Abstract

Angle-resolved reflection, light scattering and ultrafast pump-probe spectroscopy combined with a surface plasmon-polariton (SPP) resonance technique in attenuated total reflection geometry was used to investigate the light-induced plasmonic switching in a photorefractive VO2/Au hybrid structure. Measurements of SPP scattering and reflection shows that the optically-induced formation of metallic state in a vanadium dioxide layer deposited on a gold film significantly alters the electromagnetic field enhancement and SPP propagation length at the VO2/Au interface. The ultrafast optical manipulation of SPP resonance is shown on a picosecond timescale. Obtained results demonstrate high potential of photorefractive vanadium oxides as efficient plasmonic modulating materials for ultrafast optoelectronic devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Insulator to metal transition induced by surface plasmon polaritons in VO2/Au thin films

S. E. Madaras, J. Creeden, S. Kittiwatanakul, J. Lu, I. Novikova, and R. A. Lukaszew
Opt. Express 26(20) 25657-25666 (2018)

Au nanowire-VO2 spacer-Au film based optical switches

Arun Thomas, Priten Savaliya, Kamal Kumar, Akanksha Ninawe, and Anuj Dhawan
J. Opt. Soc. Am. B 35(7) 1687-1697 (2018)

Surface plasmon resonance modulation in nanopatterned Au gratings by the insulator-metal transition in vanadium dioxide films

M. Beebe, L. Wang, S. E. Madaras, J. M. Klopf, Z. Li, D. Brantley, M. Heimburger, R. A. Wincheski, S. Kittiwatanakul, J. Lu, S. A. Wolf, and R. A. Lukaszew
Opt. Express 23(10) 13222-13229 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).
  2. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).
    [Crossref]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [Crossref] [PubMed]
  4. T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [Crossref]
  5. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 56–62 (2007).
    [Crossref] [PubMed]
  6. D. L. Mills and V. M. Agranovich, Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces (North-Holland Publishing Company, 1982).
  7. H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings,” (Springer-Verlag, 1988).
    [Crossref]
  8. T. Turbadar, “Complete absorption of light by thin metal films,” Proc. Phys. Soc. London 73, 40–44 (1959).
    [Crossref]
  9. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
    [Crossref]
  10. E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23a, 2135–2136 (1968).
  11. G. Agarwal, “New method in the theory of surface polaritons,” Phys. Rev. B 8, 4768–4779 (1973).
    [Crossref]
  12. J. Swalen, “Optical properties of langmuir-blodgett films,” J. Mol. Electron. 2, 155–181 (1986).
  13. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
    [Crossref]
  14. M. Cada, D. Blazek, J. Pistora, K. Postava, and P. Siroky, “Theoretical and experimental study of plasmonic effects in heavily doped gallium arsenide and indium phosphide,” Opt. Mater. Express 5, 340–352 (2015).
    [Crossref]
  15. J. Park, J.-H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (enz) metafilm absorbers,” Sci. Rep. 5, 15754 (2015).
    [Crossref] [PubMed]
  16. Y. Liu, K. Tom, X. Wang, C. Huang, H. Yuan, H. Ding, C. Ko, J. Suh, L. Pan, K. A. Persson, and J. Yao, “Dynamic control of optical response in layered metal chalcogenide nanoplates,” Nano Lett. 16, 488–496 (2015).
    [Crossref] [PubMed]
  17. E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10, 2111–2116 (2010).
    [Crossref] [PubMed]
  18. F. Morin, “Oxides which show a metal-to-insulator transition at the Neel temperature,” Phys. Rev. Lett. 3, 34–36 (1959).
    [Crossref]
  19. A. I. Sidorov, “Modulation of the reflectivity upon attenuated total reflection in layered systems with a vanadium dioxide film,” J. Opt. Technol. 67, 133 (2000).
    [Crossref]
  20. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 18330–18339 (2009).
    [Crossref] [PubMed]
  21. L. A. Sweatlock and K. Diest, “Vanadium dioxide based plasmonic modulators,” Opt. Express 20, 8700–8709 (2012)
    [Crossref] [PubMed]
  22. B. A. Kruger, A. Joushaghani, and J. K. S. Poon, “Design of electrically driven hybrid vanadium dioxide (VO2) plasmonic switches,” Opt. Express 20, 23598–23609 (2012).
    [Crossref] [PubMed]
  23. L. Wang, E. Radue, S. Kittiwatanakul, C. Clavero, J. Lu, S. A. Wolf, I. Novikova, and R. A. Lukaszew, “Surface plasmon polaritons in VO2 thin films for tunable low-loss plasmonic applications,” Opt. Lett. 37, 4335–4337 (2012).
    [Crossref] [PubMed]
  24. A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. S. Aitchison, and J. K. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102, 061101 (2013).
    [Crossref]
  25. J.-B. Park, I.-M. Lee, S.-Y. Lee, K. Kim, D. Choi, E. Y. Song, and B. Lee, “Tunable subwavelength hot spot of dipole nanostructure based on VO2 phase transition,” Opt. Express 21, 15205–15212 (2013).
    [Crossref] [PubMed]
  26. S. K. Earl, T. D. James, T. J. Davis, J. C. McCallum, R. E. Marvel, R. F. Haglund, and A. Roberts, “Tunable optical antennas enabled by the phase transition in vanadium dioxide,” Opt. Express 21, 27503–27508 (2013).
    [Crossref] [PubMed]
  27. J. Jeong, A. Joushaghani, S. Paradis, D. Alain, and J. K. Poon, “Electrically controllable extraordinary optical transmission in gold gratings on vanadium dioxide,” Opt. Express 40, 4408–4411 (2015).
  28. D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure,” ACS Photon. 2, 1306–1313 (2015).
    [Crossref]
  29. T. Jostmeier, M. Mangold, J. Zimmer, H. Karl, H. J. Krenner, C. Ruppert, and M. Betz, “Thermochromic modulation of surface plasmon polaritons in vanadium dioxide nanocomposites,” Opt. Express 24, 17321–17331 (2016).
    [Crossref] [PubMed]
  30. M. Sun, W. Shieh, and R. R. Unnithan, “Design of plasmonic modulators with vanadium dioxide on silicon-on-insulator,” IEEE Photonics J. 9, 4501010 (2017).
    [Crossref]
  31. W. Roach and I. Balberg, “Optical induction and detection of fast phase transition in VO2,” Solid State Commun. 9, 551 (1971).
    [Crossref]
  32. A. Cavalleri, C. Tóth, C. W. Siders, J. Squier, F. Ráksi, P. Forget, and J. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
    [Crossref]
  33. V. Agranovich, “Auxiliary surface polaritons in the region of resonance with oscillations in a transition layer,” Sov. Phys. JETP 50, 567 (1979).
  34. A. S. Oleinik, “Optical data recording with vanadium dioxide-based film reversible media,” Tech. Phys. 47: 1014–1018 (2002).
    [Crossref]
  35. A. L. Semenov, “Photoinduced semiconductor-metal phase transition and switching wave in the vanadium dioxide film,” Phys. Solid State 53, 386–389 (2011).
    [Crossref]
  36. J. Worm, Program zur Simulation von Plasmonen (MPI Polymerforschung, 2009).
  37. R. M. Azzam and N. M. Bashara, Ellipsometry and polarized light (North-Holland, 1987).
  38. M. Schubert, “Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B 53, 4265 (1996).
    [Crossref]
  39. S. I. Lysenko, B. A. Snopok, and V. A. Sterligov, “Scattering of surface plasmon-polaritons and volume waves by thin gold films,” Opt. Spectrosc. 188, 581–590 (2010).
    [Crossref]
  40. V. A Sterligov, I. A. Grytsaienko, and Y. Men, “Scattering of surface plasmon-polaritons and volume waves by a rough gold film,” Opt. Lett. 41, 3710–3713 (2016).
    [Crossref] [PubMed]
  41. S. Lysenko, F. Fernández, A. Rúa, and H. Liu, “Ultrafast light scattering imaging of multi-scale transition dynamics in vanadium dioxide,” J. Appl. Phys. 114, 153514 (2013).
    [Crossref]
  42. S. Lysenko, F. Fernández, A. Rua, J. Aparicio, N. Sepulveda, Jose Figueroa, K. Vargas, and J. Cordero, “Light scattering by epitaxial VO2 films near the metal-insulator transition point,” J. Appl. Phys. 117, 184304 (2015).
    [Crossref]
  43. S. Lysenko, F. Fernández, A. Rúa, N. Sepúlveda, and J. Aparicio, “Photoinduced insulator-to-metal transition and surface statistics of VO2 monitored by elastic light scattering,” Appl. Opt. 54, 2141–2150 (2015).
    [Crossref] [PubMed]
  44. S. Lysenko, N. Kumar, A. Rúa, J. Figueroa, J. Lu, and F. Fernández, “Ultrafast structural dynamics of VO2,” Phys. Rev. B 96, 075128 (2017).
    [Crossref]
  45. A. Maradudin and D. Mills, “Scattering and absorption of electromagnetic radiation by a semi-infinite medium in the presence of surface roughness,” Phys. Rev. B 11, 1392 (1975).
    [Crossref]
  46. B. T. O’Callahan, A. C. Jones, J. H. Park, D. H. Cobden, J. M. Atkin, and M. B. Raschke, “Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO2,” Nat. Commun. 6, 6849 (2015).
    [Crossref]
  47. P. Baum, D.-S. Yang, and A. H. Zewail, “4D visualization of transitional structures in phase transformations by electron diffraction,” Science 318, 788–792 (2007).
    [Crossref] [PubMed]
  48. V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346, 445–448 (2014).
    [Crossref] [PubMed]

2017 (2)

M. Sun, W. Shieh, and R. R. Unnithan, “Design of plasmonic modulators with vanadium dioxide on silicon-on-insulator,” IEEE Photonics J. 9, 4501010 (2017).
[Crossref]

S. Lysenko, N. Kumar, A. Rúa, J. Figueroa, J. Lu, and F. Fernández, “Ultrafast structural dynamics of VO2,” Phys. Rev. B 96, 075128 (2017).
[Crossref]

2016 (2)

2015 (8)

M. Cada, D. Blazek, J. Pistora, K. Postava, and P. Siroky, “Theoretical and experimental study of plasmonic effects in heavily doped gallium arsenide and indium phosphide,” Opt. Mater. Express 5, 340–352 (2015).
[Crossref]

S. Lysenko, F. Fernández, A. Rúa, N. Sepúlveda, and J. Aparicio, “Photoinduced insulator-to-metal transition and surface statistics of VO2 monitored by elastic light scattering,” Appl. Opt. 54, 2141–2150 (2015).
[Crossref] [PubMed]

B. T. O’Callahan, A. C. Jones, J. H. Park, D. H. Cobden, J. M. Atkin, and M. B. Raschke, “Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO2,” Nat. Commun. 6, 6849 (2015).
[Crossref]

S. Lysenko, F. Fernández, A. Rua, J. Aparicio, N. Sepulveda, Jose Figueroa, K. Vargas, and J. Cordero, “Light scattering by epitaxial VO2 films near the metal-insulator transition point,” J. Appl. Phys. 117, 184304 (2015).
[Crossref]

J. Jeong, A. Joushaghani, S. Paradis, D. Alain, and J. K. Poon, “Electrically controllable extraordinary optical transmission in gold gratings on vanadium dioxide,” Opt. Express 40, 4408–4411 (2015).

D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure,” ACS Photon. 2, 1306–1313 (2015).
[Crossref]

J. Park, J.-H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (enz) metafilm absorbers,” Sci. Rep. 5, 15754 (2015).
[Crossref] [PubMed]

Y. Liu, K. Tom, X. Wang, C. Huang, H. Yuan, H. Ding, C. Ko, J. Suh, L. Pan, K. A. Persson, and J. Yao, “Dynamic control of optical response in layered metal chalcogenide nanoplates,” Nano Lett. 16, 488–496 (2015).
[Crossref] [PubMed]

2014 (1)

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346, 445–448 (2014).
[Crossref] [PubMed]

2013 (4)

S. Lysenko, F. Fernández, A. Rúa, and H. Liu, “Ultrafast light scattering imaging of multi-scale transition dynamics in vanadium dioxide,” J. Appl. Phys. 114, 153514 (2013).
[Crossref]

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. S. Aitchison, and J. K. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102, 061101 (2013).
[Crossref]

J.-B. Park, I.-M. Lee, S.-Y. Lee, K. Kim, D. Choi, E. Y. Song, and B. Lee, “Tunable subwavelength hot spot of dipole nanostructure based on VO2 phase transition,” Opt. Express 21, 15205–15212 (2013).
[Crossref] [PubMed]

S. K. Earl, T. D. James, T. J. Davis, J. C. McCallum, R. E. Marvel, R. F. Haglund, and A. Roberts, “Tunable optical antennas enabled by the phase transition in vanadium dioxide,” Opt. Express 21, 27503–27508 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (1)

A. L. Semenov, “Photoinduced semiconductor-metal phase transition and switching wave in the vanadium dioxide film,” Phys. Solid State 53, 386–389 (2011).
[Crossref]

2010 (3)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
[Crossref]

S. I. Lysenko, B. A. Snopok, and V. A. Sterligov, “Scattering of surface plasmon-polaritons and volume waves by thin gold films,” Opt. Spectrosc. 188, 581–590 (2010).
[Crossref]

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10, 2111–2116 (2010).
[Crossref] [PubMed]

2009 (1)

2007 (2)

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 56–62 (2007).
[Crossref] [PubMed]

P. Baum, D.-S. Yang, and A. H. Zewail, “4D visualization of transitional structures in phase transformations by electron diffraction,” Science 318, 788–792 (2007).
[Crossref] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

2002 (1)

A. S. Oleinik, “Optical data recording with vanadium dioxide-based film reversible media,” Tech. Phys. 47: 1014–1018 (2002).
[Crossref]

2001 (1)

A. Cavalleri, C. Tóth, C. W. Siders, J. Squier, F. Ráksi, P. Forget, and J. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref]

2000 (1)

1998 (1)

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

1996 (1)

M. Schubert, “Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B 53, 4265 (1996).
[Crossref]

1986 (1)

J. Swalen, “Optical properties of langmuir-blodgett films,” J. Mol. Electron. 2, 155–181 (1986).

1979 (1)

V. Agranovich, “Auxiliary surface polaritons in the region of resonance with oscillations in a transition layer,” Sov. Phys. JETP 50, 567 (1979).

1975 (1)

A. Maradudin and D. Mills, “Scattering and absorption of electromagnetic radiation by a semi-infinite medium in the presence of surface roughness,” Phys. Rev. B 11, 1392 (1975).
[Crossref]

1973 (1)

G. Agarwal, “New method in the theory of surface polaritons,” Phys. Rev. B 8, 4768–4779 (1973).
[Crossref]

1971 (1)

W. Roach and I. Balberg, “Optical induction and detection of fast phase transition in VO2,” Solid State Commun. 9, 551 (1971).
[Crossref]

1968 (2)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[Crossref]

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23a, 2135–2136 (1968).

1959 (2)

T. Turbadar, “Complete absorption of light by thin metal films,” Proc. Phys. Soc. London 73, 40–44 (1959).
[Crossref]

F. Morin, “Oxides which show a metal-to-insulator transition at the Neel temperature,” Phys. Rev. Lett. 3, 34–36 (1959).
[Crossref]

Agarwal, G.

G. Agarwal, “New method in the theory of surface polaritons,” Phys. Rev. B 8, 4768–4779 (1973).
[Crossref]

Agranovich, V.

V. Agranovich, “Auxiliary surface polaritons in the region of resonance with oscillations in a transition layer,” Sov. Phys. JETP 50, 567 (1979).

Agranovich, V. M.

D. L. Mills and V. M. Agranovich, Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces (North-Holland Publishing Company, 1982).

Aitchison, J. S.

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. S. Aitchison, and J. K. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102, 061101 (2013).
[Crossref]

Alain, D.

J. Jeong, A. Joushaghani, S. Paradis, D. Alain, and J. K. Poon, “Electrically controllable extraordinary optical transmission in gold gratings on vanadium dioxide,” Opt. Express 40, 4408–4411 (2015).

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. S. Aitchison, and J. K. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102, 061101 (2013).
[Crossref]

Aparicio, J.

S. Lysenko, F. Fernández, A. Rua, J. Aparicio, N. Sepulveda, Jose Figueroa, K. Vargas, and J. Cordero, “Light scattering by epitaxial VO2 films near the metal-insulator transition point,” J. Appl. Phys. 117, 184304 (2015).
[Crossref]

S. Lysenko, F. Fernández, A. Rúa, N. Sepúlveda, and J. Aparicio, “Photoinduced insulator-to-metal transition and surface statistics of VO2 monitored by elastic light scattering,” Appl. Opt. 54, 2141–2150 (2015).
[Crossref] [PubMed]

Appavoo, K.

D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure,” ACS Photon. 2, 1306–1313 (2015).
[Crossref]

Atkin, J. M.

B. T. O’Callahan, A. C. Jones, J. H. Park, D. H. Cobden, J. M. Atkin, and M. B. Raschke, “Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO2,” Nat. Commun. 6, 6849 (2015).
[Crossref]

Atwater, H. A.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10, 2111–2116 (2010).
[Crossref] [PubMed]

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 18330–18339 (2009).
[Crossref] [PubMed]

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 56–62 (2007).
[Crossref] [PubMed]

Aydin, K.

Azzam, R. M.

R. M. Azzam and N. M. Bashara, Ellipsometry and polarized light (North-Holland, 1987).

Balberg, I.

W. Roach and I. Balberg, “Optical induction and detection of fast phase transition in VO2,” Solid State Commun. 9, 551 (1971).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Bashara, N. M.

R. M. Azzam and N. M. Bashara, Ellipsometry and polarized light (North-Holland, 1987).

Baum, P.

P. Baum, D.-S. Yang, and A. H. Zewail, “4D visualization of transitional structures in phase transformations by electron diffraction,” Science 318, 788–792 (2007).
[Crossref] [PubMed]

Betz, M.

Blazek, D.

Boltasseva, A.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
[Crossref]

Boyd, E. M.

Brongersma, M. L.

J. Park, J.-H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (enz) metafilm absorbers,” Sci. Rep. 5, 15754 (2015).
[Crossref] [PubMed]

Bruhács, A.

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346, 445–448 (2014).
[Crossref] [PubMed]

Cada, M.

Cavalleri, A.

A. Cavalleri, C. Tóth, C. W. Siders, J. Squier, F. Ráksi, P. Forget, and J. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref]

Chaker, M.

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346, 445–448 (2014).
[Crossref] [PubMed]

Chatelain, R. P.

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346, 445–448 (2014).
[Crossref] [PubMed]

Choi, D.

Clavero, C.

Cobden, D. H.

B. T. O’Callahan, A. C. Jones, J. H. Park, D. H. Cobden, J. M. Atkin, and M. B. Raschke, “Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO2,” Nat. Commun. 6, 6849 (2015).
[Crossref]

Cordero, J.

S. Lysenko, F. Fernández, A. Rua, J. Aparicio, N. Sepulveda, Jose Figueroa, K. Vargas, and J. Cordero, “Light scattering by epitaxial VO2 films near the metal-insulator transition point,” J. Appl. Phys. 117, 184304 (2015).
[Crossref]

Davis, T. J.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Dicken, M. J.

Diest, K.

L. A. Sweatlock and K. Diest, “Vanadium dioxide based plasmonic modulators,” Opt. Express 20, 8700–8709 (2012)
[Crossref] [PubMed]

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10, 2111–2116 (2010).
[Crossref] [PubMed]

Ding, H.

Y. Liu, K. Tom, X. Wang, C. Huang, H. Yuan, H. Ding, C. Ko, J. Suh, L. Pan, K. A. Persson, and J. Yao, “Dynamic control of optical response in layered metal chalcogenide nanoplates,” Nano Lett. 16, 488–496 (2015).
[Crossref] [PubMed]

Earl, S. K.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
[Crossref]

Feigenbaum, E.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10, 2111–2116 (2010).
[Crossref] [PubMed]

Fernández, F.

S. Lysenko, N. Kumar, A. Rúa, J. Figueroa, J. Lu, and F. Fernández, “Ultrafast structural dynamics of VO2,” Phys. Rev. B 96, 075128 (2017).
[Crossref]

S. Lysenko, F. Fernández, A. Rua, J. Aparicio, N. Sepulveda, Jose Figueroa, K. Vargas, and J. Cordero, “Light scattering by epitaxial VO2 films near the metal-insulator transition point,” J. Appl. Phys. 117, 184304 (2015).
[Crossref]

S. Lysenko, F. Fernández, A. Rúa, N. Sepúlveda, and J. Aparicio, “Photoinduced insulator-to-metal transition and surface statistics of VO2 monitored by elastic light scattering,” Appl. Opt. 54, 2141–2150 (2015).
[Crossref] [PubMed]

S. Lysenko, F. Fernández, A. Rúa, and H. Liu, “Ultrafast light scattering imaging of multi-scale transition dynamics in vanadium dioxide,” J. Appl. Phys. 114, 153514 (2013).
[Crossref]

Figueroa, J.

S. Lysenko, N. Kumar, A. Rúa, J. Figueroa, J. Lu, and F. Fernández, “Ultrafast structural dynamics of VO2,” Phys. Rev. B 96, 075128 (2017).
[Crossref]

Figueroa, Jose

S. Lysenko, F. Fernández, A. Rua, J. Aparicio, N. Sepulveda, Jose Figueroa, K. Vargas, and J. Cordero, “Light scattering by epitaxial VO2 films near the metal-insulator transition point,” J. Appl. Phys. 117, 184304 (2015).
[Crossref]

Forget, P.

A. Cavalleri, C. Tóth, C. W. Siders, J. Squier, F. Ráksi, P. Forget, and J. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref]

Ghaemi, H.

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Grytsaienko, I. A.

Haglund, R. F.

D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure,” ACS Photon. 2, 1306–1313 (2015).
[Crossref]

S. K. Earl, T. D. James, T. J. Davis, J. C. McCallum, R. E. Marvel, R. F. Haglund, and A. Roberts, “Tunable optical antennas enabled by the phase transition in vanadium dioxide,” Opt. Express 21, 27503–27508 (2013).
[Crossref] [PubMed]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).
[Crossref]

Hendaoui, A.

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346, 445–448 (2014).
[Crossref] [PubMed]

Huang, C.

Y. Liu, K. Tom, X. Wang, C. Huang, H. Yuan, H. Ding, C. Ko, J. Suh, L. Pan, K. A. Persson, and J. Yao, “Dynamic control of optical response in layered metal chalcogenide nanoplates,” Nano Lett. 16, 488–496 (2015).
[Crossref] [PubMed]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
[Crossref]

James, T. D.

Jeong, J.

J. Jeong, A. Joushaghani, S. Paradis, D. Alain, and J. K. Poon, “Electrically controllable extraordinary optical transmission in gold gratings on vanadium dioxide,” Opt. Express 40, 4408–4411 (2015).

Jones, A. C.

B. T. O’Callahan, A. C. Jones, J. H. Park, D. H. Cobden, J. M. Atkin, and M. B. Raschke, “Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO2,” Nat. Commun. 6, 6849 (2015).
[Crossref]

Jostmeier, T.

Joushaghani, A.

J. Jeong, A. Joushaghani, S. Paradis, D. Alain, and J. K. Poon, “Electrically controllable extraordinary optical transmission in gold gratings on vanadium dioxide,” Opt. Express 40, 4408–4411 (2015).

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. S. Aitchison, and J. K. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102, 061101 (2013).
[Crossref]

B. A. Kruger, A. Joushaghani, and J. K. S. Poon, “Design of electrically driven hybrid vanadium dioxide (VO2) plasmonic switches,” Opt. Express 20, 23598–23609 (2012).
[Crossref] [PubMed]

Kang, J.-H.

J. Park, J.-H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (enz) metafilm absorbers,” Sci. Rep. 5, 15754 (2015).
[Crossref] [PubMed]

Karl, H.

Kieffer, J.

A. Cavalleri, C. Tóth, C. W. Siders, J. Squier, F. Ráksi, P. Forget, and J. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref]

Kim, K.

Kittiwatanakul, S.

Ko, C.

Y. Liu, K. Tom, X. Wang, C. Huang, H. Yuan, H. Ding, C. Ko, J. Suh, L. Pan, K. A. Persson, and J. Yao, “Dynamic control of optical response in layered metal chalcogenide nanoplates,” Nano Lett. 16, 488–496 (2015).
[Crossref] [PubMed]

Krenner, H. J.

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23a, 2135–2136 (1968).

Kruger, B. A.

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. S. Aitchison, and J. K. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102, 061101 (2013).
[Crossref]

B. A. Kruger, A. Joushaghani, and J. K. S. Poon, “Design of electrically driven hybrid vanadium dioxide (VO2) plasmonic switches,” Opt. Express 20, 23598–23609 (2012).
[Crossref] [PubMed]

Kumar, N.

S. Lysenko, N. Kumar, A. Rúa, J. Figueroa, J. Lu, and F. Fernández, “Ultrafast structural dynamics of VO2,” Phys. Rev. B 96, 075128 (2017).
[Crossref]

Lee, B.

Lee, I.-M.

Lee, S.-Y.

Lei, D. Y.

D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure,” ACS Photon. 2, 1306–1313 (2015).
[Crossref]

Lezec, H.

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Ligmajer, F.

D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure,” ACS Photon. 2, 1306–1313 (2015).
[Crossref]

Liu, H.

S. Lysenko, F. Fernández, A. Rúa, and H. Liu, “Ultrafast light scattering imaging of multi-scale transition dynamics in vanadium dioxide,” J. Appl. Phys. 114, 153514 (2013).
[Crossref]

Liu, X.

J. Park, J.-H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (enz) metafilm absorbers,” Sci. Rep. 5, 15754 (2015).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, K. Tom, X. Wang, C. Huang, H. Yuan, H. Ding, C. Ko, J. Suh, L. Pan, K. A. Persson, and J. Yao, “Dynamic control of optical response in layered metal chalcogenide nanoplates,” Nano Lett. 16, 488–496 (2015).
[Crossref] [PubMed]

Lu, J.

Lukaszew, R. A.

Lysenko, S.

S. Lysenko, N. Kumar, A. Rúa, J. Figueroa, J. Lu, and F. Fernández, “Ultrafast structural dynamics of VO2,” Phys. Rev. B 96, 075128 (2017).
[Crossref]

S. Lysenko, F. Fernández, A. Rua, J. Aparicio, N. Sepulveda, Jose Figueroa, K. Vargas, and J. Cordero, “Light scattering by epitaxial VO2 films near the metal-insulator transition point,” J. Appl. Phys. 117, 184304 (2015).
[Crossref]

S. Lysenko, F. Fernández, A. Rúa, N. Sepúlveda, and J. Aparicio, “Photoinduced insulator-to-metal transition and surface statistics of VO2 monitored by elastic light scattering,” Appl. Opt. 54, 2141–2150 (2015).
[Crossref] [PubMed]

S. Lysenko, F. Fernández, A. Rúa, and H. Liu, “Ultrafast light scattering imaging of multi-scale transition dynamics in vanadium dioxide,” J. Appl. Phys. 114, 153514 (2013).
[Crossref]

Lysenko, S. I.

S. I. Lysenko, B. A. Snopok, and V. A. Sterligov, “Scattering of surface plasmon-polaritons and volume waves by thin gold films,” Opt. Spectrosc. 188, 581–590 (2010).
[Crossref]

Ma, J.

Maier, S. A.

D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure,” ACS Photon. 2, 1306–1313 (2015).
[Crossref]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).

Mangold, M.

Maradudin, A.

A. Maradudin and D. Mills, “Scattering and absorption of electromagnetic radiation by a semi-infinite medium in the presence of surface roughness,” Phys. Rev. B 11, 1392 (1975).
[Crossref]

Marvel, R. E.

McCallum, J. C.

Men, Y.

Mills, D.

A. Maradudin and D. Mills, “Scattering and absorption of electromagnetic radiation by a semi-infinite medium in the presence of surface roughness,” Phys. Rev. B 11, 1392 (1975).
[Crossref]

Mills, D. L.

D. L. Mills and V. M. Agranovich, Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces (North-Holland Publishing Company, 1982).

Morin, F.

F. Morin, “Oxides which show a metal-to-insulator transition at the Neel temperature,” Phys. Rev. Lett. 3, 34–36 (1959).
[Crossref]

Morrison, V. R.

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346, 445–448 (2014).
[Crossref] [PubMed]

Naik, G. V.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
[Crossref]

Novikova, I.

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).
[Crossref]

O’Callahan, B. T.

B. T. O’Callahan, A. C. Jones, J. H. Park, D. H. Cobden, J. M. Atkin, and M. B. Raschke, “Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO2,” Nat. Commun. 6, 6849 (2015).
[Crossref]

Oleinik, A. S.

A. S. Oleinik, “Optical data recording with vanadium dioxide-based film reversible media,” Tech. Phys. 47: 1014–1018 (2002).
[Crossref]

Otto, A.

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[Crossref]

Pan, L.

Y. Liu, K. Tom, X. Wang, C. Huang, H. Yuan, H. Ding, C. Ko, J. Suh, L. Pan, K. A. Persson, and J. Yao, “Dynamic control of optical response in layered metal chalcogenide nanoplates,” Nano Lett. 16, 488–496 (2015).
[Crossref] [PubMed]

Paradis, S.

J. Jeong, A. Joushaghani, S. Paradis, D. Alain, and J. K. Poon, “Electrically controllable extraordinary optical transmission in gold gratings on vanadium dioxide,” Opt. Express 40, 4408–4411 (2015).

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. S. Aitchison, and J. K. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102, 061101 (2013).
[Crossref]

Park, J.

J. Park, J.-H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (enz) metafilm absorbers,” Sci. Rep. 5, 15754 (2015).
[Crossref] [PubMed]

Park, J. H.

B. T. O’Callahan, A. C. Jones, J. H. Park, D. H. Cobden, J. M. Atkin, and M. B. Raschke, “Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO2,” Nat. Commun. 6, 6849 (2015).
[Crossref]

Park, J.-B.

Persson, K. A.

Y. Liu, K. Tom, X. Wang, C. Huang, H. Yuan, H. Ding, C. Ko, J. Suh, L. Pan, K. A. Persson, and J. Yao, “Dynamic control of optical response in layered metal chalcogenide nanoplates,” Nano Lett. 16, 488–496 (2015).
[Crossref] [PubMed]

Pistora, J.

Poon, J. K.

J. Jeong, A. Joushaghani, S. Paradis, D. Alain, and J. K. Poon, “Electrically controllable extraordinary optical transmission in gold gratings on vanadium dioxide,” Opt. Express 40, 4408–4411 (2015).

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. S. Aitchison, and J. K. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102, 061101 (2013).
[Crossref]

Poon, J. K. S.

Postava, K.

Pryce, I. M.

Radue, E.

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23a, 2135–2136 (1968).

H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings,” (Springer-Verlag, 1988).
[Crossref]

Ráksi, F.

A. Cavalleri, C. Tóth, C. W. Siders, J. Squier, F. Ráksi, P. Forget, and J. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref]

Raschke, M. B.

B. T. O’Callahan, A. C. Jones, J. H. Park, D. H. Cobden, J. M. Atkin, and M. B. Raschke, “Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO2,” Nat. Commun. 6, 6849 (2015).
[Crossref]

Roach, W.

W. Roach and I. Balberg, “Optical induction and detection of fast phase transition in VO2,” Solid State Commun. 9, 551 (1971).
[Crossref]

Roberts, A.

Rua, A.

S. Lysenko, F. Fernández, A. Rua, J. Aparicio, N. Sepulveda, Jose Figueroa, K. Vargas, and J. Cordero, “Light scattering by epitaxial VO2 films near the metal-insulator transition point,” J. Appl. Phys. 117, 184304 (2015).
[Crossref]

Rúa, A.

S. Lysenko, N. Kumar, A. Rúa, J. Figueroa, J. Lu, and F. Fernández, “Ultrafast structural dynamics of VO2,” Phys. Rev. B 96, 075128 (2017).
[Crossref]

S. Lysenko, F. Fernández, A. Rúa, N. Sepúlveda, and J. Aparicio, “Photoinduced insulator-to-metal transition and surface statistics of VO2 monitored by elastic light scattering,” Appl. Opt. 54, 2141–2150 (2015).
[Crossref] [PubMed]

S. Lysenko, F. Fernández, A. Rúa, and H. Liu, “Ultrafast light scattering imaging of multi-scale transition dynamics in vanadium dioxide,” J. Appl. Phys. 114, 153514 (2013).
[Crossref]

Ruppert, C.

Schubert, M.

M. Schubert, “Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B 53, 4265 (1996).
[Crossref]

Semenov, A. L.

A. L. Semenov, “Photoinduced semiconductor-metal phase transition and switching wave in the vanadium dioxide film,” Phys. Solid State 53, 386–389 (2011).
[Crossref]

Sepulveda, N.

S. Lysenko, F. Fernández, A. Rua, J. Aparicio, N. Sepulveda, Jose Figueroa, K. Vargas, and J. Cordero, “Light scattering by epitaxial VO2 films near the metal-insulator transition point,” J. Appl. Phys. 117, 184304 (2015).
[Crossref]

Sepúlveda, N.

Shalaev, V. M.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
[Crossref]

Shieh, W.

M. Sun, W. Shieh, and R. R. Unnithan, “Design of plasmonic modulators with vanadium dioxide on silicon-on-insulator,” IEEE Photonics J. 9, 4501010 (2017).
[Crossref]

Siders, C. W.

A. Cavalleri, C. Tóth, C. W. Siders, J. Squier, F. Ráksi, P. Forget, and J. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref]

Sidorov, A. I.

Siroky, P.

Siwick, B. J.

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346, 445–448 (2014).
[Crossref] [PubMed]

Snopok, B. A.

S. I. Lysenko, B. A. Snopok, and V. A. Sterligov, “Scattering of surface plasmon-polaritons and volume waves by thin gold films,” Opt. Spectrosc. 188, 581–590 (2010).
[Crossref]

Song, E. Y.

Sonnefraud, Y.

D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure,” ACS Photon. 2, 1306–1313 (2015).
[Crossref]

Squier, J.

A. Cavalleri, C. Tóth, C. W. Siders, J. Squier, F. Ráksi, P. Forget, and J. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref]

Sterligov, V. A

Sterligov, V. A.

S. I. Lysenko, B. A. Snopok, and V. A. Sterligov, “Scattering of surface plasmon-polaritons and volume waves by thin gold films,” Opt. Spectrosc. 188, 581–590 (2010).
[Crossref]

Suh, J.

Y. Liu, K. Tom, X. Wang, C. Huang, H. Yuan, H. Ding, C. Ko, J. Suh, L. Pan, K. A. Persson, and J. Yao, “Dynamic control of optical response in layered metal chalcogenide nanoplates,” Nano Lett. 16, 488–496 (2015).
[Crossref] [PubMed]

Sun, M.

M. Sun, W. Shieh, and R. R. Unnithan, “Design of plasmonic modulators with vanadium dioxide on silicon-on-insulator,” IEEE Photonics J. 9, 4501010 (2017).
[Crossref]

Swalen, J.

J. Swalen, “Optical properties of langmuir-blodgett films,” J. Mol. Electron. 2, 155–181 (1986).

Sweatlock, L. A.

Thio, T.

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Tiwari, K. L.

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346, 445–448 (2014).
[Crossref] [PubMed]

Tom, K.

Y. Liu, K. Tom, X. Wang, C. Huang, H. Yuan, H. Ding, C. Ko, J. Suh, L. Pan, K. A. Persson, and J. Yao, “Dynamic control of optical response in layered metal chalcogenide nanoplates,” Nano Lett. 16, 488–496 (2015).
[Crossref] [PubMed]

Tóth, C.

A. Cavalleri, C. Tóth, C. W. Siders, J. Squier, F. Ráksi, P. Forget, and J. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref]

Turbadar, T.

T. Turbadar, “Complete absorption of light by thin metal films,” Proc. Phys. Soc. London 73, 40–44 (1959).
[Crossref]

Unnithan, R. R.

M. Sun, W. Shieh, and R. R. Unnithan, “Design of plasmonic modulators with vanadium dioxide on silicon-on-insulator,” IEEE Photonics J. 9, 4501010 (2017).
[Crossref]

Vargas, K.

S. Lysenko, F. Fernández, A. Rua, J. Aparicio, N. Sepulveda, Jose Figueroa, K. Vargas, and J. Cordero, “Light scattering by epitaxial VO2 films near the metal-insulator transition point,” J. Appl. Phys. 117, 184304 (2015).
[Crossref]

Walavalkar, S.

Wang, L.

Wang, X.

Y. Liu, K. Tom, X. Wang, C. Huang, H. Yuan, H. Ding, C. Ko, J. Suh, L. Pan, K. A. Persson, and J. Yao, “Dynamic control of optical response in layered metal chalcogenide nanoplates,” Nano Lett. 16, 488–496 (2015).
[Crossref] [PubMed]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
[Crossref]

Wolf, S. A.

Wolff, P.

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Worm, J.

J. Worm, Program zur Simulation von Plasmonen (MPI Polymerforschung, 2009).

Yang, D.-S.

P. Baum, D.-S. Yang, and A. H. Zewail, “4D visualization of transitional structures in phase transformations by electron diffraction,” Science 318, 788–792 (2007).
[Crossref] [PubMed]

Yao, J.

Y. Liu, K. Tom, X. Wang, C. Huang, H. Yuan, H. Ding, C. Ko, J. Suh, L. Pan, K. A. Persson, and J. Yao, “Dynamic control of optical response in layered metal chalcogenide nanoplates,” Nano Lett. 16, 488–496 (2015).
[Crossref] [PubMed]

Yuan, H.

Y. Liu, K. Tom, X. Wang, C. Huang, H. Yuan, H. Ding, C. Ko, J. Suh, L. Pan, K. A. Persson, and J. Yao, “Dynamic control of optical response in layered metal chalcogenide nanoplates,” Nano Lett. 16, 488–496 (2015).
[Crossref] [PubMed]

Zewail, A. H.

P. Baum, D.-S. Yang, and A. H. Zewail, “4D visualization of transitional structures in phase transformations by electron diffraction,” Science 318, 788–792 (2007).
[Crossref] [PubMed]

Zimmer, J.

ACS Photon. (1)

D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure,” ACS Photon. 2, 1306–1313 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. S. Aitchison, and J. K. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102, 061101 (2013).
[Crossref]

IEEE Photonics J. (1)

M. Sun, W. Shieh, and R. R. Unnithan, “Design of plasmonic modulators with vanadium dioxide on silicon-on-insulator,” IEEE Photonics J. 9, 4501010 (2017).
[Crossref]

J. Appl. Phys. (2)

S. Lysenko, F. Fernández, A. Rúa, and H. Liu, “Ultrafast light scattering imaging of multi-scale transition dynamics in vanadium dioxide,” J. Appl. Phys. 114, 153514 (2013).
[Crossref]

S. Lysenko, F. Fernández, A. Rua, J. Aparicio, N. Sepulveda, Jose Figueroa, K. Vargas, and J. Cordero, “Light scattering by epitaxial VO2 films near the metal-insulator transition point,” J. Appl. Phys. 117, 184304 (2015).
[Crossref]

J. Mol. Electron. (1)

J. Swalen, “Optical properties of langmuir-blodgett films,” J. Mol. Electron. 2, 155–181 (1986).

J. Opt. Technol. (1)

Laser Photonics Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
[Crossref]

Nano Lett. (2)

Y. Liu, K. Tom, X. Wang, C. Huang, H. Yuan, H. Ding, C. Ko, J. Suh, L. Pan, K. A. Persson, and J. Yao, “Dynamic control of optical response in layered metal chalcogenide nanoplates,” Nano Lett. 16, 488–496 (2015).
[Crossref] [PubMed]

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10, 2111–2116 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

B. T. O’Callahan, A. C. Jones, J. H. Park, D. H. Cobden, J. M. Atkin, and M. B. Raschke, “Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO2,” Nat. Commun. 6, 6849 (2015).
[Crossref]

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Opt. Express (7)

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 18330–18339 (2009).
[Crossref] [PubMed]

L. A. Sweatlock and K. Diest, “Vanadium dioxide based plasmonic modulators,” Opt. Express 20, 8700–8709 (2012)
[Crossref] [PubMed]

B. A. Kruger, A. Joushaghani, and J. K. S. Poon, “Design of electrically driven hybrid vanadium dioxide (VO2) plasmonic switches,” Opt. Express 20, 23598–23609 (2012).
[Crossref] [PubMed]

J.-B. Park, I.-M. Lee, S.-Y. Lee, K. Kim, D. Choi, E. Y. Song, and B. Lee, “Tunable subwavelength hot spot of dipole nanostructure based on VO2 phase transition,” Opt. Express 21, 15205–15212 (2013).
[Crossref] [PubMed]

S. K. Earl, T. D. James, T. J. Davis, J. C. McCallum, R. E. Marvel, R. F. Haglund, and A. Roberts, “Tunable optical antennas enabled by the phase transition in vanadium dioxide,” Opt. Express 21, 27503–27508 (2013).
[Crossref] [PubMed]

J. Jeong, A. Joushaghani, S. Paradis, D. Alain, and J. K. Poon, “Electrically controllable extraordinary optical transmission in gold gratings on vanadium dioxide,” Opt. Express 40, 4408–4411 (2015).

T. Jostmeier, M. Mangold, J. Zimmer, H. Karl, H. J. Krenner, C. Ruppert, and M. Betz, “Thermochromic modulation of surface plasmon polaritons in vanadium dioxide nanocomposites,” Opt. Express 24, 17321–17331 (2016).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Mater. Express (1)

Opt. Spectrosc. (1)

S. I. Lysenko, B. A. Snopok, and V. A. Sterligov, “Scattering of surface plasmon-polaritons and volume waves by thin gold films,” Opt. Spectrosc. 188, 581–590 (2010).
[Crossref]

Phys. Rev. B (4)

M. Schubert, “Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B 53, 4265 (1996).
[Crossref]

S. Lysenko, N. Kumar, A. Rúa, J. Figueroa, J. Lu, and F. Fernández, “Ultrafast structural dynamics of VO2,” Phys. Rev. B 96, 075128 (2017).
[Crossref]

A. Maradudin and D. Mills, “Scattering and absorption of electromagnetic radiation by a semi-infinite medium in the presence of surface roughness,” Phys. Rev. B 11, 1392 (1975).
[Crossref]

G. Agarwal, “New method in the theory of surface polaritons,” Phys. Rev. B 8, 4768–4779 (1973).
[Crossref]

Phys. Rev. Lett. (2)

F. Morin, “Oxides which show a metal-to-insulator transition at the Neel temperature,” Phys. Rev. Lett. 3, 34–36 (1959).
[Crossref]

A. Cavalleri, C. Tóth, C. W. Siders, J. Squier, F. Ráksi, P. Forget, and J. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref]

Phys. Solid State (1)

A. L. Semenov, “Photoinduced semiconductor-metal phase transition and switching wave in the vanadium dioxide film,” Phys. Solid State 53, 386–389 (2011).
[Crossref]

Proc. Phys. Soc. London (1)

T. Turbadar, “Complete absorption of light by thin metal films,” Proc. Phys. Soc. London 73, 40–44 (1959).
[Crossref]

Sci. Am. (1)

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 56–62 (2007).
[Crossref] [PubMed]

Sci. Rep. (1)

J. Park, J.-H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (enz) metafilm absorbers,” Sci. Rep. 5, 15754 (2015).
[Crossref] [PubMed]

Science (2)

P. Baum, D.-S. Yang, and A. H. Zewail, “4D visualization of transitional structures in phase transformations by electron diffraction,” Science 318, 788–792 (2007).
[Crossref] [PubMed]

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346, 445–448 (2014).
[Crossref] [PubMed]

Solid State Commun. (1)

W. Roach and I. Balberg, “Optical induction and detection of fast phase transition in VO2,” Solid State Commun. 9, 551 (1971).
[Crossref]

Sov. Phys. JETP (1)

V. Agranovich, “Auxiliary surface polaritons in the region of resonance with oscillations in a transition layer,” Sov. Phys. JETP 50, 567 (1979).

Tech. Phys. (1)

A. S. Oleinik, “Optical data recording with vanadium dioxide-based film reversible media,” Tech. Phys. 47: 1014–1018 (2002).
[Crossref]

Z. Naturforsch. A (1)

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23a, 2135–2136 (1968).

Z. Phys. (1)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[Crossref]

Other (6)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).
[Crossref]

D. L. Mills and V. M. Agranovich, Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces (North-Holland Publishing Company, 1982).

H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings,” (Springer-Verlag, 1988).
[Crossref]

J. Worm, Program zur Simulation von Plasmonen (MPI Polymerforschung, 2009).

R. M. Azzam and N. M. Bashara, Ellipsometry and polarized light (North-Holland, 1987).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Experimental geometry of ATR measurements. (b) Excitation of SPPs at VO2/Au interface by ATR method, Kretschmann-Raether configuration.
Fig. 2
Fig. 2 Angle-resolved reflectivity Rp of VO2/Au structure in ATR geometry for (a) λ=639 nm, VO2(12 nm)/Au; (b) λ=639 nm, VO2(18 nm)/Au; (c) λ=801 nm, VO2(12 nm)/Au; (d) λ=801 nm, VO2(18 nm)/Au. (e) Relative variation of the reflectance (ΔR/RI) versus the incident angle θ for λ=639 nm, and (f) for λ=801 nm.
Fig. 3
Fig. 3 Angle-resolved light scattering for λ=639 nm. (a) Experimental configurations for measurements of homogeneous volume wave and SPP scattering. L1 and L2, probe and pump lasers, respectively; PD, photodetector. (b) ARS signal of the volume wave scattering. Polar diagrams of SPP scattering from (c) VO2(12 nm)/Au interface with excitation of SPPs at resonance angle θm and (d) at θi. (e) SPP scattering from VO2(18 nm)/Au; excitation of SPPs is at θm and (f) at θi.
Fig. 4
Fig. 4 Time-resolved evolutions of the differential reflectivity obtained for different incident angles of the probe. The incident angles are specified in the figure.
Fig. 5
Fig. 5 (a) Relative change of the reflectivity ΔR/R for several probe delays as a function of incident angle. (d) Transient evolution of FWHM for extremums θ1 and θ2 specified in figure (a).

Tables (1)

Tables Icon

Table 1 Optical constants for Au, VO2 and glass prism for λ=639 nm and λ=801 nm; θi and θm angles of resonant excitation of SPPs; SPP propagation length Lspp for vacuum/Au and VO2/Au semi-infinite interfaces.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

k s p p = ( 2 π λ ) ( ϵ 1 ϵ 2 ) ( ϵ 1 + ϵ 2 )
k s p p = k x + Δ k x
k x = ( 2 π λ ) ϵ 0 c o s θ
L s p p = 1 2 k s p p
A R S ( θ s c a t t ) = d I s ( θ s c a t t ) I 0 d Ω

Metrics