Abstract

It’s necessary to remove the baseline from the spectra, which measured by open-path Fourier transform infrared spectrometry, for further spectral analysis such as qualitative and quantitative analysis. An automatic baseline correction method, the Iterative Averaging method, is presented. Baseline corrected by this method is accurate, and it also shows more precise than other methods when it is applied to Fourier Transform Infrared experimental spectra and simulated data. This method solves the key technology of the real-time on-line spectral analysis of OP-FTIR and improves the capability and adaptability of the unsupervised on-line system effectively.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wind profiling for a coherent wind Doppler lidar by an auto-adaptive background subtraction approach

Yanwei Wu, Pan Guo, Siying Chen, He Chen, and Yinchao Zhang
Appl. Opt. 56(10) 2705-2713 (2017)

Phase correction of emission line Fourier transform spectra

Richard C. M. Learner, Anne P. Thorne, Ian Wynne-Jones, James W. Brault, and Mark C. Abrams
J. Opt. Soc. Am. A 12(10) 2165-2171 (1995)

References

  • View by:
  • |
  • |
  • |

  1. G. Schulze, A. Jirasek, M. M. L. Yu, A. Lim, R. F. B. Turner, and M. W. Blades, “Investigation of Selected Baseline Removal Techniques as Candidates for Automated Implementation,” Appl. Spectrosc. 59(5), 545–574 (2005).
    [Crossref] [PubMed]
  2. C. G. Bertinetto and T. Vuorinen, “Automatic Baseline Recognition for the Correction of Large Sets of Spectra Using Continuous Wavelet Transform and Iterative Fitting,” Appl. Spectrosc. 68(2), 155–164 (2014).
    [Crossref] [PubMed]
  3. T. Lan, Y. Fang, W. Xiong, and C. Kong, “Automatic baseline correction of infrared spectra,” Chin. Opt. Lett. 5(10), 613–616 (2007).
  4. Z. Li, D. J. Zhan, J. J. Wang, J. Huang, Q. S. Xu, Z. M. Zhang, Y. B. Zheng, Y. Z. Liang, and H. Wang, “Morphological weighted penalized least squares for background correction,” Analyst (Lond.) 138(16), 4483–4492 (2013).
    [Crossref] [PubMed]
  5. Z. M. Zhang, S. Chen, and Y. Z. Liang, “Baseline correction using adaptive iteratively reweighted penalized least squares,” Analyst (Lond.) 135(5), 1138–1146 (2010).
    [Crossref] [PubMed]
  6. B. D. Prakash and Y. C. Wei, “A fully automated iterative moving averaging (AIMA) technique for baseline correction,” Analyst (Lond.) 136(15), 3130–3135 (2011).
    [Crossref] [PubMed]
  7. J. Peng, S. Peng, A. Jiang, J. Wei, C. Li, and J. Tan, “Asymmetric least squares for multiple spectra baseline correction,” Anal. Chim. Acta 683(1), 63–68 (2010).
    [Crossref] [PubMed]
  8. L. Shao and P. R. Griffiths, “Automatic Baseline Correction by Wavelet Transform for Quantitative Open-Path Fourier Transform Infrared Spectroscopy,” Environ. Sci. Technol. 41(20), 7054–7059 (2007).
    [Crossref] [PubMed]
  9. M. Pirzer and J. Sawatzki, Method and device for correcting a spectrum, U.S. patent: 7359815 (2008).
  10. C. Rowlands and S. Elliott, “Automated algorithm for baseline subtraction in spectra,” J. Raman Spectrosc. 42(3), 363–369 (2011).
    [Crossref]
  11. W. Dietrich, C. H. Rudel, and M. Neumann, “Fast and Precise Automatic Baseline Correction of One- and Two-Dimensional NMR Spectra,” J. Magn. Reson. 91(1), 1–11 (1991).
  12. P. H. Eilers, “A perfect smoother,” Anal. Chem. 75(14), 3631–3636 (2003).
    [Crossref] [PubMed]
  13. X. Liu, Z. Zhang, Y. Liang, P. F. M. Sousa, Y. Yun, and L. Yu, “Baseline correction of high resolution spectral profile data based on exponential smoothing,” Chemom. Intell. Lab. Syst. 139, 97–108 (2014).
    [Crossref]
  14. S. W. Smith, Digital Signal Processing (Elsevier, 2003), pp. 277–284.
  15. K. H. Liland, T. Almøy, and B. H. Mevik, “Optimal choice of baseline correction for multivariate calibration of spectra,” Appl. Spectrosc. 64(9), 1007–1016 (2010).
    [Crossref] [PubMed]
  16. X. C. Shen, “Simulated data and experimental data” figshare (2018) [retrieved 14 January 2018] https://doi.org/10.6084/m9.figshare.5786667.v1

2014 (2)

X. Liu, Z. Zhang, Y. Liang, P. F. M. Sousa, Y. Yun, and L. Yu, “Baseline correction of high resolution spectral profile data based on exponential smoothing,” Chemom. Intell. Lab. Syst. 139, 97–108 (2014).
[Crossref]

C. G. Bertinetto and T. Vuorinen, “Automatic Baseline Recognition for the Correction of Large Sets of Spectra Using Continuous Wavelet Transform and Iterative Fitting,” Appl. Spectrosc. 68(2), 155–164 (2014).
[Crossref] [PubMed]

2013 (1)

Z. Li, D. J. Zhan, J. J. Wang, J. Huang, Q. S. Xu, Z. M. Zhang, Y. B. Zheng, Y. Z. Liang, and H. Wang, “Morphological weighted penalized least squares for background correction,” Analyst (Lond.) 138(16), 4483–4492 (2013).
[Crossref] [PubMed]

2011 (2)

B. D. Prakash and Y. C. Wei, “A fully automated iterative moving averaging (AIMA) technique for baseline correction,” Analyst (Lond.) 136(15), 3130–3135 (2011).
[Crossref] [PubMed]

C. Rowlands and S. Elliott, “Automated algorithm for baseline subtraction in spectra,” J. Raman Spectrosc. 42(3), 363–369 (2011).
[Crossref]

2010 (3)

J. Peng, S. Peng, A. Jiang, J. Wei, C. Li, and J. Tan, “Asymmetric least squares for multiple spectra baseline correction,” Anal. Chim. Acta 683(1), 63–68 (2010).
[Crossref] [PubMed]

Z. M. Zhang, S. Chen, and Y. Z. Liang, “Baseline correction using adaptive iteratively reweighted penalized least squares,” Analyst (Lond.) 135(5), 1138–1146 (2010).
[Crossref] [PubMed]

K. H. Liland, T. Almøy, and B. H. Mevik, “Optimal choice of baseline correction for multivariate calibration of spectra,” Appl. Spectrosc. 64(9), 1007–1016 (2010).
[Crossref] [PubMed]

2007 (2)

T. Lan, Y. Fang, W. Xiong, and C. Kong, “Automatic baseline correction of infrared spectra,” Chin. Opt. Lett. 5(10), 613–616 (2007).

L. Shao and P. R. Griffiths, “Automatic Baseline Correction by Wavelet Transform for Quantitative Open-Path Fourier Transform Infrared Spectroscopy,” Environ. Sci. Technol. 41(20), 7054–7059 (2007).
[Crossref] [PubMed]

2005 (1)

2003 (1)

P. H. Eilers, “A perfect smoother,” Anal. Chem. 75(14), 3631–3636 (2003).
[Crossref] [PubMed]

1991 (1)

W. Dietrich, C. H. Rudel, and M. Neumann, “Fast and Precise Automatic Baseline Correction of One- and Two-Dimensional NMR Spectra,” J. Magn. Reson. 91(1), 1–11 (1991).

Almøy, T.

Bertinetto, C. G.

Blades, M. W.

Chen, S.

Z. M. Zhang, S. Chen, and Y. Z. Liang, “Baseline correction using adaptive iteratively reweighted penalized least squares,” Analyst (Lond.) 135(5), 1138–1146 (2010).
[Crossref] [PubMed]

Dietrich, W.

W. Dietrich, C. H. Rudel, and M. Neumann, “Fast and Precise Automatic Baseline Correction of One- and Two-Dimensional NMR Spectra,” J. Magn. Reson. 91(1), 1–11 (1991).

Eilers, P. H.

P. H. Eilers, “A perfect smoother,” Anal. Chem. 75(14), 3631–3636 (2003).
[Crossref] [PubMed]

Elliott, S.

C. Rowlands and S. Elliott, “Automated algorithm for baseline subtraction in spectra,” J. Raman Spectrosc. 42(3), 363–369 (2011).
[Crossref]

Fang, Y.

Griffiths, P. R.

L. Shao and P. R. Griffiths, “Automatic Baseline Correction by Wavelet Transform for Quantitative Open-Path Fourier Transform Infrared Spectroscopy,” Environ. Sci. Technol. 41(20), 7054–7059 (2007).
[Crossref] [PubMed]

Huang, J.

Z. Li, D. J. Zhan, J. J. Wang, J. Huang, Q. S. Xu, Z. M. Zhang, Y. B. Zheng, Y. Z. Liang, and H. Wang, “Morphological weighted penalized least squares for background correction,” Analyst (Lond.) 138(16), 4483–4492 (2013).
[Crossref] [PubMed]

Jiang, A.

J. Peng, S. Peng, A. Jiang, J. Wei, C. Li, and J. Tan, “Asymmetric least squares for multiple spectra baseline correction,” Anal. Chim. Acta 683(1), 63–68 (2010).
[Crossref] [PubMed]

Jirasek, A.

Kong, C.

Lan, T.

Li, C.

J. Peng, S. Peng, A. Jiang, J. Wei, C. Li, and J. Tan, “Asymmetric least squares for multiple spectra baseline correction,” Anal. Chim. Acta 683(1), 63–68 (2010).
[Crossref] [PubMed]

Li, Z.

Z. Li, D. J. Zhan, J. J. Wang, J. Huang, Q. S. Xu, Z. M. Zhang, Y. B. Zheng, Y. Z. Liang, and H. Wang, “Morphological weighted penalized least squares for background correction,” Analyst (Lond.) 138(16), 4483–4492 (2013).
[Crossref] [PubMed]

Liang, Y.

X. Liu, Z. Zhang, Y. Liang, P. F. M. Sousa, Y. Yun, and L. Yu, “Baseline correction of high resolution spectral profile data based on exponential smoothing,” Chemom. Intell. Lab. Syst. 139, 97–108 (2014).
[Crossref]

Liang, Y. Z.

Z. Li, D. J. Zhan, J. J. Wang, J. Huang, Q. S. Xu, Z. M. Zhang, Y. B. Zheng, Y. Z. Liang, and H. Wang, “Morphological weighted penalized least squares for background correction,” Analyst (Lond.) 138(16), 4483–4492 (2013).
[Crossref] [PubMed]

Z. M. Zhang, S. Chen, and Y. Z. Liang, “Baseline correction using adaptive iteratively reweighted penalized least squares,” Analyst (Lond.) 135(5), 1138–1146 (2010).
[Crossref] [PubMed]

Liland, K. H.

Lim, A.

Liu, X.

X. Liu, Z. Zhang, Y. Liang, P. F. M. Sousa, Y. Yun, and L. Yu, “Baseline correction of high resolution spectral profile data based on exponential smoothing,” Chemom. Intell. Lab. Syst. 139, 97–108 (2014).
[Crossref]

Mevik, B. H.

Neumann, M.

W. Dietrich, C. H. Rudel, and M. Neumann, “Fast and Precise Automatic Baseline Correction of One- and Two-Dimensional NMR Spectra,” J. Magn. Reson. 91(1), 1–11 (1991).

Peng, J.

J. Peng, S. Peng, A. Jiang, J. Wei, C. Li, and J. Tan, “Asymmetric least squares for multiple spectra baseline correction,” Anal. Chim. Acta 683(1), 63–68 (2010).
[Crossref] [PubMed]

Peng, S.

J. Peng, S. Peng, A. Jiang, J. Wei, C. Li, and J. Tan, “Asymmetric least squares for multiple spectra baseline correction,” Anal. Chim. Acta 683(1), 63–68 (2010).
[Crossref] [PubMed]

Prakash, B. D.

B. D. Prakash and Y. C. Wei, “A fully automated iterative moving averaging (AIMA) technique for baseline correction,” Analyst (Lond.) 136(15), 3130–3135 (2011).
[Crossref] [PubMed]

Rowlands, C.

C. Rowlands and S. Elliott, “Automated algorithm for baseline subtraction in spectra,” J. Raman Spectrosc. 42(3), 363–369 (2011).
[Crossref]

Rudel, C. H.

W. Dietrich, C. H. Rudel, and M. Neumann, “Fast and Precise Automatic Baseline Correction of One- and Two-Dimensional NMR Spectra,” J. Magn. Reson. 91(1), 1–11 (1991).

Schulze, G.

Shao, L.

L. Shao and P. R. Griffiths, “Automatic Baseline Correction by Wavelet Transform for Quantitative Open-Path Fourier Transform Infrared Spectroscopy,” Environ. Sci. Technol. 41(20), 7054–7059 (2007).
[Crossref] [PubMed]

Sousa, P. F. M.

X. Liu, Z. Zhang, Y. Liang, P. F. M. Sousa, Y. Yun, and L. Yu, “Baseline correction of high resolution spectral profile data based on exponential smoothing,” Chemom. Intell. Lab. Syst. 139, 97–108 (2014).
[Crossref]

Tan, J.

J. Peng, S. Peng, A. Jiang, J. Wei, C. Li, and J. Tan, “Asymmetric least squares for multiple spectra baseline correction,” Anal. Chim. Acta 683(1), 63–68 (2010).
[Crossref] [PubMed]

Turner, R. F. B.

Vuorinen, T.

Wang, H.

Z. Li, D. J. Zhan, J. J. Wang, J. Huang, Q. S. Xu, Z. M. Zhang, Y. B. Zheng, Y. Z. Liang, and H. Wang, “Morphological weighted penalized least squares for background correction,” Analyst (Lond.) 138(16), 4483–4492 (2013).
[Crossref] [PubMed]

Wang, J. J.

Z. Li, D. J. Zhan, J. J. Wang, J. Huang, Q. S. Xu, Z. M. Zhang, Y. B. Zheng, Y. Z. Liang, and H. Wang, “Morphological weighted penalized least squares for background correction,” Analyst (Lond.) 138(16), 4483–4492 (2013).
[Crossref] [PubMed]

Wei, J.

J. Peng, S. Peng, A. Jiang, J. Wei, C. Li, and J. Tan, “Asymmetric least squares for multiple spectra baseline correction,” Anal. Chim. Acta 683(1), 63–68 (2010).
[Crossref] [PubMed]

Wei, Y. C.

B. D. Prakash and Y. C. Wei, “A fully automated iterative moving averaging (AIMA) technique for baseline correction,” Analyst (Lond.) 136(15), 3130–3135 (2011).
[Crossref] [PubMed]

Xiong, W.

Xu, Q. S.

Z. Li, D. J. Zhan, J. J. Wang, J. Huang, Q. S. Xu, Z. M. Zhang, Y. B. Zheng, Y. Z. Liang, and H. Wang, “Morphological weighted penalized least squares for background correction,” Analyst (Lond.) 138(16), 4483–4492 (2013).
[Crossref] [PubMed]

Yu, L.

X. Liu, Z. Zhang, Y. Liang, P. F. M. Sousa, Y. Yun, and L. Yu, “Baseline correction of high resolution spectral profile data based on exponential smoothing,” Chemom. Intell. Lab. Syst. 139, 97–108 (2014).
[Crossref]

Yu, M. M. L.

Yun, Y.

X. Liu, Z. Zhang, Y. Liang, P. F. M. Sousa, Y. Yun, and L. Yu, “Baseline correction of high resolution spectral profile data based on exponential smoothing,” Chemom. Intell. Lab. Syst. 139, 97–108 (2014).
[Crossref]

Zhan, D. J.

Z. Li, D. J. Zhan, J. J. Wang, J. Huang, Q. S. Xu, Z. M. Zhang, Y. B. Zheng, Y. Z. Liang, and H. Wang, “Morphological weighted penalized least squares for background correction,” Analyst (Lond.) 138(16), 4483–4492 (2013).
[Crossref] [PubMed]

Zhang, Z.

X. Liu, Z. Zhang, Y. Liang, P. F. M. Sousa, Y. Yun, and L. Yu, “Baseline correction of high resolution spectral profile data based on exponential smoothing,” Chemom. Intell. Lab. Syst. 139, 97–108 (2014).
[Crossref]

Zhang, Z. M.

Z. Li, D. J. Zhan, J. J. Wang, J. Huang, Q. S. Xu, Z. M. Zhang, Y. B. Zheng, Y. Z. Liang, and H. Wang, “Morphological weighted penalized least squares for background correction,” Analyst (Lond.) 138(16), 4483–4492 (2013).
[Crossref] [PubMed]

Z. M. Zhang, S. Chen, and Y. Z. Liang, “Baseline correction using adaptive iteratively reweighted penalized least squares,” Analyst (Lond.) 135(5), 1138–1146 (2010).
[Crossref] [PubMed]

Zheng, Y. B.

Z. Li, D. J. Zhan, J. J. Wang, J. Huang, Q. S. Xu, Z. M. Zhang, Y. B. Zheng, Y. Z. Liang, and H. Wang, “Morphological weighted penalized least squares for background correction,” Analyst (Lond.) 138(16), 4483–4492 (2013).
[Crossref] [PubMed]

Anal. Chem. (1)

P. H. Eilers, “A perfect smoother,” Anal. Chem. 75(14), 3631–3636 (2003).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

J. Peng, S. Peng, A. Jiang, J. Wei, C. Li, and J. Tan, “Asymmetric least squares for multiple spectra baseline correction,” Anal. Chim. Acta 683(1), 63–68 (2010).
[Crossref] [PubMed]

Analyst (Lond.) (3)

Z. Li, D. J. Zhan, J. J. Wang, J. Huang, Q. S. Xu, Z. M. Zhang, Y. B. Zheng, Y. Z. Liang, and H. Wang, “Morphological weighted penalized least squares for background correction,” Analyst (Lond.) 138(16), 4483–4492 (2013).
[Crossref] [PubMed]

Z. M. Zhang, S. Chen, and Y. Z. Liang, “Baseline correction using adaptive iteratively reweighted penalized least squares,” Analyst (Lond.) 135(5), 1138–1146 (2010).
[Crossref] [PubMed]

B. D. Prakash and Y. C. Wei, “A fully automated iterative moving averaging (AIMA) technique for baseline correction,” Analyst (Lond.) 136(15), 3130–3135 (2011).
[Crossref] [PubMed]

Appl. Spectrosc. (3)

Chemom. Intell. Lab. Syst. (1)

X. Liu, Z. Zhang, Y. Liang, P. F. M. Sousa, Y. Yun, and L. Yu, “Baseline correction of high resolution spectral profile data based on exponential smoothing,” Chemom. Intell. Lab. Syst. 139, 97–108 (2014).
[Crossref]

Chin. Opt. Lett. (1)

Environ. Sci. Technol. (1)

L. Shao and P. R. Griffiths, “Automatic Baseline Correction by Wavelet Transform for Quantitative Open-Path Fourier Transform Infrared Spectroscopy,” Environ. Sci. Technol. 41(20), 7054–7059 (2007).
[Crossref] [PubMed]

J. Magn. Reson. (1)

W. Dietrich, C. H. Rudel, and M. Neumann, “Fast and Precise Automatic Baseline Correction of One- and Two-Dimensional NMR Spectra,” J. Magn. Reson. 91(1), 1–11 (1991).

J. Raman Spectrosc. (1)

C. Rowlands and S. Elliott, “Automated algorithm for baseline subtraction in spectra,” J. Raman Spectrosc. 42(3), 363–369 (2011).
[Crossref]

Other (3)

M. Pirzer and J. Sawatzki, Method and device for correcting a spectrum, U.S. patent: 7359815 (2008).

S. W. Smith, Digital Signal Processing (Elsevier, 2003), pp. 277–284.

X. C. Shen, “Simulated data and experimental data” figshare (2018) [retrieved 14 January 2018] https://doi.org/10.6084/m9.figshare.5786667.v1

Supplementary Material (1)

NameDescription
» Dataset 1       Simulated data and experimental data in the revised manuscript

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 The flow chart of IA algorithm.
Fig. 2
Fig. 2 Relationship between the RMSE, threshold and computation time.
Fig. 3
Fig. 3 (a) Standard spectra; (b) Simulated raw spectra; (c) Baseline corrected by these methods.
Fig. 4
Fig. 4 (a) Raw spectra and background spectra. (b) Baseline corrected by these methods.

Tables (1)

Tables Icon

Table 1 Three different peaks of the spectra corrected by these baseline correction methods

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

X i+1 =min(X i+1 , X i +X i+2 2 )
S abs = 1 N | ( X i X i ' ) |

Metrics