Abstract

A graphene-assisted hBN/SiO2 hybrid structure is proposed and demonstrated to enhance near-field thermal radiation (NFTR). Due to the complementarity between the hyperbolic phonon polaritons of hBN and the surface phonon polaritons of SiO2 at mid-infrared frequencies, coupling modes can remarkably improve the photon tunneling probability over a broad frequency band, especially when assisted by the surface plasmon polaritons of graphene sheets. Thus, the heat flux can exceed the blackbody limit by 4 orders of magnitude at a separation distance of 10 nm and reach 97% of the infinite limit of graphene-hBN multilayers using only two layers with a thickness of 20 nm each. The first graphene layer controls most of the heat flux, while the other layers can be used to regulate and optimize. The dynamic relationship between the chemical potential μ and the gap distance d are thoroughly discussed. Optimal heat flux of our graphene-assisted hBN/SiO2 hybrid structure with proper choices of (μ1, μ2, μ3) for different d (from 10 nm to 1000 nm) is further increased by 28.2% on average in comparison with the existing graphene-hBN triple-layer structure.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable multi-wavelength absorption in mid-IR region based on a hybrid patterned graphene-hBN structure

Guangsheng Deng, Xianglian Song, Sina Abedini Dereshgi, Haiqing Xu, and Koray Aydin
Opt. Express 27(16) 23576-23584 (2019)

Tunable absorption as multi-wavelength at infrared on graphene/hBN/Al grating structure

Qinghui Pan, Guohua Zhang, Ruming Pan, Jiahui Zhang, Yong Shuai, and Heping Tan
Opt. Express 26(14) 18230-18237 (2018)

Radiative thermal rectification between SiC and SiO2

Karl Joulain, Younès Ezzahri, Jérémie Drevillon, Benoît Rousseau, and Domingos De Sousa Meneses
Opt. Express 23(24) A1388-A1397 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, “Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials,” Appl. Phys. Lett. 102(13), 131106 (2013).
    [Crossref]
  2. K. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3–4), 59–112 (2005).
    [Crossref]
  3. K. Z. Shi, F. L. Bao, and S. L. He, “Enhanced near-field thermal radiation based on multilayer graphene-hBN heterostructures,” ACS Photonics 4(4), 971–978 (2017).
    [Crossref]
  4. H. Iizuka and S. Fan, “Significant enhancement of near-field electromagnetic heat transfer in a multilayer structure through multiple surface-states coupling,” Phys. Rev. Lett. 120(6), 063901 (2018).
    [Crossref] [PubMed]
  5. J. Dai, F. Ding, S. I. Bozhevolnyi, and M. Yan, “Ultrabroadband super-Planckian radiative heat transfer with artificial continuum cavity states in patterned hyperbolic metamaterials,” Phys. Rev. B 95(24), 245405 (2017).
    [Crossref]
  6. R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime,” Nat. Nanotechnol. 11(6), 515–519 (2016).
    [Crossref] [PubMed]
  7. K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M. T. H. Reid, F. J. García-Vidal, J. C. Cuevas, E. Meyhofer, and P. Reddy, “Radiative heat transfer in the extreme near field,” Nature 528(7582), 387–391 (2015).
    [Crossref] [PubMed]
  8. B. Song, Y. Ganjeh, S. Sadat, D. Thompson, A. Fiorino, V. Fernández-Hurtado, J. Feist, F. J. Garcia-Vidal, J. C. Cuevas, P. Reddy, and E. Meyhofer, “Enhancement of near-field radiative heat transfer using polar dielectric thin films,” Nat. Nanotechnol. 10(3), 253–258 (2015).
    [Crossref] [PubMed]
  9. J. Shi, B. Liu, P. Li, L. Y. Ng, and S. Shen, “Near-field energy extraction with hyperbolic metamaterials,” Nano Lett. 15(2), 1217–1221 (2015).
    [Crossref] [PubMed]
  10. A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
    [Crossref] [PubMed]
  11. B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-field radiative cooling of nanostructures,” Nano Lett. 12(9), 4546–4550 (2012).
    [Crossref] [PubMed]
  12. R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3(1), 1383 (2013).
    [Crossref] [PubMed]
  13. S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
    [Crossref] [PubMed]
  14. Y. Zhou, D. X. Qi, and Y. K. Wang, “Phonon polaritons in cylindrically curved h-BN,” Opt. Express 25(15), 17606–17615 (2017).
    [Crossref] [PubMed]
  15. X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-perfect photon tunneling by hybridizing graphene plasmons and hyperbolic modes,” ACS Photonics 1(9), 785–789 (2014).
    [Crossref]
  16. B. Zhao, B. Guizal, Z. M. M. Zhang, S. H. Fan, and M. Antezza, “Near-field heat transfer between graphene/hBN multilayers,” Phys. Rev. B 95(24), 245437 (2017).
    [Crossref]
  17. L. Hu, A. Narayanaswamy, X. Y. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law,” Appl. Phys. Lett. 92(13), 133106 (2008).
    [Crossref]
  18. J. Lussange, R. Guerout, F. S. S. Rosa, J. J. Greffet, A. Lambrecht, and S. Reynaud, “Radiative heat transfer between two dielectric nanogratings in the scattering approach,” Phys. Rev. B 86(8), 085432 (2012).
    [Crossref]
  19. X. L. Liu, T. J. Bright, and Z. M. Zhang, “Application conditions of effective medium theory in near-field radiative heat transfer between multilayered metamaterials,” J. Heat Transfer 136(9), 092703 (2014).
    [Crossref]
  20. K. Ito, K. Nishikawa, A. Miura, H. Toshiyoshi, and H. Iizuka, “Dynamic modulation of radiative heat transfer beyond the blackbody limit,” Nano Lett. 17(7), 4347–4353 (2017).
    [Crossref] [PubMed]
  21. T. Ikeda, K. Ito, and H. Iizuka, “Tunable quasi-monochromatic near-field radiative heat transfer in s and p polarizations by a hyperbolic metamaterial layer,” J. Appl. Phys. 121(1), 013106 (2017).
    [Crossref]
  22. L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56(4), 281–284 (2007).
    [Crossref]
  23. Y. Q. Cai, L. T. Zhang, Q. F. Zeng, L. F. Cheng, and Y. D. Xu, “Infrared reflectance spectrum of BN calculated from first principles,” Solid State Commun. 141(5), 262–266 (2007).
    [Crossref]
  24. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  25. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene Plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
    [Crossref]
  26. X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-field radiative heat transfer with doped-silicon nanostructured metamaterials,” Int. J. Heat Mass Transfer 73, 389–398 (2014).
    [Crossref]
  27. M. Francoeur, M. P. Menguc, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D Appl. Phys. 43(7), 075501 (2010).
    [Crossref]
  28. B. Zhao and Z. M. Zhang, “Enhanced photon tunneling by surface plasmon-phonon polaritons in graphene/hBN heterostructures,” J. Heat Transfer 139(2), 022701 (2016).
    [Crossref]
  29. S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. Janssen, S. E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
    [Crossref] [PubMed]
  30. K. Z. Shi, F. L. Bao, and S. L. He, “Spectral control of near-field thermal radiation with periodic cross resonance metasurfaces,” IEEE J. Quantum Electron. 54(1), 7000107 (2018).
    [Crossref]

2018 (2)

H. Iizuka and S. Fan, “Significant enhancement of near-field electromagnetic heat transfer in a multilayer structure through multiple surface-states coupling,” Phys. Rev. Lett. 120(6), 063901 (2018).
[Crossref] [PubMed]

K. Z. Shi, F. L. Bao, and S. L. He, “Spectral control of near-field thermal radiation with periodic cross resonance metasurfaces,” IEEE J. Quantum Electron. 54(1), 7000107 (2018).
[Crossref]

2017 (6)

K. Ito, K. Nishikawa, A. Miura, H. Toshiyoshi, and H. Iizuka, “Dynamic modulation of radiative heat transfer beyond the blackbody limit,” Nano Lett. 17(7), 4347–4353 (2017).
[Crossref] [PubMed]

T. Ikeda, K. Ito, and H. Iizuka, “Tunable quasi-monochromatic near-field radiative heat transfer in s and p polarizations by a hyperbolic metamaterial layer,” J. Appl. Phys. 121(1), 013106 (2017).
[Crossref]

J. Dai, F. Ding, S. I. Bozhevolnyi, and M. Yan, “Ultrabroadband super-Planckian radiative heat transfer with artificial continuum cavity states in patterned hyperbolic metamaterials,” Phys. Rev. B 95(24), 245405 (2017).
[Crossref]

K. Z. Shi, F. L. Bao, and S. L. He, “Enhanced near-field thermal radiation based on multilayer graphene-hBN heterostructures,” ACS Photonics 4(4), 971–978 (2017).
[Crossref]

Y. Zhou, D. X. Qi, and Y. K. Wang, “Phonon polaritons in cylindrically curved h-BN,” Opt. Express 25(15), 17606–17615 (2017).
[Crossref] [PubMed]

B. Zhao, B. Guizal, Z. M. M. Zhang, S. H. Fan, and M. Antezza, “Near-field heat transfer between graphene/hBN multilayers,” Phys. Rev. B 95(24), 245437 (2017).
[Crossref]

2016 (2)

R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime,” Nat. Nanotechnol. 11(6), 515–519 (2016).
[Crossref] [PubMed]

B. Zhao and Z. M. Zhang, “Enhanced photon tunneling by surface plasmon-phonon polaritons in graphene/hBN heterostructures,” J. Heat Transfer 139(2), 022701 (2016).
[Crossref]

2015 (4)

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. Janssen, S. E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
[Crossref] [PubMed]

K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M. T. H. Reid, F. J. García-Vidal, J. C. Cuevas, E. Meyhofer, and P. Reddy, “Radiative heat transfer in the extreme near field,” Nature 528(7582), 387–391 (2015).
[Crossref] [PubMed]

B. Song, Y. Ganjeh, S. Sadat, D. Thompson, A. Fiorino, V. Fernández-Hurtado, J. Feist, F. J. Garcia-Vidal, J. C. Cuevas, P. Reddy, and E. Meyhofer, “Enhancement of near-field radiative heat transfer using polar dielectric thin films,” Nat. Nanotechnol. 10(3), 253–258 (2015).
[Crossref] [PubMed]

J. Shi, B. Liu, P. Li, L. Y. Ng, and S. Shen, “Near-field energy extraction with hyperbolic metamaterials,” Nano Lett. 15(2), 1217–1221 (2015).
[Crossref] [PubMed]

2014 (5)

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-perfect photon tunneling by hybridizing graphene plasmons and hyperbolic modes,” ACS Photonics 1(9), 785–789 (2014).
[Crossref]

X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-field radiative heat transfer with doped-silicon nanostructured metamaterials,” Int. J. Heat Mass Transfer 73, 389–398 (2014).
[Crossref]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

X. L. Liu, T. J. Bright, and Z. M. Zhang, “Application conditions of effective medium theory in near-field radiative heat transfer between multilayered metamaterials,” J. Heat Transfer 136(9), 092703 (2014).
[Crossref]

2013 (2)

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3(1), 1383 (2013).
[Crossref] [PubMed]

S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, “Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials,” Appl. Phys. Lett. 102(13), 131106 (2013).
[Crossref]

2012 (3)

B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-field radiative cooling of nanostructures,” Nano Lett. 12(9), 4546–4550 (2012).
[Crossref] [PubMed]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene Plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

J. Lussange, R. Guerout, F. S. S. Rosa, J. J. Greffet, A. Lambrecht, and S. Reynaud, “Radiative heat transfer between two dielectric nanogratings in the scattering approach,” Phys. Rev. B 86(8), 085432 (2012).
[Crossref]

2010 (1)

M. Francoeur, M. P. Menguc, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D Appl. Phys. 43(7), 075501 (2010).
[Crossref]

2008 (1)

L. Hu, A. Narayanaswamy, X. Y. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law,” Appl. Phys. Lett. 92(13), 133106 (2008).
[Crossref]

2007 (2)

L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56(4), 281–284 (2007).
[Crossref]

Y. Q. Cai, L. T. Zhang, Q. F. Zeng, L. F. Cheng, and Y. D. Xu, “Infrared reflectance spectrum of BN calculated from first principles,” Solid State Commun. 141(5), 262–266 (2007).
[Crossref]

2005 (1)

K. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3–4), 59–112 (2005).
[Crossref]

Andersen, T.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. Janssen, S. E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
[Crossref] [PubMed]

Antezza, M.

B. Zhao, B. Guizal, Z. M. M. Zhang, S. H. Fan, and M. Antezza, “Near-field heat transfer between graphene/hBN multilayers,” Phys. Rev. B 95(24), 245437 (2017).
[Crossref]

Bao, F. L.

K. Z. Shi, F. L. Bao, and S. L. He, “Spectral control of near-field thermal radiation with periodic cross resonance metasurfaces,” IEEE J. Quantum Electron. 54(1), 7000107 (2018).
[Crossref]

K. Z. Shi, F. L. Bao, and S. L. He, “Enhanced near-field thermal radiation based on multilayer graphene-hBN heterostructures,” ACS Photonics 4(4), 971–978 (2017).
[Crossref]

Basov, D. N.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. Janssen, S. E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
[Crossref] [PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Ben-Abdallah, P.

S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, “Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials,” Appl. Phys. Lett. 102(13), 131106 (2013).
[Crossref]

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3(1), 1383 (2013).
[Crossref] [PubMed]

Biehs, S.-A.

S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, “Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials,” Appl. Phys. Lett. 102(13), 131106 (2013).
[Crossref]

Bierman, D. M.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

J. Dai, F. Ding, S. I. Bozhevolnyi, and M. Yan, “Ultrabroadband super-Planckian radiative heat transfer with artificial continuum cavity states in patterned hyperbolic metamaterials,” Phys. Rev. B 95(24), 245405 (2017).
[Crossref]

Bright, T. J.

X. L. Liu, T. J. Bright, and Z. M. Zhang, “Application conditions of effective medium theory in near-field radiative heat transfer between multilayered metamaterials,” J. Heat Transfer 136(9), 092703 (2014).
[Crossref]

Cai, Y. Q.

Y. Q. Cai, L. T. Zhang, Q. F. Zeng, L. F. Cheng, and Y. D. Xu, “Infrared reflectance spectrum of BN calculated from first principles,” Solid State Commun. 141(5), 262–266 (2007).
[Crossref]

Carminati, R.

K. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3–4), 59–112 (2005).
[Crossref]

Castro Neto, A. H.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Celanovic, I.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Chan, W. R.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Chen, G.

L. Hu, A. Narayanaswamy, X. Y. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law,” Appl. Phys. Lett. 92(13), 133106 (2008).
[Crossref]

Chen, X. Y.

L. Hu, A. Narayanaswamy, X. Y. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law,” Appl. Phys. Lett. 92(13), 133106 (2008).
[Crossref]

Cheng, L. F.

Y. Q. Cai, L. T. Zhang, Q. F. Zeng, L. F. Cheng, and Y. D. Xu, “Infrared reflectance spectrum of BN calculated from first principles,” Solid State Commun. 141(5), 262–266 (2007).
[Crossref]

Cuevas, J. C.

B. Song, Y. Ganjeh, S. Sadat, D. Thompson, A. Fiorino, V. Fernández-Hurtado, J. Feist, F. J. Garcia-Vidal, J. C. Cuevas, P. Reddy, and E. Meyhofer, “Enhancement of near-field radiative heat transfer using polar dielectric thin films,” Nat. Nanotechnol. 10(3), 253–258 (2015).
[Crossref] [PubMed]

K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M. T. H. Reid, F. J. García-Vidal, J. C. Cuevas, E. Meyhofer, and P. Reddy, “Radiative heat transfer in the extreme near field,” Nature 528(7582), 387–391 (2015).
[Crossref] [PubMed]

Cui, L.

K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M. T. H. Reid, F. J. García-Vidal, J. C. Cuevas, E. Meyhofer, and P. Reddy, “Radiative heat transfer in the extreme near field,” Nature 528(7582), 387–391 (2015).
[Crossref] [PubMed]

Dai, J.

J. Dai, F. Ding, S. I. Bozhevolnyi, and M. Yan, “Ultrabroadband super-Planckian radiative heat transfer with artificial continuum cavity states in patterned hyperbolic metamaterials,” Phys. Rev. B 95(24), 245405 (2017).
[Crossref]

Dai, S.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. Janssen, S. E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
[Crossref] [PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Ding, F.

J. Dai, F. Ding, S. I. Bozhevolnyi, and M. Yan, “Ultrabroadband super-Planckian radiative heat transfer with artificial continuum cavity states in patterned hyperbolic metamaterials,” Phys. Rev. B 95(24), 245405 (2017).
[Crossref]

Dominguez, G.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Falkovsky, L. A.

L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56(4), 281–284 (2007).
[Crossref]

Fan, S.

H. Iizuka and S. Fan, “Significant enhancement of near-field electromagnetic heat transfer in a multilayer structure through multiple surface-states coupling,” Phys. Rev. Lett. 120(6), 063901 (2018).
[Crossref] [PubMed]

R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime,” Nat. Nanotechnol. 11(6), 515–519 (2016).
[Crossref] [PubMed]

B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-field radiative cooling of nanostructures,” Nano Lett. 12(9), 4546–4550 (2012).
[Crossref] [PubMed]

Fan, S. H.

B. Zhao, B. Guizal, Z. M. M. Zhang, S. H. Fan, and M. Antezza, “Near-field heat transfer between graphene/hBN multilayers,” Phys. Rev. B 95(24), 245437 (2017).
[Crossref]

Fei, Z.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. Janssen, S. E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
[Crossref] [PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Feist, J.

B. Song, Y. Ganjeh, S. Sadat, D. Thompson, A. Fiorino, V. Fernández-Hurtado, J. Feist, F. J. Garcia-Vidal, J. C. Cuevas, P. Reddy, and E. Meyhofer, “Enhancement of near-field radiative heat transfer using polar dielectric thin films,” Nat. Nanotechnol. 10(3), 253–258 (2015).
[Crossref] [PubMed]

K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M. T. H. Reid, F. J. García-Vidal, J. C. Cuevas, E. Meyhofer, and P. Reddy, “Radiative heat transfer in the extreme near field,” Nature 528(7582), 387–391 (2015).
[Crossref] [PubMed]

Fernández-Hurtado, V.

K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M. T. H. Reid, F. J. García-Vidal, J. C. Cuevas, E. Meyhofer, and P. Reddy, “Radiative heat transfer in the extreme near field,” Nature 528(7582), 387–391 (2015).
[Crossref] [PubMed]

B. Song, Y. Ganjeh, S. Sadat, D. Thompson, A. Fiorino, V. Fernández-Hurtado, J. Feist, F. J. Garcia-Vidal, J. C. Cuevas, P. Reddy, and E. Meyhofer, “Enhancement of near-field radiative heat transfer using polar dielectric thin films,” Nat. Nanotechnol. 10(3), 253–258 (2015).
[Crossref] [PubMed]

Fiorino, A.

B. Song, Y. Ganjeh, S. Sadat, D. Thompson, A. Fiorino, V. Fernández-Hurtado, J. Feist, F. J. Garcia-Vidal, J. C. Cuevas, P. Reddy, and E. Meyhofer, “Enhancement of near-field radiative heat transfer using polar dielectric thin films,” Nat. Nanotechnol. 10(3), 253–258 (2015).
[Crossref] [PubMed]

Fogler, M. M.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. Janssen, S. E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
[Crossref] [PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Francoeur, M.

M. Francoeur, M. P. Menguc, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D Appl. Phys. 43(7), 075501 (2010).
[Crossref]

Ganjeh, Y.

B. Song, Y. Ganjeh, S. Sadat, D. Thompson, A. Fiorino, V. Fernández-Hurtado, J. Feist, F. J. Garcia-Vidal, J. C. Cuevas, P. Reddy, and E. Meyhofer, “Enhancement of near-field radiative heat transfer using polar dielectric thin films,” Nat. Nanotechnol. 10(3), 253–258 (2015).
[Crossref] [PubMed]

Gannett, W.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Garcia-Vidal, F. J.

B. Song, Y. Ganjeh, S. Sadat, D. Thompson, A. Fiorino, V. Fernández-Hurtado, J. Feist, F. J. Garcia-Vidal, J. C. Cuevas, P. Reddy, and E. Meyhofer, “Enhancement of near-field radiative heat transfer using polar dielectric thin films,” Nat. Nanotechnol. 10(3), 253–258 (2015).
[Crossref] [PubMed]

García-Vidal, F. J.

K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M. T. H. Reid, F. J. García-Vidal, J. C. Cuevas, E. Meyhofer, and P. Reddy, “Radiative heat transfer in the extreme near field,” Nature 528(7582), 387–391 (2015).
[Crossref] [PubMed]

Goldflam, M. D.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. Janssen, S. E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
[Crossref] [PubMed]

Greffet, J. J.

J. Lussange, R. Guerout, F. S. S. Rosa, J. J. Greffet, A. Lambrecht, and S. Reynaud, “Radiative heat transfer between two dielectric nanogratings in the scattering approach,” Phys. Rev. B 86(8), 085432 (2012).
[Crossref]

K. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3–4), 59–112 (2005).
[Crossref]

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene Plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Guerout, R.

J. Lussange, R. Guerout, F. S. S. Rosa, J. J. Greffet, A. Lambrecht, and S. Reynaud, “Radiative heat transfer between two dielectric nanogratings in the scattering approach,” Phys. Rev. B 86(8), 085432 (2012).
[Crossref]

Guha, B.

B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-field radiative cooling of nanostructures,” Nano Lett. 12(9), 4546–4550 (2012).
[Crossref] [PubMed]

Guizal, B.

B. Zhao, B. Guizal, Z. M. M. Zhang, S. H. Fan, and M. Antezza, “Near-field heat transfer between graphene/hBN multilayers,” Phys. Rev. B 95(24), 245437 (2017).
[Crossref]

He, S. L.

K. Z. Shi, F. L. Bao, and S. L. He, “Spectral control of near-field thermal radiation with periodic cross resonance metasurfaces,” IEEE J. Quantum Electron. 54(1), 7000107 (2018).
[Crossref]

K. Z. Shi, F. L. Bao, and S. L. He, “Enhanced near-field thermal radiation based on multilayer graphene-hBN heterostructures,” ACS Photonics 4(4), 971–978 (2017).
[Crossref]

Hu, L.

L. Hu, A. Narayanaswamy, X. Y. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law,” Appl. Phys. Lett. 92(13), 133106 (2008).
[Crossref]

Iizuka, H.

H. Iizuka and S. Fan, “Significant enhancement of near-field electromagnetic heat transfer in a multilayer structure through multiple surface-states coupling,” Phys. Rev. Lett. 120(6), 063901 (2018).
[Crossref] [PubMed]

K. Ito, K. Nishikawa, A. Miura, H. Toshiyoshi, and H. Iizuka, “Dynamic modulation of radiative heat transfer beyond the blackbody limit,” Nano Lett. 17(7), 4347–4353 (2017).
[Crossref] [PubMed]

T. Ikeda, K. Ito, and H. Iizuka, “Tunable quasi-monochromatic near-field radiative heat transfer in s and p polarizations by a hyperbolic metamaterial layer,” J. Appl. Phys. 121(1), 013106 (2017).
[Crossref]

Ikeda, T.

T. Ikeda, K. Ito, and H. Iizuka, “Tunable quasi-monochromatic near-field radiative heat transfer in s and p polarizations by a hyperbolic metamaterial layer,” J. Appl. Phys. 121(1), 013106 (2017).
[Crossref]

Ito, K.

T. Ikeda, K. Ito, and H. Iizuka, “Tunable quasi-monochromatic near-field radiative heat transfer in s and p polarizations by a hyperbolic metamaterial layer,” J. Appl. Phys. 121(1), 013106 (2017).
[Crossref]

K. Ito, K. Nishikawa, A. Miura, H. Toshiyoshi, and H. Iizuka, “Dynamic modulation of radiative heat transfer beyond the blackbody limit,” Nano Lett. 17(7), 4347–4353 (2017).
[Crossref] [PubMed]

Janssen, G. C.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. Janssen, S. E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
[Crossref] [PubMed]

Jarillo-Herrero, P.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. Janssen, S. E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
[Crossref] [PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Jeong, W.

K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M. T. H. Reid, F. J. García-Vidal, J. C. Cuevas, E. Meyhofer, and P. Reddy, “Radiative heat transfer in the extreme near field,” Nature 528(7582), 387–391 (2015).
[Crossref] [PubMed]

Joulain, K.

K. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3–4), 59–112 (2005).
[Crossref]

Keilmann, F.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. Janssen, S. E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
[Crossref] [PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Kim, K.

K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M. T. H. Reid, F. J. García-Vidal, J. C. Cuevas, E. Meyhofer, and P. Reddy, “Radiative heat transfer in the extreme near field,” Nature 528(7582), 387–391 (2015).
[Crossref] [PubMed]

Lambrecht, A.

J. Lussange, R. Guerout, F. S. S. Rosa, J. J. Greffet, A. Lambrecht, and S. Reynaud, “Radiative heat transfer between two dielectric nanogratings in the scattering approach,” Phys. Rev. B 86(8), 085432 (2012).
[Crossref]

Lee, W.

K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M. T. H. Reid, F. J. García-Vidal, J. C. Cuevas, E. Meyhofer, and P. Reddy, “Radiative heat transfer in the extreme near field,” Nature 528(7582), 387–391 (2015).
[Crossref] [PubMed]

Lenert, A.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Li, P.

J. Shi, B. Liu, P. Li, L. Y. Ng, and S. Shen, “Near-field energy extraction with hyperbolic metamaterials,” Nano Lett. 15(2), 1217–1221 (2015).
[Crossref] [PubMed]

Lipson, M.

R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime,” Nat. Nanotechnol. 11(6), 515–519 (2016).
[Crossref] [PubMed]

B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-field radiative cooling of nanostructures,” Nano Lett. 12(9), 4546–4550 (2012).
[Crossref] [PubMed]

Liu, B.

J. Shi, B. Liu, P. Li, L. Y. Ng, and S. Shen, “Near-field energy extraction with hyperbolic metamaterials,” Nano Lett. 15(2), 1217–1221 (2015).
[Crossref] [PubMed]

Liu, M. K.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. Janssen, S. E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
[Crossref] [PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Liu, X. L.

X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-field radiative heat transfer with doped-silicon nanostructured metamaterials,” Int. J. Heat Mass Transfer 73, 389–398 (2014).
[Crossref]

X. L. Liu, T. J. Bright, and Z. M. Zhang, “Application conditions of effective medium theory in near-field radiative heat transfer between multilayered metamaterials,” J. Heat Transfer 136(9), 092703 (2014).
[Crossref]

X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-perfect photon tunneling by hybridizing graphene plasmons and hyperbolic modes,” ACS Photonics 1(9), 785–789 (2014).
[Crossref]

Lussange, J.

J. Lussange, R. Guerout, F. S. S. Rosa, J. J. Greffet, A. Lambrecht, and S. Reynaud, “Radiative heat transfer between two dielectric nanogratings in the scattering approach,” Phys. Rev. B 86(8), 085432 (2012).
[Crossref]

Ma, Q.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. Janssen, S. E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
[Crossref] [PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Marquier, F.

K. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3–4), 59–112 (2005).
[Crossref]

McLeod, A. S.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Menguc, M. P.

M. Francoeur, M. P. Menguc, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D Appl. Phys. 43(7), 075501 (2010).
[Crossref]

Messina, R.

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3(1), 1383 (2013).
[Crossref] [PubMed]

S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, “Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials,” Appl. Phys. Lett. 102(13), 131106 (2013).
[Crossref]

Meyhofer, E.

K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M. T. H. Reid, F. J. García-Vidal, J. C. Cuevas, E. Meyhofer, and P. Reddy, “Radiative heat transfer in the extreme near field,” Nature 528(7582), 387–391 (2015).
[Crossref] [PubMed]

B. Song, Y. Ganjeh, S. Sadat, D. Thompson, A. Fiorino, V. Fernández-Hurtado, J. Feist, F. J. Garcia-Vidal, J. C. Cuevas, P. Reddy, and E. Meyhofer, “Enhancement of near-field radiative heat transfer using polar dielectric thin films,” Nat. Nanotechnol. 10(3), 253–258 (2015).
[Crossref] [PubMed]

Miura, A.

K. Ito, K. Nishikawa, A. Miura, H. Toshiyoshi, and H. Iizuka, “Dynamic modulation of radiative heat transfer beyond the blackbody limit,” Nano Lett. 17(7), 4347–4353 (2017).
[Crossref] [PubMed]

Mulet, J. P.

K. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3–4), 59–112 (2005).
[Crossref]

Nam, Y.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Narayanaswamy, A.

L. Hu, A. Narayanaswamy, X. Y. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law,” Appl. Phys. Lett. 92(13), 133106 (2008).
[Crossref]

Ng, L. Y.

J. Shi, B. Liu, P. Li, L. Y. Ng, and S. Shen, “Near-field energy extraction with hyperbolic metamaterials,” Nano Lett. 15(2), 1217–1221 (2015).
[Crossref] [PubMed]

Nishikawa, K.

K. Ito, K. Nishikawa, A. Miura, H. Toshiyoshi, and H. Iizuka, “Dynamic modulation of radiative heat transfer beyond the blackbody limit,” Nano Lett. 17(7), 4347–4353 (2017).
[Crossref] [PubMed]

Novoselov, K. S.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene Plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Otey, C.

B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-field radiative cooling of nanostructures,” Nano Lett. 12(9), 4546–4550 (2012).
[Crossref] [PubMed]

Poitras, C. B.

B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-field radiative cooling of nanostructures,” Nano Lett. 12(9), 4546–4550 (2012).
[Crossref] [PubMed]

Polini, M.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene Plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Qi, D. X.

Reddy, P.

B. Song, Y. Ganjeh, S. Sadat, D. Thompson, A. Fiorino, V. Fernández-Hurtado, J. Feist, F. J. Garcia-Vidal, J. C. Cuevas, P. Reddy, and E. Meyhofer, “Enhancement of near-field radiative heat transfer using polar dielectric thin films,” Nat. Nanotechnol. 10(3), 253–258 (2015).
[Crossref] [PubMed]

K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M. T. H. Reid, F. J. García-Vidal, J. C. Cuevas, E. Meyhofer, and P. Reddy, “Radiative heat transfer in the extreme near field,” Nature 528(7582), 387–391 (2015).
[Crossref] [PubMed]

Regan, W.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Reid, M. T. H.

K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M. T. H. Reid, F. J. García-Vidal, J. C. Cuevas, E. Meyhofer, and P. Reddy, “Radiative heat transfer in the extreme near field,” Nature 528(7582), 387–391 (2015).
[Crossref] [PubMed]

Reynaud, S.

J. Lussange, R. Guerout, F. S. S. Rosa, J. J. Greffet, A. Lambrecht, and S. Reynaud, “Radiative heat transfer between two dielectric nanogratings in the scattering approach,” Phys. Rev. B 86(8), 085432 (2012).
[Crossref]

Rodin, A. S.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Rosa, F. S. S.

J. Lussange, R. Guerout, F. S. S. Rosa, J. J. Greffet, A. Lambrecht, and S. Reynaud, “Radiative heat transfer between two dielectric nanogratings in the scattering approach,” Phys. Rev. B 86(8), 085432 (2012).
[Crossref]

Sadat, S.

B. Song, Y. Ganjeh, S. Sadat, D. Thompson, A. Fiorino, V. Fernández-Hurtado, J. Feist, F. J. Garcia-Vidal, J. C. Cuevas, P. Reddy, and E. Meyhofer, “Enhancement of near-field radiative heat transfer using polar dielectric thin films,” Nat. Nanotechnol. 10(3), 253–258 (2015).
[Crossref] [PubMed]

Shen, S.

J. Shi, B. Liu, P. Li, L. Y. Ng, and S. Shen, “Near-field energy extraction with hyperbolic metamaterials,” Nano Lett. 15(2), 1217–1221 (2015).
[Crossref] [PubMed]

Shi, J.

J. Shi, B. Liu, P. Li, L. Y. Ng, and S. Shen, “Near-field energy extraction with hyperbolic metamaterials,” Nano Lett. 15(2), 1217–1221 (2015).
[Crossref] [PubMed]

Shi, K. Z.

K. Z. Shi, F. L. Bao, and S. L. He, “Spectral control of near-field thermal radiation with periodic cross resonance metasurfaces,” IEEE J. Quantum Electron. 54(1), 7000107 (2018).
[Crossref]

K. Z. Shi, F. L. Bao, and S. L. He, “Enhanced near-field thermal radiation based on multilayer graphene-hBN heterostructures,” ACS Photonics 4(4), 971–978 (2017).
[Crossref]

Soljacic, M.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Song, B.

B. Song, Y. Ganjeh, S. Sadat, D. Thompson, A. Fiorino, V. Fernández-Hurtado, J. Feist, F. J. Garcia-Vidal, J. C. Cuevas, P. Reddy, and E. Meyhofer, “Enhancement of near-field radiative heat transfer using polar dielectric thin films,” Nat. Nanotechnol. 10(3), 253–258 (2015).
[Crossref] [PubMed]

K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M. T. H. Reid, F. J. García-Vidal, J. C. Cuevas, E. Meyhofer, and P. Reddy, “Radiative heat transfer in the extreme near field,” Nature 528(7582), 387–391 (2015).
[Crossref] [PubMed]

St-Gelais, R.

R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime,” Nat. Nanotechnol. 11(6), 515–519 (2016).
[Crossref] [PubMed]

Taniguchi, T.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. Janssen, S. E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
[Crossref] [PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Thiemens, M.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. Janssen, S. E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
[Crossref] [PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Thompson, D.

K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M. T. H. Reid, F. J. García-Vidal, J. C. Cuevas, E. Meyhofer, and P. Reddy, “Radiative heat transfer in the extreme near field,” Nature 528(7582), 387–391 (2015).
[Crossref] [PubMed]

B. Song, Y. Ganjeh, S. Sadat, D. Thompson, A. Fiorino, V. Fernández-Hurtado, J. Feist, F. J. Garcia-Vidal, J. C. Cuevas, P. Reddy, and E. Meyhofer, “Enhancement of near-field radiative heat transfer using polar dielectric thin films,” Nat. Nanotechnol. 10(3), 253–258 (2015).
[Crossref] [PubMed]

Toshiyoshi, H.

K. Ito, K. Nishikawa, A. Miura, H. Toshiyoshi, and H. Iizuka, “Dynamic modulation of radiative heat transfer beyond the blackbody limit,” Nano Lett. 17(7), 4347–4353 (2017).
[Crossref] [PubMed]

Tschikin, M.

S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, “Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials,” Appl. Phys. Lett. 102(13), 131106 (2013).
[Crossref]

Vaillon, R.

M. Francoeur, M. P. Menguc, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D Appl. Phys. 43(7), 075501 (2010).
[Crossref]

Varlamov, A. A.

L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56(4), 281–284 (2007).
[Crossref]

Wagner, M.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. Janssen, S. E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
[Crossref] [PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Wang, E. N.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Wang, Y. K.

Watanabe, K.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. Janssen, S. E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
[Crossref] [PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Xu, Y. D.

Y. Q. Cai, L. T. Zhang, Q. F. Zeng, L. F. Cheng, and Y. D. Xu, “Infrared reflectance spectrum of BN calculated from first principles,” Solid State Commun. 141(5), 262–266 (2007).
[Crossref]

Yan, M.

J. Dai, F. Ding, S. I. Bozhevolnyi, and M. Yan, “Ultrabroadband super-Planckian radiative heat transfer with artificial continuum cavity states in patterned hyperbolic metamaterials,” Phys. Rev. B 95(24), 245405 (2017).
[Crossref]

Zeng, Q. F.

Y. Q. Cai, L. T. Zhang, Q. F. Zeng, L. F. Cheng, and Y. D. Xu, “Infrared reflectance spectrum of BN calculated from first principles,” Solid State Commun. 141(5), 262–266 (2007).
[Crossref]

Zettl, A.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Zhang, L. T.

Y. Q. Cai, L. T. Zhang, Q. F. Zeng, L. F. Cheng, and Y. D. Xu, “Infrared reflectance spectrum of BN calculated from first principles,” Solid State Commun. 141(5), 262–266 (2007).
[Crossref]

Zhang, R. Z.

X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-field radiative heat transfer with doped-silicon nanostructured metamaterials,” Int. J. Heat Mass Transfer 73, 389–398 (2014).
[Crossref]

X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-perfect photon tunneling by hybridizing graphene plasmons and hyperbolic modes,” ACS Photonics 1(9), 785–789 (2014).
[Crossref]

Zhang, Z. M.

B. Zhao and Z. M. Zhang, “Enhanced photon tunneling by surface plasmon-phonon polaritons in graphene/hBN heterostructures,” J. Heat Transfer 139(2), 022701 (2016).
[Crossref]

X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-field radiative heat transfer with doped-silicon nanostructured metamaterials,” Int. J. Heat Mass Transfer 73, 389–398 (2014).
[Crossref]

X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-perfect photon tunneling by hybridizing graphene plasmons and hyperbolic modes,” ACS Photonics 1(9), 785–789 (2014).
[Crossref]

X. L. Liu, T. J. Bright, and Z. M. Zhang, “Application conditions of effective medium theory in near-field radiative heat transfer between multilayered metamaterials,” J. Heat Transfer 136(9), 092703 (2014).
[Crossref]

Zhang, Z. M. M.

B. Zhao, B. Guizal, Z. M. M. Zhang, S. H. Fan, and M. Antezza, “Near-field heat transfer between graphene/hBN multilayers,” Phys. Rev. B 95(24), 245437 (2017).
[Crossref]

Zhao, B.

B. Zhao, B. Guizal, Z. M. M. Zhang, S. H. Fan, and M. Antezza, “Near-field heat transfer between graphene/hBN multilayers,” Phys. Rev. B 95(24), 245437 (2017).
[Crossref]

B. Zhao and Z. M. Zhang, “Enhanced photon tunneling by surface plasmon-phonon polaritons in graphene/hBN heterostructures,” J. Heat Transfer 139(2), 022701 (2016).
[Crossref]

Zhou, Y.

Zhu, L.

R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime,” Nat. Nanotechnol. 11(6), 515–519 (2016).
[Crossref] [PubMed]

Zhu, S. E.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. Janssen, S. E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
[Crossref] [PubMed]

ACS Photonics (2)

K. Z. Shi, F. L. Bao, and S. L. He, “Enhanced near-field thermal radiation based on multilayer graphene-hBN heterostructures,” ACS Photonics 4(4), 971–978 (2017).
[Crossref]

X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-perfect photon tunneling by hybridizing graphene plasmons and hyperbolic modes,” ACS Photonics 1(9), 785–789 (2014).
[Crossref]

Appl. Phys. Lett. (2)

L. Hu, A. Narayanaswamy, X. Y. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law,” Appl. Phys. Lett. 92(13), 133106 (2008).
[Crossref]

S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, “Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials,” Appl. Phys. Lett. 102(13), 131106 (2013).
[Crossref]

Eur. Phys. J. B (1)

L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56(4), 281–284 (2007).
[Crossref]

IEEE J. Quantum Electron. (1)

K. Z. Shi, F. L. Bao, and S. L. He, “Spectral control of near-field thermal radiation with periodic cross resonance metasurfaces,” IEEE J. Quantum Electron. 54(1), 7000107 (2018).
[Crossref]

Int. J. Heat Mass Transfer (1)

X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-field radiative heat transfer with doped-silicon nanostructured metamaterials,” Int. J. Heat Mass Transfer 73, 389–398 (2014).
[Crossref]

J. Appl. Phys. (1)

T. Ikeda, K. Ito, and H. Iizuka, “Tunable quasi-monochromatic near-field radiative heat transfer in s and p polarizations by a hyperbolic metamaterial layer,” J. Appl. Phys. 121(1), 013106 (2017).
[Crossref]

J. Heat Transfer (2)

X. L. Liu, T. J. Bright, and Z. M. Zhang, “Application conditions of effective medium theory in near-field radiative heat transfer between multilayered metamaterials,” J. Heat Transfer 136(9), 092703 (2014).
[Crossref]

B. Zhao and Z. M. Zhang, “Enhanced photon tunneling by surface plasmon-phonon polaritons in graphene/hBN heterostructures,” J. Heat Transfer 139(2), 022701 (2016).
[Crossref]

J. Phys. D Appl. Phys. (1)

M. Francoeur, M. P. Menguc, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D Appl. Phys. 43(7), 075501 (2010).
[Crossref]

Nano Lett. (3)

K. Ito, K. Nishikawa, A. Miura, H. Toshiyoshi, and H. Iizuka, “Dynamic modulation of radiative heat transfer beyond the blackbody limit,” Nano Lett. 17(7), 4347–4353 (2017).
[Crossref] [PubMed]

J. Shi, B. Liu, P. Li, L. Y. Ng, and S. Shen, “Near-field energy extraction with hyperbolic metamaterials,” Nano Lett. 15(2), 1217–1221 (2015).
[Crossref] [PubMed]

B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-field radiative cooling of nanostructures,” Nano Lett. 12(9), 4546–4550 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (4)

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime,” Nat. Nanotechnol. 11(6), 515–519 (2016).
[Crossref] [PubMed]

B. Song, Y. Ganjeh, S. Sadat, D. Thompson, A. Fiorino, V. Fernández-Hurtado, J. Feist, F. J. Garcia-Vidal, J. C. Cuevas, P. Reddy, and E. Meyhofer, “Enhancement of near-field radiative heat transfer using polar dielectric thin films,” Nat. Nanotechnol. 10(3), 253–258 (2015).
[Crossref] [PubMed]

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. Janssen, S. E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene Plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Nature (1)

K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M. T. H. Reid, F. J. García-Vidal, J. C. Cuevas, E. Meyhofer, and P. Reddy, “Radiative heat transfer in the extreme near field,” Nature 528(7582), 387–391 (2015).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. B (3)

J. Dai, F. Ding, S. I. Bozhevolnyi, and M. Yan, “Ultrabroadband super-Planckian radiative heat transfer with artificial continuum cavity states in patterned hyperbolic metamaterials,” Phys. Rev. B 95(24), 245405 (2017).
[Crossref]

J. Lussange, R. Guerout, F. S. S. Rosa, J. J. Greffet, A. Lambrecht, and S. Reynaud, “Radiative heat transfer between two dielectric nanogratings in the scattering approach,” Phys. Rev. B 86(8), 085432 (2012).
[Crossref]

B. Zhao, B. Guizal, Z. M. M. Zhang, S. H. Fan, and M. Antezza, “Near-field heat transfer between graphene/hBN multilayers,” Phys. Rev. B 95(24), 245437 (2017).
[Crossref]

Phys. Rev. Lett. (1)

H. Iizuka and S. Fan, “Significant enhancement of near-field electromagnetic heat transfer in a multilayer structure through multiple surface-states coupling,” Phys. Rev. Lett. 120(6), 063901 (2018).
[Crossref] [PubMed]

Sci. Rep. (1)

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3(1), 1383 (2013).
[Crossref] [PubMed]

Science (1)

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Solid State Commun. (1)

Y. Q. Cai, L. T. Zhang, Q. F. Zeng, L. F. Cheng, and Y. D. Xu, “Infrared reflectance spectrum of BN calculated from first principles,” Solid State Commun. 141(5), 262–266 (2007).
[Crossref]

Surf. Sci. Rep. (1)

K. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3–4), 59–112 (2005).
[Crossref]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic illustration of the emitter and receiver with temperatures TE and TR, respectively. d is the vacuum gap distance. Amplified diagram within red dashed line displays the detailed components of the Gh/GS/Gh hybrid structure.
Fig. 2
Fig. 2 (Colored lines) (a) shows the heat flux Q versus vacuum gap distance d from 10 to 1000 nm of Gh/GS/Gh structure with different μ. Dash-dotted line represents the BB limit. (b) Spectral heat flux with d = 10 nm and μ = 0.1 eV. Grey shading indicates the hyperbolic band type I (ε hBN >0, ε|| hBN <0) from 1.47 × 1014 rad/s to 1.56 × 1014 rad/s and type II (ε hBN <0, ε|| hBN >0) from 2.58 × 1014 rad/s to 3.03 × 1014 rad/s. The thicknesses of the first layer, h1, and second layer, h2, are both set to 20 nm, and h3 is infinite in all calculations.
Fig. 3
Fig. 3 Contour maps of PhTPr of p-polariton modes ξp (β > k0) of (a) hBN bulk, (b) SiO2 spacer, (c) Gh/Gv/Gh, (d) Gh/GS/Gh, (e) Gh/Gh/Gh, (f) GS/GS/GS, and (g) three suspended graphene layers at d = 10 nm and μ = 0.1 eV. Schematic illustration of each structure is displayed above the contour maps accordingly. The x-axis of (a)-(d) is the same as (e)-(g).
Fig. 4
Fig. 4 Contour maps of ξp (β > k0) of (a) Gh/GSiO2SiC/Gh, (b) Gh/GSiO2Nanoholes/Gh at d = 10 nm and μ = 0.1 eV. Thickness of SiO2 and SiC in (a) are both set to 10 nm (h2 still remains 20 nm). Filling ratio f is set to 0.3. Insets show the schematic illustration of these two structures.
Fig. 5
Fig. 5 Contour map of ξp (β > k0) of (a) Gh/GS/Gh, (b) three suspended graphene sheets, (c) hBN bulk, (d) SiO2 spacer, (e) Gh/Gh/Gh, and (f) GS/GS/GS structures at d = 10 nm and μ = 0.6 eV. Schematic illustration of each structure is displayed beside the contour maps accordingly.
Fig. 6
Fig. 6 (a) Step curve indicates the “optimized” μ (μ1 = μ2 = μ3) versus d. (b) Heat flux Q of Gh/GS/Gh hybrid structure versus μ1 and μ2,3 at d = 10 nm. Yellow dotted line shows the optimized μ2,3 for the Q with different μ1. (c) Contour maps of ξp of Gh/GS/Gh with μ1 = 0.6 eV, μ2,3 = 0.1 eV (left) and 1.0 eV (right) at d = 10 nm. White arrow illustrates the expansion of the coupling modes in the k-space. (d) Optimized choices of μ2,3 with μ1 from 0.1 eV to 1.6 eV at different d.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Q ( ω ) = 1 4 π 2 0 [ Θ ( T E , ω ) Θ ( T R , ω ) ] d ω 0 β j = s , p ξ j ( ω , β ) d β ,
ξ j ( ω , β ) = { ( 1 | r j , E | 2 ) ( 1 | r j , R | 2 ) | 1 r j , E r j , R e 2 i k z 0 d | 2 , β < k 0 4 Im ( r j , E ) Im ( r j , R ) e 2 i k z 0 d | 1 r j , E r j , R e 2 i k z 0 d | 2 , β > k 0 ,
r s , l = k z ( 0 s ) k z ( 1 s ) σ l μ 0 ω k z ( 0 s ) + k z ( 1 s ) + σ l μ 0 ω r p , l = k z ( 0 p ) ε ( 1 ) k z ( 1 p ) ε ( 0 ) + σ l k z ( 0 p ) k z ( 1 p ) ε 0 ω k z ( 0 p ) ε ( 1 ) + k z ( 1 p ) ε ( 0 ) + σ l k z ( 0 p ) k z ( 1 p ) ε 0 ω ,
σ l = 2 i e 2 k B T l ln [ 2 cos h [ μ / ( 2 k B T l ) ] ] ( ω + i / τ ) π 2 + e 2 4 [ f ( ω 2 ) + i 4 ω π I ] ,
r s , l = r s 01 , l + r s 12 , l ( 1 + r s 01 , l + r s 10 , l ) e 2 i k z ( 1 s ) h 1 1 r s 10 , l r s 12 , l e 2 i k z ( 1 s ) h 1 r p , l = r p 01 , l + r p 12 , l ( 1 r p 01 , l r p 10 , l ) e 2 i k z ( 1 p ) h 1 1 r p 10 , l r p 12 , l e 2 i k z ( 1 p ) h 1 ,

Metrics