacks. It would be utilized in practical quantum information process.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Stable control of 10 dB two-mode squeezed vacuum states of light

Tobias Eberle, Vitus Händchen, and Roman Schnabel
Opt. Express 21(9) 11546-11553 (2013)

Experimental generation of 6 dB continuous variable entanglement from a nondegenerate optical parametric amplifier

Yu Wang, Heng Shen, Xiaoli Jin, Xiaolong Su, Changde Xie, and Kunchi Peng
Opt. Express 18(6) 6149-6155 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  2. S. L. Braunstein and P. van Loock, “Quantum inforamtion with continuous variables,” Rev. Mod. Phys. 77(2), 513–577 (2005).
    [Crossref]
  3. C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
    [Crossref]
  4. M. Gu, C. Weedbrook, N. C. Menicucci, T. C. Ralph, and P. van Loock, “Quantum computing with continuous-variable clusters,” Phys. Rev. A 79(6), 062318 (2009).
    [Crossref]
  5. A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282(5389), 706–709 (1998).
    [Crossref] [PubMed]
  6. X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, and K. Peng, “Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam,” Phys. Rev. Lett. 88(4), 047904 (2002).
    [Crossref] [PubMed]
  7. L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Commun. 3(1), 1083 (2012).
    [Crossref] [PubMed]
  8. X. Su, W. Wang, Y. Wang, X. Jia, C. Xie, and K. Peng, “Continuous variable quantum key distribution based on optical entangled states without signal modulation,” Europhys. Lett. 87(2), 20005 (2009).
    [Crossref]
  9. X. Su, J. Jing, Q. Pan, and C. Xie, “Dense-coding quantum key distribution based on continuous-variable entanglement,” Phys. Rev. A 74(6), 062305 (2006).
    [Crossref]
  10. S. Hao, X. Deng, X. Su, X. Jia, C. Xie, and K. Peng, “Gates for one-way quantum computation based on Einstein-Podolsky-Rosen entanglement,” Phys. Rev. A 89(3), 032311 (2014).
    [Crossref]
  11. P. van Loock, C. Weedbrook, and M. Gu, “Building Gaussian cluster states by linear optics,” Phys. Rev. A 76(3), 032321 (2007).
    [Crossref]
  12. E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
    [Crossref]
  13. K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett. 93(16), 161105 (2004).
    [Crossref] [PubMed]
  14. K. McKenzie, E. E. Mikhailov, K. Goda, P. K. Lam, N. Grosse, M. B. Gray, N. Mavalvala, and D. E. McClelland, “Quantum noise locking,” J. Opt. B 7(10), S421–S428 (2005).
    [Crossref]
  15. K. McKenzie, M. B. Gray, S. Goßler, P. K. Lam, and D. E. McClelland, “Squeezed state generation for interferometric gravitational-wave detection,” Class. Quantum Gravity 23(8), S245–S250 (2006).
    [Crossref]
  16. J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70(4), 042315 (2004).
    [Crossref]
  17. J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Effects of mode coupling on the generation of quadrature Einstein-Podolsky-Rosen entanglement in a type-II optical parametric oscillator below threshold,” Phys. Rev. A 71(2), 022313 (2005).
    [Crossref]
  18. C. Schori, J. L. Sørensen, and E. S. Polzik, “Narrow-band frequency tunable light source of continuous quadrature entanglement,” Phys. Rev. A 66(3), 033802 (2002).
    [Crossref]
  19. M. D. Reid and P. D. Drummond, “Quantum correlations of phase in nondegenerate parametric oscillation,” Phys. Rev. Lett. 60(26), 2731–2733 (1988).
    [Crossref] [PubMed]
  20. Y. Wang, H. Shen, X. Jin, X. Su, C. Xie, and K. Peng, “Experimental generation of 6 dB continuous variable entanglement from a nondegenerate optical parametric amplifier,” Opt. Express 18(6), 6149–6155 (2010).
    [Crossref] [PubMed]
  21. Y. Zhou, X. Jia, F. Li, C. Xie, and K. Peng, “Experimental generation of 8.4 dB entangled state with an optical cavity involving a wedged type-II nonlinear crystal,” Opt. Express 23(4), 4952–4959 (2015).
    [Crossref] [PubMed]
  22. C. Weedbrook, S. Pirandola, and T. C. Ralph, “Continuous-variable quantum key distribution using thermal states,” Phys. Rev. A 86(2), 022318 (2012).
    [Crossref]
  23. M. Navascués, F. Grosshans, and A. Acín, “Optimality of Gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97(19), 190502 (2006).
    [Crossref] [PubMed]
  24. R. García-Patrón and N. J. Cerf, “Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution,” Phys. Rev. Lett. 97(19), 190503 (2006).
    [Crossref] [PubMed]
  25. F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent states,” Phys. Rev. Lett. 88(5), 057902 (2002).
    [Crossref] [PubMed]
  26. V. C. Usenko and R. Filip, “Trusted noise in continuous-variable quantum key distribution: a threat and a defense,” Entropy (Basel) 18(1), 20 (2016).
    [Crossref]

2016 (1)

V. C. Usenko and R. Filip, “Trusted noise in continuous-variable quantum key distribution: a threat and a defense,” Entropy (Basel) 18(1), 20 (2016).
[Crossref]

2015 (1)

2014 (1)

S. Hao, X. Deng, X. Su, X. Jia, C. Xie, and K. Peng, “Gates for one-way quantum computation based on Einstein-Podolsky-Rosen entanglement,” Phys. Rev. A 89(3), 032311 (2014).
[Crossref]

2012 (3)

L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Commun. 3(1), 1083 (2012).
[Crossref] [PubMed]

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

C. Weedbrook, S. Pirandola, and T. C. Ralph, “Continuous-variable quantum key distribution using thermal states,” Phys. Rev. A 86(2), 022318 (2012).
[Crossref]

2010 (1)

2009 (2)

M. Gu, C. Weedbrook, N. C. Menicucci, T. C. Ralph, and P. van Loock, “Quantum computing with continuous-variable clusters,” Phys. Rev. A 79(6), 062318 (2009).
[Crossref]

X. Su, W. Wang, Y. Wang, X. Jia, C. Xie, and K. Peng, “Continuous variable quantum key distribution based on optical entangled states without signal modulation,” Europhys. Lett. 87(2), 20005 (2009).
[Crossref]

2007 (1)

P. van Loock, C. Weedbrook, and M. Gu, “Building Gaussian cluster states by linear optics,” Phys. Rev. A 76(3), 032321 (2007).
[Crossref]

2006 (4)

X. Su, J. Jing, Q. Pan, and C. Xie, “Dense-coding quantum key distribution based on continuous-variable entanglement,” Phys. Rev. A 74(6), 062305 (2006).
[Crossref]

M. Navascués, F. Grosshans, and A. Acín, “Optimality of Gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97(19), 190502 (2006).
[Crossref] [PubMed]

R. García-Patrón and N. J. Cerf, “Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution,” Phys. Rev. Lett. 97(19), 190503 (2006).
[Crossref] [PubMed]

K. McKenzie, M. B. Gray, S. Goßler, P. K. Lam, and D. E. McClelland, “Squeezed state generation for interferometric gravitational-wave detection,” Class. Quantum Gravity 23(8), S245–S250 (2006).
[Crossref]

2005 (3)

K. McKenzie, E. E. Mikhailov, K. Goda, P. K. Lam, N. Grosse, M. B. Gray, N. Mavalvala, and D. E. McClelland, “Quantum noise locking,” J. Opt. B 7(10), S421–S428 (2005).
[Crossref]

S. L. Braunstein and P. van Loock, “Quantum inforamtion with continuous variables,” Rev. Mod. Phys. 77(2), 513–577 (2005).
[Crossref]

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Effects of mode coupling on the generation of quadrature Einstein-Podolsky-Rosen entanglement in a type-II optical parametric oscillator below threshold,” Phys. Rev. A 71(2), 022313 (2005).
[Crossref]

2004 (2)

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett. 93(16), 161105 (2004).
[Crossref] [PubMed]

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70(4), 042315 (2004).
[Crossref]

2002 (3)

F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent states,” Phys. Rev. Lett. 88(5), 057902 (2002).
[Crossref] [PubMed]

X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, and K. Peng, “Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam,” Phys. Rev. Lett. 88(4), 047904 (2002).
[Crossref] [PubMed]

C. Schori, J. L. Sørensen, and E. S. Polzik, “Narrow-band frequency tunable light source of continuous quadrature entanglement,” Phys. Rev. A 66(3), 033802 (2002).
[Crossref]

2001 (1)

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

1998 (1)

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282(5389), 706–709 (1998).
[Crossref] [PubMed]

1988 (1)

M. D. Reid and P. D. Drummond, “Quantum correlations of phase in nondegenerate parametric oscillation,” Phys. Rev. Lett. 60(26), 2731–2733 (1988).
[Crossref] [PubMed]

Acín, A.

M. Navascués, F. Grosshans, and A. Acín, “Optimality of Gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97(19), 190502 (2006).
[Crossref] [PubMed]

Andersen, U. L.

L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Commun. 3(1), 1083 (2012).
[Crossref] [PubMed]

Black, E. D.

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

Bowen, W. P.

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett. 93(16), 161105 (2004).
[Crossref] [PubMed]

Braunstein, S. L.

S. L. Braunstein and P. van Loock, “Quantum inforamtion with continuous variables,” Rev. Mod. Phys. 77(2), 513–577 (2005).
[Crossref]

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282(5389), 706–709 (1998).
[Crossref] [PubMed]

Cerf, N. J.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

R. García-Patrón and N. J. Cerf, “Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution,” Phys. Rev. Lett. 97(19), 190503 (2006).
[Crossref] [PubMed]

Coudreau, T.

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Effects of mode coupling on the generation of quadrature Einstein-Podolsky-Rosen entanglement in a type-II optical parametric oscillator below threshold,” Phys. Rev. A 71(2), 022313 (2005).
[Crossref]

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70(4), 042315 (2004).
[Crossref]

Deng, X.

S. Hao, X. Deng, X. Su, X. Jia, C. Xie, and K. Peng, “Gates for one-way quantum computation based on Einstein-Podolsky-Rosen entanglement,” Phys. Rev. A 89(3), 032311 (2014).
[Crossref]

Drummond, P. D.

M. D. Reid and P. D. Drummond, “Quantum correlations of phase in nondegenerate parametric oscillation,” Phys. Rev. Lett. 60(26), 2731–2733 (1988).
[Crossref] [PubMed]

Fabre, C.

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Effects of mode coupling on the generation of quadrature Einstein-Podolsky-Rosen entanglement in a type-II optical parametric oscillator below threshold,” Phys. Rev. A 71(2), 022313 (2005).
[Crossref]

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70(4), 042315 (2004).
[Crossref]

Filip, R.

V. C. Usenko and R. Filip, “Trusted noise in continuous-variable quantum key distribution: a threat and a defense,” Entropy (Basel) 18(1), 20 (2016).
[Crossref]

L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Commun. 3(1), 1083 (2012).
[Crossref] [PubMed]

Fuchs, C. A.

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282(5389), 706–709 (1998).
[Crossref] [PubMed]

Furusawa, A.

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282(5389), 706–709 (1998).
[Crossref] [PubMed]

García-Patrón, R.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

R. García-Patrón and N. J. Cerf, “Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution,” Phys. Rev. Lett. 97(19), 190503 (2006).
[Crossref] [PubMed]

Goda, K.

K. McKenzie, E. E. Mikhailov, K. Goda, P. K. Lam, N. Grosse, M. B. Gray, N. Mavalvala, and D. E. McClelland, “Quantum noise locking,” J. Opt. B 7(10), S421–S428 (2005).
[Crossref]

Goßler, S.

K. McKenzie, M. B. Gray, S. Goßler, P. K. Lam, and D. E. McClelland, “Squeezed state generation for interferometric gravitational-wave detection,” Class. Quantum Gravity 23(8), S245–S250 (2006).
[Crossref]

Grangier, P.

F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent states,” Phys. Rev. Lett. 88(5), 057902 (2002).
[Crossref] [PubMed]

Gray, M. B.

K. McKenzie, M. B. Gray, S. Goßler, P. K. Lam, and D. E. McClelland, “Squeezed state generation for interferometric gravitational-wave detection,” Class. Quantum Gravity 23(8), S245–S250 (2006).
[Crossref]

K. McKenzie, E. E. Mikhailov, K. Goda, P. K. Lam, N. Grosse, M. B. Gray, N. Mavalvala, and D. E. McClelland, “Quantum noise locking,” J. Opt. B 7(10), S421–S428 (2005).
[Crossref]

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett. 93(16), 161105 (2004).
[Crossref] [PubMed]

Grosse, N.

K. McKenzie, E. E. Mikhailov, K. Goda, P. K. Lam, N. Grosse, M. B. Gray, N. Mavalvala, and D. E. McClelland, “Quantum noise locking,” J. Opt. B 7(10), S421–S428 (2005).
[Crossref]

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett. 93(16), 161105 (2004).
[Crossref] [PubMed]

Grosshans, F.

M. Navascués, F. Grosshans, and A. Acín, “Optimality of Gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97(19), 190502 (2006).
[Crossref] [PubMed]

F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent states,” Phys. Rev. Lett. 88(5), 057902 (2002).
[Crossref] [PubMed]

Gu, M.

M. Gu, C. Weedbrook, N. C. Menicucci, T. C. Ralph, and P. van Loock, “Quantum computing with continuous-variable clusters,” Phys. Rev. A 79(6), 062318 (2009).
[Crossref]

P. van Loock, C. Weedbrook, and M. Gu, “Building Gaussian cluster states by linear optics,” Phys. Rev. A 76(3), 032321 (2007).
[Crossref]

Hao, S.

S. Hao, X. Deng, X. Su, X. Jia, C. Xie, and K. Peng, “Gates for one-way quantum computation based on Einstein-Podolsky-Rosen entanglement,” Phys. Rev. A 89(3), 032311 (2014).
[Crossref]

Jia, X.

Y. Zhou, X. Jia, F. Li, C. Xie, and K. Peng, “Experimental generation of 8.4 dB entangled state with an optical cavity involving a wedged type-II nonlinear crystal,” Opt. Express 23(4), 4952–4959 (2015).
[Crossref] [PubMed]

S. Hao, X. Deng, X. Su, X. Jia, C. Xie, and K. Peng, “Gates for one-way quantum computation based on Einstein-Podolsky-Rosen entanglement,” Phys. Rev. A 89(3), 032311 (2014).
[Crossref]

X. Su, W. Wang, Y. Wang, X. Jia, C. Xie, and K. Peng, “Continuous variable quantum key distribution based on optical entangled states without signal modulation,” Europhys. Lett. 87(2), 20005 (2009).
[Crossref]

Jin, X.

Jing, J.

X. Su, J. Jing, Q. Pan, and C. Xie, “Dense-coding quantum key distribution based on continuous-variable entanglement,” Phys. Rev. A 74(6), 062305 (2006).
[Crossref]

X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, and K. Peng, “Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam,” Phys. Rev. Lett. 88(4), 047904 (2002).
[Crossref] [PubMed]

Keller, G.

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Effects of mode coupling on the generation of quadrature Einstein-Podolsky-Rosen entanglement in a type-II optical parametric oscillator below threshold,” Phys. Rev. A 71(2), 022313 (2005).
[Crossref]

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70(4), 042315 (2004).
[Crossref]

Kimble, H. J.

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282(5389), 706–709 (1998).
[Crossref] [PubMed]

Lam, P. K.

K. McKenzie, M. B. Gray, S. Goßler, P. K. Lam, and D. E. McClelland, “Squeezed state generation for interferometric gravitational-wave detection,” Class. Quantum Gravity 23(8), S245–S250 (2006).
[Crossref]

K. McKenzie, E. E. Mikhailov, K. Goda, P. K. Lam, N. Grosse, M. B. Gray, N. Mavalvala, and D. E. McClelland, “Quantum noise locking,” J. Opt. B 7(10), S421–S428 (2005).
[Crossref]

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett. 93(16), 161105 (2004).
[Crossref] [PubMed]

Lassen, M.

L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Commun. 3(1), 1083 (2012).
[Crossref] [PubMed]

Laurat, J.

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Effects of mode coupling on the generation of quadrature Einstein-Podolsky-Rosen entanglement in a type-II optical parametric oscillator below threshold,” Phys. Rev. A 71(2), 022313 (2005).
[Crossref]

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70(4), 042315 (2004).
[Crossref]

Li, F.

Li, X.

X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, and K. Peng, “Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam,” Phys. Rev. Lett. 88(4), 047904 (2002).
[Crossref] [PubMed]

Lloyd, S.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

Madsen, L. S.

L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Commun. 3(1), 1083 (2012).
[Crossref] [PubMed]

Mavalvala, N.

K. McKenzie, E. E. Mikhailov, K. Goda, P. K. Lam, N. Grosse, M. B. Gray, N. Mavalvala, and D. E. McClelland, “Quantum noise locking,” J. Opt. B 7(10), S421–S428 (2005).
[Crossref]

McClelland, D. E.

K. McKenzie, M. B. Gray, S. Goßler, P. K. Lam, and D. E. McClelland, “Squeezed state generation for interferometric gravitational-wave detection,” Class. Quantum Gravity 23(8), S245–S250 (2006).
[Crossref]

K. McKenzie, E. E. Mikhailov, K. Goda, P. K. Lam, N. Grosse, M. B. Gray, N. Mavalvala, and D. E. McClelland, “Quantum noise locking,” J. Opt. B 7(10), S421–S428 (2005).
[Crossref]

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett. 93(16), 161105 (2004).
[Crossref] [PubMed]

McKenzie, K.

K. McKenzie, M. B. Gray, S. Goßler, P. K. Lam, and D. E. McClelland, “Squeezed state generation for interferometric gravitational-wave detection,” Class. Quantum Gravity 23(8), S245–S250 (2006).
[Crossref]

K. McKenzie, E. E. Mikhailov, K. Goda, P. K. Lam, N. Grosse, M. B. Gray, N. Mavalvala, and D. E. McClelland, “Quantum noise locking,” J. Opt. B 7(10), S421–S428 (2005).
[Crossref]

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett. 93(16), 161105 (2004).
[Crossref] [PubMed]

Menicucci, N. C.

M. Gu, C. Weedbrook, N. C. Menicucci, T. C. Ralph, and P. van Loock, “Quantum computing with continuous-variable clusters,” Phys. Rev. A 79(6), 062318 (2009).
[Crossref]

Mikhailov, E. E.

K. McKenzie, E. E. Mikhailov, K. Goda, P. K. Lam, N. Grosse, M. B. Gray, N. Mavalvala, and D. E. McClelland, “Quantum noise locking,” J. Opt. B 7(10), S421–S428 (2005).
[Crossref]

Navascués, M.

M. Navascués, F. Grosshans, and A. Acín, “Optimality of Gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97(19), 190502 (2006).
[Crossref] [PubMed]

Pan, Q.

X. Su, J. Jing, Q. Pan, and C. Xie, “Dense-coding quantum key distribution based on continuous-variable entanglement,” Phys. Rev. A 74(6), 062305 (2006).
[Crossref]

X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, and K. Peng, “Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam,” Phys. Rev. Lett. 88(4), 047904 (2002).
[Crossref] [PubMed]

Peng, K.

Y. Zhou, X. Jia, F. Li, C. Xie, and K. Peng, “Experimental generation of 8.4 dB entangled state with an optical cavity involving a wedged type-II nonlinear crystal,” Opt. Express 23(4), 4952–4959 (2015).
[Crossref] [PubMed]

S. Hao, X. Deng, X. Su, X. Jia, C. Xie, and K. Peng, “Gates for one-way quantum computation based on Einstein-Podolsky-Rosen entanglement,” Phys. Rev. A 89(3), 032311 (2014).
[Crossref]

Y. Wang, H. Shen, X. Jin, X. Su, C. Xie, and K. Peng, “Experimental generation of 6 dB continuous variable entanglement from a nondegenerate optical parametric amplifier,” Opt. Express 18(6), 6149–6155 (2010).
[Crossref] [PubMed]

X. Su, W. Wang, Y. Wang, X. Jia, C. Xie, and K. Peng, “Continuous variable quantum key distribution based on optical entangled states without signal modulation,” Europhys. Lett. 87(2), 20005 (2009).
[Crossref]

X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, and K. Peng, “Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam,” Phys. Rev. Lett. 88(4), 047904 (2002).
[Crossref] [PubMed]

Pirandola, S.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

C. Weedbrook, S. Pirandola, and T. C. Ralph, “Continuous-variable quantum key distribution using thermal states,” Phys. Rev. A 86(2), 022318 (2012).
[Crossref]

Polzik, E. S.

C. Schori, J. L. Sørensen, and E. S. Polzik, “Narrow-band frequency tunable light source of continuous quadrature entanglement,” Phys. Rev. A 66(3), 033802 (2002).
[Crossref]

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282(5389), 706–709 (1998).
[Crossref] [PubMed]

Ralph, T. C.

C. Weedbrook, S. Pirandola, and T. C. Ralph, “Continuous-variable quantum key distribution using thermal states,” Phys. Rev. A 86(2), 022318 (2012).
[Crossref]

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

M. Gu, C. Weedbrook, N. C. Menicucci, T. C. Ralph, and P. van Loock, “Quantum computing with continuous-variable clusters,” Phys. Rev. A 79(6), 062318 (2009).
[Crossref]

Reid, M. D.

M. D. Reid and P. D. Drummond, “Quantum correlations of phase in nondegenerate parametric oscillation,” Phys. Rev. Lett. 60(26), 2731–2733 (1988).
[Crossref] [PubMed]

Schori, C.

C. Schori, J. L. Sørensen, and E. S. Polzik, “Narrow-band frequency tunable light source of continuous quadrature entanglement,” Phys. Rev. A 66(3), 033802 (2002).
[Crossref]

Shapiro, J. H.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

Shen, H.

Sorensen, J. L.

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282(5389), 706–709 (1998).
[Crossref] [PubMed]

Sørensen, J. L.

C. Schori, J. L. Sørensen, and E. S. Polzik, “Narrow-band frequency tunable light source of continuous quadrature entanglement,” Phys. Rev. A 66(3), 033802 (2002).
[Crossref]

Su, X.

S. Hao, X. Deng, X. Su, X. Jia, C. Xie, and K. Peng, “Gates for one-way quantum computation based on Einstein-Podolsky-Rosen entanglement,” Phys. Rev. A 89(3), 032311 (2014).
[Crossref]

Y. Wang, H. Shen, X. Jin, X. Su, C. Xie, and K. Peng, “Experimental generation of 6 dB continuous variable entanglement from a nondegenerate optical parametric amplifier,” Opt. Express 18(6), 6149–6155 (2010).
[Crossref] [PubMed]

X. Su, W. Wang, Y. Wang, X. Jia, C. Xie, and K. Peng, “Continuous variable quantum key distribution based on optical entangled states without signal modulation,” Europhys. Lett. 87(2), 20005 (2009).
[Crossref]

X. Su, J. Jing, Q. Pan, and C. Xie, “Dense-coding quantum key distribution based on continuous-variable entanglement,” Phys. Rev. A 74(6), 062305 (2006).
[Crossref]

Treps, N.

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Effects of mode coupling on the generation of quadrature Einstein-Podolsky-Rosen entanglement in a type-II optical parametric oscillator below threshold,” Phys. Rev. A 71(2), 022313 (2005).
[Crossref]

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70(4), 042315 (2004).
[Crossref]

Usenko, V. C.

V. C. Usenko and R. Filip, “Trusted noise in continuous-variable quantum key distribution: a threat and a defense,” Entropy (Basel) 18(1), 20 (2016).
[Crossref]

L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Commun. 3(1), 1083 (2012).
[Crossref] [PubMed]

van Loock, P.

M. Gu, C. Weedbrook, N. C. Menicucci, T. C. Ralph, and P. van Loock, “Quantum computing with continuous-variable clusters,” Phys. Rev. A 79(6), 062318 (2009).
[Crossref]

P. van Loock, C. Weedbrook, and M. Gu, “Building Gaussian cluster states by linear optics,” Phys. Rev. A 76(3), 032321 (2007).
[Crossref]

S. L. Braunstein and P. van Loock, “Quantum inforamtion with continuous variables,” Rev. Mod. Phys. 77(2), 513–577 (2005).
[Crossref]

Wang, W.

X. Su, W. Wang, Y. Wang, X. Jia, C. Xie, and K. Peng, “Continuous variable quantum key distribution based on optical entangled states without signal modulation,” Europhys. Lett. 87(2), 20005 (2009).
[Crossref]

Wang, Y.

Y. Wang, H. Shen, X. Jin, X. Su, C. Xie, and K. Peng, “Experimental generation of 6 dB continuous variable entanglement from a nondegenerate optical parametric amplifier,” Opt. Express 18(6), 6149–6155 (2010).
[Crossref] [PubMed]

X. Su, W. Wang, Y. Wang, X. Jia, C. Xie, and K. Peng, “Continuous variable quantum key distribution based on optical entangled states without signal modulation,” Europhys. Lett. 87(2), 20005 (2009).
[Crossref]

Weedbrook, C.

C. Weedbrook, S. Pirandola, and T. C. Ralph, “Continuous-variable quantum key distribution using thermal states,” Phys. Rev. A 86(2), 022318 (2012).
[Crossref]

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

M. Gu, C. Weedbrook, N. C. Menicucci, T. C. Ralph, and P. van Loock, “Quantum computing with continuous-variable clusters,” Phys. Rev. A 79(6), 062318 (2009).
[Crossref]

P. van Loock, C. Weedbrook, and M. Gu, “Building Gaussian cluster states by linear optics,” Phys. Rev. A 76(3), 032321 (2007).
[Crossref]

Whitcomb, S. E.

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett. 93(16), 161105 (2004).
[Crossref] [PubMed]

Xie, C.

Y. Zhou, X. Jia, F. Li, C. Xie, and K. Peng, “Experimental generation of 8.4 dB entangled state with an optical cavity involving a wedged type-II nonlinear crystal,” Opt. Express 23(4), 4952–4959 (2015).
[Crossref] [PubMed]

S. Hao, X. Deng, X. Su, X. Jia, C. Xie, and K. Peng, “Gates for one-way quantum computation based on Einstein-Podolsky-Rosen entanglement,” Phys. Rev. A 89(3), 032311 (2014).
[Crossref]

Y. Wang, H. Shen, X. Jin, X. Su, C. Xie, and K. Peng, “Experimental generation of 6 dB continuous variable entanglement from a nondegenerate optical parametric amplifier,” Opt. Express 18(6), 6149–6155 (2010).
[Crossref] [PubMed]

X. Su, W. Wang, Y. Wang, X. Jia, C. Xie, and K. Peng, “Continuous variable quantum key distribution based on optical entangled states without signal modulation,” Europhys. Lett. 87(2), 20005 (2009).
[Crossref]

X. Su, J. Jing, Q. Pan, and C. Xie, “Dense-coding quantum key distribution based on continuous-variable entanglement,” Phys. Rev. A 74(6), 062305 (2006).
[Crossref]

X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, and K. Peng, “Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam,” Phys. Rev. Lett. 88(4), 047904 (2002).
[Crossref] [PubMed]

Zhang, J.

X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, and K. Peng, “Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam,” Phys. Rev. Lett. 88(4), 047904 (2002).
[Crossref] [PubMed]

Zhou, Y.

Am. J. Phys. (1)

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

Class. Quantum Gravity (1)

K. McKenzie, M. B. Gray, S. Goßler, P. K. Lam, and D. E. McClelland, “Squeezed state generation for interferometric gravitational-wave detection,” Class. Quantum Gravity 23(8), S245–S250 (2006).
[Crossref]

Entropy (Basel) (1)

V. C. Usenko and R. Filip, “Trusted noise in continuous-variable quantum key distribution: a threat and a defense,” Entropy (Basel) 18(1), 20 (2016).
[Crossref]

Europhys. Lett. (1)

X. Su, W. Wang, Y. Wang, X. Jia, C. Xie, and K. Peng, “Continuous variable quantum key distribution based on optical entangled states without signal modulation,” Europhys. Lett. 87(2), 20005 (2009).
[Crossref]

J. Opt. B (1)

K. McKenzie, E. E. Mikhailov, K. Goda, P. K. Lam, N. Grosse, M. B. Gray, N. Mavalvala, and D. E. McClelland, “Quantum noise locking,” J. Opt. B 7(10), S421–S428 (2005).
[Crossref]

Nat. Commun. (1)

L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Commun. 3(1), 1083 (2012).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. A (8)

C. Weedbrook, S. Pirandola, and T. C. Ralph, “Continuous-variable quantum key distribution using thermal states,” Phys. Rev. A 86(2), 022318 (2012).
[Crossref]

X. Su, J. Jing, Q. Pan, and C. Xie, “Dense-coding quantum key distribution based on continuous-variable entanglement,” Phys. Rev. A 74(6), 062305 (2006).
[Crossref]

S. Hao, X. Deng, X. Su, X. Jia, C. Xie, and K. Peng, “Gates for one-way quantum computation based on Einstein-Podolsky-Rosen entanglement,” Phys. Rev. A 89(3), 032311 (2014).
[Crossref]

P. van Loock, C. Weedbrook, and M. Gu, “Building Gaussian cluster states by linear optics,” Phys. Rev. A 76(3), 032321 (2007).
[Crossref]

M. Gu, C. Weedbrook, N. C. Menicucci, T. C. Ralph, and P. van Loock, “Quantum computing with continuous-variable clusters,” Phys. Rev. A 79(6), 062318 (2009).
[Crossref]

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70(4), 042315 (2004).
[Crossref]

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Effects of mode coupling on the generation of quadrature Einstein-Podolsky-Rosen entanglement in a type-II optical parametric oscillator below threshold,” Phys. Rev. A 71(2), 022313 (2005).
[Crossref]

C. Schori, J. L. Sørensen, and E. S. Polzik, “Narrow-band frequency tunable light source of continuous quadrature entanglement,” Phys. Rev. A 66(3), 033802 (2002).
[Crossref]

Phys. Rev. Lett. (6)

M. D. Reid and P. D. Drummond, “Quantum correlations of phase in nondegenerate parametric oscillation,” Phys. Rev. Lett. 60(26), 2731–2733 (1988).
[Crossref] [PubMed]

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett. 93(16), 161105 (2004).
[Crossref] [PubMed]

X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, and K. Peng, “Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam,” Phys. Rev. Lett. 88(4), 047904 (2002).
[Crossref] [PubMed]

M. Navascués, F. Grosshans, and A. Acín, “Optimality of Gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97(19), 190502 (2006).
[Crossref] [PubMed]

R. García-Patrón and N. J. Cerf, “Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution,” Phys. Rev. Lett. 97(19), 190503 (2006).
[Crossref] [PubMed]

F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent states,” Phys. Rev. Lett. 88(5), 057902 (2002).
[Crossref] [PubMed]

Rev. Mod. Phys. (2)

S. L. Braunstein and P. van Loock, “Quantum inforamtion with continuous variables,” Rev. Mod. Phys. 77(2), 513–577 (2005).
[Crossref]

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

Science (1)

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282(5389), 706–709 (1998).
[Crossref] [PubMed]

Other (1)

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 The schematic of the proposed quantum communication scheme with QNL method. R, reflection coefficient of the beam splitter; BS, the balanced beam splitter; LO, local oscillator beam; HD, homodyne detection system; ψ, the coupling phase between a ^ th and a ^ E1 ; ϕ, the coupling phase between the output mode from Alice and a ^ E2 ; θ ( θ ), the relative phase of HD1 (HD2); BPF, band pass filter; ED, envelope detector; LPF, low pass filter; SG, signal generator; PZT, piezoelectric transducer.
Fig. 2
Fig. 2 The variance V θ and the error signal as the given phase combination Δ=2θ+ ϕ ¯ is varied. The tagged zero crossing point indicates the locking phase. The scale of the error signal is arbitrary.
Fig. 3
Fig. 3 The other schematic of the quantum communication. η, channel efficiency. Servo system, a simple description of the electronic circuit system described in Fig. 1.
Fig. 4
Fig. 4 The SNRs for Bob (line i) and Eve (line ii) as a function of (a): the parameter r with �� = 0.9 and Δθ=0; (b): the channel efficiency �� with r = 0.92 and Δθ=0; (c): the phase fluctuation Δθ with r = 0.92 and �� = 0.9. The SNRs’ unit is V s .

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

δ ^ 1 = x ^ E1 + x ^ E2 = 2 x ^ 20 e r , δ ^ 2 = p ^ E1 p ^ E2 = 2 p ^ 10 e r ,
p ^ E1 + p ^ E2 = 2 p ^ 20 e r , x ^ E1 x ^ E2 = 2 x ^ 10 e r .
( a ^ o1 a ^ o2 )=( 2 /2 2 /2 2 /2 2 /2 )( a ^ E1 e iϕ a ^ E2 ),
x ^ o1 (θ) 2 2 [ x ^ E1 (θ)+ R x ^ th (θ+ψ)+ x ^ E2 (θ+ϕ)].
x ^ o1 (θ) x ^ 10 e r [cosθcos(θ+ϕ)]+ x ^ 20 e r [cosθ+cos(θ+ϕ)] + p ^ 10 e r [sinθsin(θ+ϕ)]+ p ^ 20 e r [sinθ+sin(θ+ϕ)]+ R x ^ th (θ+ψ).
V θ 2 e 2r cos 2 2θ+ϕ 2 +2 e 2r sin 2 2θ+ϕ 2 + V s .
V θ 2 e 2r J 0 ( ϕ 0 ) cos 2 2θ+ ϕ ¯ 2 +2 e 2r J 0 ( ϕ 0 ) sin 2 2θ+ ϕ ¯ 2 +4 J 0 ( ϕ 0 ) J 1 ( ϕ 0 )sin(2θ+ ϕ ¯ )sinΩt( e 2r e 2r )+ V s .
ε( e 2r e 2r )sin(2θ+ ϕ ¯ ).
Δ 2 [ x ^ E1 ( χ 2 ) x ^ E2 ( χ 2 )] = Δ 2 [ p ^ E1 ( χ 2 )+ p ^ E2 ( χ 2 )] =2 e 2r .
x ^ E1 (θ)+ x ^ E2 (θ+ϕ)[ x ^ E1 ( χ 2 ) x ^ E2 ( χ 2 )]cos(θ χ 2 )+[ p ^ E1 ( χ 2 )+ p ^ E2 ( χ 2 )]sin(θ χ 2 )
S/ N B = η V s 1η+( g 2 +η )cosh[ 2r ]2g η cosΔθsinh[ 2r ] ,
S/ N E = (1η) V s (1η)cosh[ 2r ]+η .