Abstract

Hybrid thermal-PV solar trough collectors combine concentrated photovoltaics and concentrated solar power technology to harvest and store solar energy. In this work, the optical and mechanical requirements for optimal efficiency are analyzed using non-sequential ray tracing techniques. The results are used to generate opto-mechanical tolerances that can be compared to those of traditional solar collectors. We also explore ideas on how to relieve tracking tolerances for single-axis solar collectors. The objective is to establish a basis for tolerances required for the fabrication and manufacturing of hybrid solar trough collectors.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Theory and design of line-to-point focus solar concentrators with tracking secondary optics

Thomas Cooper, Gianluca Ambrosetti, Andrea Pedretti, and Aldo Steinfeld
Appl. Opt. 52(35) 8586-8616 (2013)

Dish-based high concentration PV system with Köhler optics

Blake M. Coughenour, Thomas Stalcup, Brian Wheelwright, Andrew Geary, Kimberly Hammer, and Roger Angel
Opt. Express 22(S2) A211-A224 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Romero and A. Steinfeld, “Concentrating solar thermal power and thermochemical fuels,” Energy Environ. Sci. 5(11), 9234–9245 (2012).
    [Crossref]
  2. D. Cocco, L. Migliari, and M. Petrollese, “A hybrid CSP–CPV system for improving the dispatchability of solar power plants,” Energy Convers. Manage. 114, 312–323 (2016).
    [Crossref]
  3. X. Ju, C. Xu, X. Han, X. Du, G. Wei, and Y. Yang, “A review of the concentrated photovoltaic/thermal (CPVT) hybrid solar systems based on the spectral beam splitting technology,” Appl. Energy 187, 534–563 (2017).
    [Crossref]
  4. A. Green, C. Diep, R. Dunn, and J. Dent, “High capacity factor CSP-PV hybrid systems,” Energy Procedia 69, 2049–2059 (2015).
    [Crossref]
  5. H. Price, E. Lüpfert, D. Kearney, E. Zarza, G. Cohen, R. Gee, and R. Mahoney, “Advances in parabolic trough solar power technology,” ASME. J. Sol. Energy Eng. 124(2), 109–125 (2002).
    [Crossref]
  6. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
    [Crossref]
  7. S. Kurtz, S. P. Philipps, A. W. Bett, and K. Horowitz, “Current status of concentrator photovoltaic (CPV) technology,” Fraunhofer Institute for Solar Energy Systems / National Renewable Energy Laboratory. Report 1.3, TP-6A20–63916, (2017).
  8. R. N. Clark, “Cassegrain telescopes: limits of secondary movement in secondary focusing,” Appl. Opt. 15(5), 1266–1269 (1976).
    [Crossref] [PubMed]
  9. K. Shanks, N. Sarmah, K. S. Reddy, and T. Mallick, “The design of a parabolic reflector system with high tracking tolerance for high solar concentration,” in AIP Conf. Proc. 1616, 211 (2014).
    [Crossref]
  10. L. Ruiz Diaz, B. Cocilovo, A. Miles, P. Blanche, W. Pan, and R. A. Norwood, “Tolerance analysis and characterization of hybrid thermal-PV solar trough prototype,” in Light, Energy and the Environment, OSA Technical Digest (Optical Society of America, 2017), paper RW3B.6.
  11. A. Miles, B. Cocilovo, B. Wheelwright, W. Pan, D. Tweet, and R. A. Norwood, “Designing spectrum-splitting dichroic filters to optimize current-matched photovoltaics,” Appl. Opt. 55(8), 1849–1853 (2016).
    [Crossref] [PubMed]
  12. B. Wheelwright, W. Pan, and D. Tweet, “Solar Concentrator with Asymmetric Tracking-Integrated Optics,” US patent 20160099675 A1, (2016).
  13. R. C. Gee and E. K. May, “Solar thermal power and industrial heat: parabolic trough concentrating collectors components and system design,” in CRC Handbook of Energy Efficiency, F. Kreith and R. E. West ed. (CRC Press, 1996).
  14. M. Iqbal, An Introduction to Solar Radiation (Academic Press, 1983), Chap. 1.

2017 (1)

X. Ju, C. Xu, X. Han, X. Du, G. Wei, and Y. Yang, “A review of the concentrated photovoltaic/thermal (CPVT) hybrid solar systems based on the spectral beam splitting technology,” Appl. Energy 187, 534–563 (2017).
[Crossref]

2016 (2)

D. Cocco, L. Migliari, and M. Petrollese, “A hybrid CSP–CPV system for improving the dispatchability of solar power plants,” Energy Convers. Manage. 114, 312–323 (2016).
[Crossref]

A. Miles, B. Cocilovo, B. Wheelwright, W. Pan, D. Tweet, and R. A. Norwood, “Designing spectrum-splitting dichroic filters to optimize current-matched photovoltaics,” Appl. Opt. 55(8), 1849–1853 (2016).
[Crossref] [PubMed]

2015 (2)

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
[Crossref]

A. Green, C. Diep, R. Dunn, and J. Dent, “High capacity factor CSP-PV hybrid systems,” Energy Procedia 69, 2049–2059 (2015).
[Crossref]

2012 (1)

M. Romero and A. Steinfeld, “Concentrating solar thermal power and thermochemical fuels,” Energy Environ. Sci. 5(11), 9234–9245 (2012).
[Crossref]

2002 (1)

H. Price, E. Lüpfert, D. Kearney, E. Zarza, G. Cohen, R. Gee, and R. Mahoney, “Advances in parabolic trough solar power technology,” ASME. J. Sol. Energy Eng. 124(2), 109–125 (2002).
[Crossref]

1976 (1)

Clark, R. N.

Cocco, D.

D. Cocco, L. Migliari, and M. Petrollese, “A hybrid CSP–CPV system for improving the dispatchability of solar power plants,” Energy Convers. Manage. 114, 312–323 (2016).
[Crossref]

Cocilovo, B.

Cohen, G.

H. Price, E. Lüpfert, D. Kearney, E. Zarza, G. Cohen, R. Gee, and R. Mahoney, “Advances in parabolic trough solar power technology,” ASME. J. Sol. Energy Eng. 124(2), 109–125 (2002).
[Crossref]

Dent, J.

A. Green, C. Diep, R. Dunn, and J. Dent, “High capacity factor CSP-PV hybrid systems,” Energy Procedia 69, 2049–2059 (2015).
[Crossref]

Diep, C.

A. Green, C. Diep, R. Dunn, and J. Dent, “High capacity factor CSP-PV hybrid systems,” Energy Procedia 69, 2049–2059 (2015).
[Crossref]

Du, X.

X. Ju, C. Xu, X. Han, X. Du, G. Wei, and Y. Yang, “A review of the concentrated photovoltaic/thermal (CPVT) hybrid solar systems based on the spectral beam splitting technology,” Appl. Energy 187, 534–563 (2017).
[Crossref]

Dunlop, E. D.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
[Crossref]

Dunn, R.

A. Green, C. Diep, R. Dunn, and J. Dent, “High capacity factor CSP-PV hybrid systems,” Energy Procedia 69, 2049–2059 (2015).
[Crossref]

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
[Crossref]

Gee, R.

H. Price, E. Lüpfert, D. Kearney, E. Zarza, G. Cohen, R. Gee, and R. Mahoney, “Advances in parabolic trough solar power technology,” ASME. J. Sol. Energy Eng. 124(2), 109–125 (2002).
[Crossref]

Green, A.

A. Green, C. Diep, R. Dunn, and J. Dent, “High capacity factor CSP-PV hybrid systems,” Energy Procedia 69, 2049–2059 (2015).
[Crossref]

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
[Crossref]

Han, X.

X. Ju, C. Xu, X. Han, X. Du, G. Wei, and Y. Yang, “A review of the concentrated photovoltaic/thermal (CPVT) hybrid solar systems based on the spectral beam splitting technology,” Appl. Energy 187, 534–563 (2017).
[Crossref]

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
[Crossref]

Ju, X.

X. Ju, C. Xu, X. Han, X. Du, G. Wei, and Y. Yang, “A review of the concentrated photovoltaic/thermal (CPVT) hybrid solar systems based on the spectral beam splitting technology,” Appl. Energy 187, 534–563 (2017).
[Crossref]

Kearney, D.

H. Price, E. Lüpfert, D. Kearney, E. Zarza, G. Cohen, R. Gee, and R. Mahoney, “Advances in parabolic trough solar power technology,” ASME. J. Sol. Energy Eng. 124(2), 109–125 (2002).
[Crossref]

Lüpfert, E.

H. Price, E. Lüpfert, D. Kearney, E. Zarza, G. Cohen, R. Gee, and R. Mahoney, “Advances in parabolic trough solar power technology,” ASME. J. Sol. Energy Eng. 124(2), 109–125 (2002).
[Crossref]

Mahoney, R.

H. Price, E. Lüpfert, D. Kearney, E. Zarza, G. Cohen, R. Gee, and R. Mahoney, “Advances in parabolic trough solar power technology,” ASME. J. Sol. Energy Eng. 124(2), 109–125 (2002).
[Crossref]

Mallick, T.

K. Shanks, N. Sarmah, K. S. Reddy, and T. Mallick, “The design of a parabolic reflector system with high tracking tolerance for high solar concentration,” in AIP Conf. Proc. 1616, 211 (2014).
[Crossref]

Migliari, L.

D. Cocco, L. Migliari, and M. Petrollese, “A hybrid CSP–CPV system for improving the dispatchability of solar power plants,” Energy Convers. Manage. 114, 312–323 (2016).
[Crossref]

Miles, A.

Norwood, R. A.

Pan, W.

Petrollese, M.

D. Cocco, L. Migliari, and M. Petrollese, “A hybrid CSP–CPV system for improving the dispatchability of solar power plants,” Energy Convers. Manage. 114, 312–323 (2016).
[Crossref]

Price, H.

H. Price, E. Lüpfert, D. Kearney, E. Zarza, G. Cohen, R. Gee, and R. Mahoney, “Advances in parabolic trough solar power technology,” ASME. J. Sol. Energy Eng. 124(2), 109–125 (2002).
[Crossref]

Reddy, K. S.

K. Shanks, N. Sarmah, K. S. Reddy, and T. Mallick, “The design of a parabolic reflector system with high tracking tolerance for high solar concentration,” in AIP Conf. Proc. 1616, 211 (2014).
[Crossref]

Romero, M.

M. Romero and A. Steinfeld, “Concentrating solar thermal power and thermochemical fuels,” Energy Environ. Sci. 5(11), 9234–9245 (2012).
[Crossref]

Sarmah, N.

K. Shanks, N. Sarmah, K. S. Reddy, and T. Mallick, “The design of a parabolic reflector system with high tracking tolerance for high solar concentration,” in AIP Conf. Proc. 1616, 211 (2014).
[Crossref]

Shanks, K.

K. Shanks, N. Sarmah, K. S. Reddy, and T. Mallick, “The design of a parabolic reflector system with high tracking tolerance for high solar concentration,” in AIP Conf. Proc. 1616, 211 (2014).
[Crossref]

Steinfeld, A.

M. Romero and A. Steinfeld, “Concentrating solar thermal power and thermochemical fuels,” Energy Environ. Sci. 5(11), 9234–9245 (2012).
[Crossref]

Tweet, D.

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
[Crossref]

Wei, G.

X. Ju, C. Xu, X. Han, X. Du, G. Wei, and Y. Yang, “A review of the concentrated photovoltaic/thermal (CPVT) hybrid solar systems based on the spectral beam splitting technology,” Appl. Energy 187, 534–563 (2017).
[Crossref]

Wheelwright, B.

Xu, C.

X. Ju, C. Xu, X. Han, X. Du, G. Wei, and Y. Yang, “A review of the concentrated photovoltaic/thermal (CPVT) hybrid solar systems based on the spectral beam splitting technology,” Appl. Energy 187, 534–563 (2017).
[Crossref]

Yang, Y.

X. Ju, C. Xu, X. Han, X. Du, G. Wei, and Y. Yang, “A review of the concentrated photovoltaic/thermal (CPVT) hybrid solar systems based on the spectral beam splitting technology,” Appl. Energy 187, 534–563 (2017).
[Crossref]

Zarza, E.

H. Price, E. Lüpfert, D. Kearney, E. Zarza, G. Cohen, R. Gee, and R. Mahoney, “Advances in parabolic trough solar power technology,” ASME. J. Sol. Energy Eng. 124(2), 109–125 (2002).
[Crossref]

Appl. Energy (1)

X. Ju, C. Xu, X. Han, X. Du, G. Wei, and Y. Yang, “A review of the concentrated photovoltaic/thermal (CPVT) hybrid solar systems based on the spectral beam splitting technology,” Appl. Energy 187, 534–563 (2017).
[Crossref]

Appl. Opt. (2)

ASME. J. Sol. Energy Eng. (1)

H. Price, E. Lüpfert, D. Kearney, E. Zarza, G. Cohen, R. Gee, and R. Mahoney, “Advances in parabolic trough solar power technology,” ASME. J. Sol. Energy Eng. 124(2), 109–125 (2002).
[Crossref]

Energy Convers. Manage. (1)

D. Cocco, L. Migliari, and M. Petrollese, “A hybrid CSP–CPV system for improving the dispatchability of solar power plants,” Energy Convers. Manage. 114, 312–323 (2016).
[Crossref]

Energy Environ. Sci. (1)

M. Romero and A. Steinfeld, “Concentrating solar thermal power and thermochemical fuels,” Energy Environ. Sci. 5(11), 9234–9245 (2012).
[Crossref]

Energy Procedia (1)

A. Green, C. Diep, R. Dunn, and J. Dent, “High capacity factor CSP-PV hybrid systems,” Energy Procedia 69, 2049–2059 (2015).
[Crossref]

Prog. Photovolt. Res. Appl. (1)

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
[Crossref]

Other (6)

S. Kurtz, S. P. Philipps, A. W. Bett, and K. Horowitz, “Current status of concentrator photovoltaic (CPV) technology,” Fraunhofer Institute for Solar Energy Systems / National Renewable Energy Laboratory. Report 1.3, TP-6A20–63916, (2017).

K. Shanks, N. Sarmah, K. S. Reddy, and T. Mallick, “The design of a parabolic reflector system with high tracking tolerance for high solar concentration,” in AIP Conf. Proc. 1616, 211 (2014).
[Crossref]

L. Ruiz Diaz, B. Cocilovo, A. Miles, P. Blanche, W. Pan, and R. A. Norwood, “Tolerance analysis and characterization of hybrid thermal-PV solar trough prototype,” in Light, Energy and the Environment, OSA Technical Digest (Optical Society of America, 2017), paper RW3B.6.

B. Wheelwright, W. Pan, and D. Tweet, “Solar Concentrator with Asymmetric Tracking-Integrated Optics,” US patent 20160099675 A1, (2016).

R. C. Gee and E. K. May, “Solar thermal power and industrial heat: parabolic trough concentrating collectors components and system design,” in CRC Handbook of Energy Efficiency, F. Kreith and R. E. West ed. (CRC Press, 1996).

M. Iqbal, An Introduction to Solar Radiation (Academic Press, 1983), Chap. 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Hybrid thermal-PV solar trough system: a) M1 collects the full solar spectrum and focuses it at the thermal tube while M2 reflects a fraction of the sunlight to the CPV cells, b) secondary concentrating optics module, and c) M2 dichroic design optimized for Tucson, AZ.
Fig. 2
Fig. 2 Angle definitions: α represents the tilt angle about the y-axis while β is that about the x-axis. The mirrors are shifted along the z- and x-axis. The system is invariable along the y-axis.
Fig. 3
Fig. 3 Simulation results: a) normalized PV efficiency and b) thermal efficiency as M1 and M2 are shifted along the z-axis from their ideal positions and normalized c) PV efficiency and d) thermal efficiency as mirrors are moved in the x-direction.
Fig. 4
Fig. 4 Thermal and PV tolerances: a) ray tracing of M1 segment tilted by α = 2°, b) thermal efficiency as M1 is tilted by α and β, PV efficiency as c) M1 and d) M2 are tilted by α and β.
Fig. 5
Fig. 5 Mirror surface quality: a) reflector with a diffuse Lambertian and a Gaussian specular component, b) mirror scatterer modeled in LightTools, and c) PV collection depends on M1 surface quality; high specular percentage and low m value have low scattering losses.
Fig. 6
Fig. 6 Tracking accuracy: a) thermal and b) PV efficiency as tracking angle accuracy varies, c) solar tracking angle and a 1-min trough tracking rotation for Tucson, AZ on November 15th, and d) absolute maximum angular difference between θ and θT for different tracking speeds.

Tables (1)

Tables Icon

Table 1 Thermal and PV tolerances for 5.0 m solar hybrid trough system

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E T ( α,β, θ T ,x,z )= C 1 * I M1 ( α,β, θ T ,x,z )+ C 2 *r* I M2 ( α,β, θ T ,x,z ) C 1 * I M1 ( 0,0,0,0,0 )+ C 2 *r* I M2 ( 0,0,0,0,0 )
θ=arctan( sin( ϕ )/tan( γ ) )

Metrics