Abstract

The upcoming space-borne LiDAR satellite Ice, Cloud and land Elevation Satellite-2 (ICESat-2) is scheduled to launch in 2018. Different from the waveform LiDAR system onboard the ICESat, ICESat-2 will use a micro-pulse photon-counting LiDAR system. Thus new data processing algorithms are required to retrieve vegetation canopy height from photon-counting LiDAR data. The objective of this paper is to develop and validate an automated approach for better estimating vegetation canopy height. The new proposed method consists of three key steps: 1) filtering out the noise photons by an effective noise removal algorithm based on localized statistical analysis; 2) separating ground returns from canopy returns using an iterative photon classification algorithm, and then determining ground surface; 3) generating canopy-top surface and calculating vegetation canopy height based on canopy-top and ground surfaces. This automatic vegetation height estimation approach was tested to the simulated ICESat-2 data produced from Sigma Space LiDAR data and Multiple Altimeter Beam Experimental LiDAR (MABEL) data, and the retrieved vegetation canopy heights were validated by canopy height models (CHMs) derived from airborne discrete-return LiDAR data. Results indicated that the estimated vegetation canopy heights have a relatively strong correlation with the reference vegetation heights derived from airborne discrete-return LiDAR data (R2 and RMSE values ranging from 0.639 to 0.810 and 4.08 m to 4.56 m respectively). This means our new proposed approach is appropriate for retrieving vegetation canopy height from micro-pulse photon-counting LiDAR data.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Estimating FPAR of maize canopy using airborne discrete-return LiDAR data

Shezhou Luo, Cheng Wang, Xiaohuan Xi, and Feifei Pan
Opt. Express 22(5) 5106-5117 (2014)

Ranging performance models based on negative-binomial (NB) distribution for photon-counting lidars

Song Li, Zhiyu Zhang, Yue Ma, Haomin Zeng, Pufan Zhao, and Wenhao Zhang
Opt. Express 27(12) A861-A877 (2019)

Theoretical surface type classifier based on a waveform model of a satellite laser altimeter and its performance in the north of Greenland

Song Li, Wenhao Zhang, Yue Ma, Xiao Hua Wang, Fanlin Yang, and Dianpeng Su
Appl. Opt. 57(10) 2482-2489 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. R. Streutker and N. F. Glenn, “LiDAR measurement of sagebrush steppe vegetation heights,” Remote Sens. Environ. 102(1–2), 135–145 (2006).
    [Crossref]
  2. S. Nie, C. Wang, H. Zeng, X. Xi, and S. Xia, “A revised terrain correction method for forest canopy height estimation using ICESat/GLAS data,” ISPRS J. Photogramm. 108, 183–190 (2015).
    [Crossref]
  3. I. Fayad, N. Baghdadi, J. S. Bailly, N. Barbier, V. Gond, B. Herault, M. El Hajj, F. Fabre, and J. Perrin, “Regional scale rain-forest height mapping using regression-kriging of spaceborne and airborne LiDAR Data: application on French Guiana,” Remote Sens. 8(3), 240 (2016).
    [Crossref]
  4. M. Simard, N. Pinto, J. B. Fisher, and A. Baccini, “Mapping forest canopy height globally with spaceborne LiDAR,” J. Geophys. Res. 116(G4), G04021 (2011).
    [Crossref]
  5. Y. J. Su, Q. Ma, and Q. H. Guo, “Fine-resolution forest tree height estimation across the Sierra Nevada through the integration of spaceborne LiDAR, airborne LiDAR, and optical imagery,” Int. J. Digit. Earth 10(3), 307–323 (2017).
    [Crossref]
  6. S. Nie, C. Wang, X. Xi, S. Luo, S. Li, and J. Tian, “Estimating the height of wetland vegetation using airborne discrete-return LiDAR data,” Optik (Stuttg.) 154, 267–274 (2018).
    [Crossref]
  7. F. Pirotti, ““Analysis of full-waveform LiDAR data for forestry applications: a review of investigations and methods,” iForest – Biogeosci,” Forestry 4(3), 100–106 (2011).
  8. X. Wang, X. Cheng, P. Gong, H. Huang, Z. Li, and X. Li, “Earth science applications of ICESat/GLAS: a review,” Int. J. Remote Sens. 32(23), 8837–8864 (2011).
    [Crossref]
  9. M. A. Wulder, J. C. White, R. F. Nelson, E. Næsset, H. O. Ørka, N. C. Coops, T. Hilker, C. W. Bater, and T. Gobakken, “LiDAR sampling for large-area forest characterization: A review,” Remote Sens. Environ. 121, 196–209 (2012).
    [Crossref]
  10. L. Cao, N. Coops, T. Hermosilla, J. Innes, J. Dai, and G. She, “Using small-footprint discrete and full-waveform airborne LiDAR metrics to estimate total biomass and biomass components in Subtropical forests,” Remote Sens. 6(8), 7110–7135 (2014).
    [Crossref]
  11. J. Murgoitio, R. Shrestha, N. Glenn, and L. Spaete, “Airborne LiDAR and terrestrial laser scanning derived vegetation obstruction factors for visibility models,” Trans. GIS 18(1), 147–160 (2014).
    [Crossref]
  12. J. D. Jang, V. Payan, A. A. Viau, and A. Devost, “The use of airborne LiDAR for orchard tree inventory,” Int. J. Remote Sens. 29(6), 1767–1780 (2008).
    [Crossref]
  13. M. A. Lefsky, A. T. Hudak, W. B. Cohen, and S. A. Acker, “Geographic variability in LiDAR predictions of forest stand structure in the Pacific Northwest,” Remote Sens. Environ. 95(4), 532–548 (2005).
    [Crossref]
  14. M. Garcia, S. Popescu, D. Riano, K. Zhao, A. Neuenschwander, M. Agca, and E. Chuvieco, “Characterization of canopy fuels using ICESat/GLAS data,” Remote Sens. Environ. 123, 81–89 (2012).
    [Crossref]
  15. A. Brenner, H. Zwally, C. Bentley, B. Csatho, D. Harding, M. Hofton, J. Minster, L. Roberts, J. Saba, and R. Thomas, “Geoscience Laser Altimeter System (GLAS)—derivation of range and range distributions from laser pulse waveform analysis for surface elevations, roughness, slope, and vegetation heights. AlgorithmTheoretical Basis Document—Version 4.1,” Algorithm Theoretical Basis Document-Version 4 (2003).
  16. W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 Laser Altimetry Mission,” Proc. IEEE 98(5), 735–751 (2010).
    [Crossref]
  17. R. Meynart, D. D. McLennan, S. P. Neeck, and H. Shimoda, ““Ice, Clouds and Land Elevation (ICESat-2) Mission,” Proceedings Volume 7826,” Sensors, Systems, and Next-Generation Satellites 14, 782610 (2010).
  18. R. Edwards, N. W. Sawruk, F. E. Hovis, P. Burns, T. Wysocki, J. Rudd, B. Walters, E. Fakhoury, and V. Prisciandaro, “ICESat-2 laser technology development,” in LiDAR Remote Sensing for Environmental Monitoring Xiv, U. N. Singh, ed. (2013).
  19. T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. K. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
    [Crossref]
  20. A. W. Yu, M. A. Stephen, S. X. Li, G. B. Shaw, A. Seas, E. Dowdye, E. Troupaki, P. Liiva, D. Poulios, and K. Mascetti, “Space Laser Transmitter Development for ICESat-2 Mission,” in Solid State Lasers Xix: Technology and Devices, W. A. Clarkson, N. Hodgson, and R. K. Shori, eds. (2010).
  21. U. N. Singh, F. Hovis, R. Burnham, M. Storm, R. Edwards, P. Burns, E. Sullivan, J. Edelman, K. Andes, B. Walters, K. Le, C. Culpepper, J. Rudd, T. Chuang, X. Dang, J. Hwang, and T. Wysocki, “High efficiency laser designs for airborne and space-based LiDAR remote sensing systems,” Proc. SPIE 8159, 815903 (2011).
    [Crossref]
  22. T. Evans, “Integration and alignment of ATLAS instrument engineering model components in Optical Development System Lab,” in Optical System Alignment, Tolerancing, and Verification Vii, J. Sasian, and R. N. Youngworth, eds. (2013).
  23. N. Forfinski and C. Parrish, “ICESat-2 bathymetry: an empirical feasibility assessment using MABEL,” in SPIE Remote Sens. (2016).
  24. A. Neuenschwander and L. Magruder, “The potential impact of vertical sampling uncertainty on ICESat-2/ATLAS terrain and canopy height retrievals for multiple ecosystems,” Remote Sens. 8(12), 1039 (2016).
    [Crossref]
  25. N. F. Glenn, A. Neuenschwander, L. A. Vierling, L. Spaete, A. Li, D. J. Shinneman, D. S. Pilliod, R. S. Arkle, and S. K. McIlroy, “Landsat 8 and ICESat-2: performance and potential synergies for quantifying dryland ecosystem vegetation cover and biomass,” Remote Sens. Environ. 185, 233–242 (2016).
    [Crossref]
  26. D. Gwenzi, M. A. Lefsky, V. P. Suchdeo, and D. J. Harding, “Prospects of the ICESat-2 laser altimetry mission for savanna ecosystem structural studies based on airborne simulation data,” ISPRS J. Photogramm. 118, 68–82 (2016).
    [Crossref]
  27. P. M. Montesano, J. Rosette, G. Sun, P. North, R. F. Nelson, R. O. Dubayah, K. J. Ranson, and V. Kharuk, “The uncertainty of biomass estimates from modeled ICESat-2 returns across a boreal forest gradient,” Remote Sens. Environ. 158, 95–109 (2015).
    [Crossref]
  28. M. S. Moussavi, W. Abdalati, T. Scambos, and A. Neuenschwander, “Applicability of an automatic surface detection approach to micro-pulse photon-counting LiDAR altimetry data: implications for canopy height retrieval from future ICESat-2 data,” Int. J. Remote Sens. 35(13), 5263–5279 (2014).
    [Crossref]
  29. L. A. Magruder, M. E. Wharton, III, K. D. Stout, and A. L. Neuenschwander, “Noise filtering techniques for photon-counting LADAR data,” Laser Radar Technology and Applications Xvii 8379 (2012).
    [Crossref]
  30. B. Chen and Y. Pang, “A denoising approach for detection of canopy and ground from ICESat-2's airborne simulator data in Maryland, USA,” in Applied Optics and Photonics China (2015), p. 96711S.
  31. H. Tang, A. Swatantran, T. Barrett, P. DeCola, and R. Dubayah, “Voxel-based spatial filtering method for canopy height retrieval from airborne single-photon LiDAR,” Remote Sens. 8(9), 771 (2016).
    [Crossref]
  32. J. Zhang and J. P. Kerekes, “First-principle simulation of spaceborne micropulse photon-counting LiDAR performance on complex surfaces,” IEEE Trans. Geosci. Remote Sens. 52(10), 6488–6496 (2014).
    [Crossref]
  33. J. Zhang and J. Kerekes, “An adaptive density-based model for extracting surface returns from photon-counting laser altimeter data,” IEEE Trans. Geosci. Remote Sens. 12(4), 726–730 (2015).
    [Crossref]
  34. A. Swatantran, H. Tang, T. Barrett, P. DeCola, and R. Dubayah, “Rapid, high-resolution forest structure and terrain mapping over large areas using single photon LiDAR,” Sci. Rep. 6(1), 28277 (2016).
    [Crossref] [PubMed]
  35. X. Wang, Z. Pan, and C. Glennie, “A novel noise filtering model for photon-counting laser altimeter data,” IEEE Trans. Geosci. Remote Sens. 13(7), 947–951 (2016).
    [Crossref]
  36. U. C. Herzfeld, B. W. Mcdonald, B. F. Wallins, T. Markus, T. A. Neumann, and A. Brenner, “An algorithm for detection of ground and canopy cover in micropulse photon-counting LiDAR altimeter data in preparation of the ICESat-2 Mission,” IEEE Trans. Geosci. Remote Sens. 52(4), 2109–2125 (2012).
    [Crossref]
  37. U. C. Herzfeld, T. M. Trantow, D. Harding, and P. W. Dabney, “Surface-height determination of Crevassed Glaciers-mathematical principles of an autoadaptive density-dimension algorithm and validation using ICESat-2 simulator (SIMPL) data,” IEEE Trans. Geosci. Remote Sens. 55(4), 1874–1896 (2017).
    [Crossref]
  38. G. Sithole and G. Vosselman, “Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds,” ISPRS J. Photogramm. 59(1–2), 85–101 (2004).
    [Crossref]
  39. X. Meng, N. Currit, and K. Zhao, “Ground filtering algorithms for airborne LiDAR data: a review of critical issues,” Remote Sens. 2(3), 833–860 (2010).
    [Crossref]
  40. S. Nie, C. Wang, P. Dong, X. Xi, S. Luo, and H. Qin, “A revised progressive TIN densification for filtering airborne LiDAR data,” Measurement 104, 70–77 (2017).
    [Crossref]
  41. X. Wang, C. Glennie, and Z. G. Pan, “An adaptive ellipsoid searching filter for airborne single-photon LiDAR,” IEEE Trans. Geosci. Remote Sens. 14(8), 1258–1262 (2017).
    [Crossref]
  42. J. M. Stoker, Q. A. Abdullah, A. Nayegandhi, and J. Winehouse, “Evaluation of single photon and Geiger mode LiDAR for the 3D elevation program,” Remote Sens. 8(9), 767 (2016).
    [Crossref]
  43. Q. H. Li, J. Degnan, T. Barrett, and J. Shan, “First evaluation on single photon-sensitive LiDAR data,” Photogramm. Eng. Remote Sensing 82(8), 455–463 (2016).
    [Crossref]
  44. K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, M. S. Moussavi, K. M. Walsh, W. B. Cook, and T. Markus, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Cryosphere. Discuss. 10(4), 1707–1719 (2016).
    [Crossref]
  45. K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, M. S. Moussavi, K. M. Walsh, W. B. Cook, and T. Markus, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Eos (Wash. D.C.) 10(4), 1707–1719 (2013).
  46. M. F. Jasinski, J. D. Stoll, W. B. Cook, M. Ondrusek, E. Stengel, and K. Brunt, “Inland and near-shore water profiles derived from the high-altitude multiple Altimeter Beam Experimental LiDAR (MABEL),” J. Coast. Res. 76, 44–55 (2016).
    [Crossref]
  47. N. Forfinski-Sarkozi and C. Parrish, “Analysis of MABEL bathymetry in Keweenaw bay and implications for ICESat-2 ATLAS,” Remote Sens. 8(9), 772 (2016).
    [Crossref]
  48. R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham, “Profiling sea ice with a multiple altimeter beam experimental LiDAR (MABEL),” J. Atmos. Ocean. Technol. 31(5), 1151–1168 (2014).
    [Crossref]
  49. M. McGill, T. Markus, V. S. Scott, and T. Neumann, “The multiple altimeter beam experimental LiDAR (MABEL): an airborne simulator for the ICESat-2 mission,” J. Atmos. Ocean. Technol. 30(2), 345–352 (2013).
    [Crossref]
  50. B. Cook, L. Corp, R. Nelson, E. Middleton, D. Morton, J. McCorkel, J. Masek, K. Ranson, V. Ly, and P. Montesano, “NASA Goddard’s LiDAR, Hyperspectral and Thermal (G-LiHT) airborne imager,” Remote Sens. 5(8), 4045–4066 (2013).
    [Crossref]
  51. P. Axelsson, “DEM generation from laser scanner data using adaptive TIN models,” in Int. Arch. Photogramm. Remote Sens. (2000)

2018 (1)

S. Nie, C. Wang, X. Xi, S. Luo, S. Li, and J. Tian, “Estimating the height of wetland vegetation using airborne discrete-return LiDAR data,” Optik (Stuttg.) 154, 267–274 (2018).
[Crossref]

2017 (5)

Y. J. Su, Q. Ma, and Q. H. Guo, “Fine-resolution forest tree height estimation across the Sierra Nevada through the integration of spaceborne LiDAR, airborne LiDAR, and optical imagery,” Int. J. Digit. Earth 10(3), 307–323 (2017).
[Crossref]

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. K. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

U. C. Herzfeld, T. M. Trantow, D. Harding, and P. W. Dabney, “Surface-height determination of Crevassed Glaciers-mathematical principles of an autoadaptive density-dimension algorithm and validation using ICESat-2 simulator (SIMPL) data,” IEEE Trans. Geosci. Remote Sens. 55(4), 1874–1896 (2017).
[Crossref]

S. Nie, C. Wang, P. Dong, X. Xi, S. Luo, and H. Qin, “A revised progressive TIN densification for filtering airborne LiDAR data,” Measurement 104, 70–77 (2017).
[Crossref]

X. Wang, C. Glennie, and Z. G. Pan, “An adaptive ellipsoid searching filter for airborne single-photon LiDAR,” IEEE Trans. Geosci. Remote Sens. 14(8), 1258–1262 (2017).
[Crossref]

2016 (12)

J. M. Stoker, Q. A. Abdullah, A. Nayegandhi, and J. Winehouse, “Evaluation of single photon and Geiger mode LiDAR for the 3D elevation program,” Remote Sens. 8(9), 767 (2016).
[Crossref]

Q. H. Li, J. Degnan, T. Barrett, and J. Shan, “First evaluation on single photon-sensitive LiDAR data,” Photogramm. Eng. Remote Sensing 82(8), 455–463 (2016).
[Crossref]

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, M. S. Moussavi, K. M. Walsh, W. B. Cook, and T. Markus, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Cryosphere. Discuss. 10(4), 1707–1719 (2016).
[Crossref]

A. Neuenschwander and L. Magruder, “The potential impact of vertical sampling uncertainty on ICESat-2/ATLAS terrain and canopy height retrievals for multiple ecosystems,” Remote Sens. 8(12), 1039 (2016).
[Crossref]

N. F. Glenn, A. Neuenschwander, L. A. Vierling, L. Spaete, A. Li, D. J. Shinneman, D. S. Pilliod, R. S. Arkle, and S. K. McIlroy, “Landsat 8 and ICESat-2: performance and potential synergies for quantifying dryland ecosystem vegetation cover and biomass,” Remote Sens. Environ. 185, 233–242 (2016).
[Crossref]

D. Gwenzi, M. A. Lefsky, V. P. Suchdeo, and D. J. Harding, “Prospects of the ICESat-2 laser altimetry mission for savanna ecosystem structural studies based on airborne simulation data,” ISPRS J. Photogramm. 118, 68–82 (2016).
[Crossref]

H. Tang, A. Swatantran, T. Barrett, P. DeCola, and R. Dubayah, “Voxel-based spatial filtering method for canopy height retrieval from airborne single-photon LiDAR,” Remote Sens. 8(9), 771 (2016).
[Crossref]

A. Swatantran, H. Tang, T. Barrett, P. DeCola, and R. Dubayah, “Rapid, high-resolution forest structure and terrain mapping over large areas using single photon LiDAR,” Sci. Rep. 6(1), 28277 (2016).
[Crossref] [PubMed]

X. Wang, Z. Pan, and C. Glennie, “A novel noise filtering model for photon-counting laser altimeter data,” IEEE Trans. Geosci. Remote Sens. 13(7), 947–951 (2016).
[Crossref]

I. Fayad, N. Baghdadi, J. S. Bailly, N. Barbier, V. Gond, B. Herault, M. El Hajj, F. Fabre, and J. Perrin, “Regional scale rain-forest height mapping using regression-kriging of spaceborne and airborne LiDAR Data: application on French Guiana,” Remote Sens. 8(3), 240 (2016).
[Crossref]

M. F. Jasinski, J. D. Stoll, W. B. Cook, M. Ondrusek, E. Stengel, and K. Brunt, “Inland and near-shore water profiles derived from the high-altitude multiple Altimeter Beam Experimental LiDAR (MABEL),” J. Coast. Res. 76, 44–55 (2016).
[Crossref]

N. Forfinski-Sarkozi and C. Parrish, “Analysis of MABEL bathymetry in Keweenaw bay and implications for ICESat-2 ATLAS,” Remote Sens. 8(9), 772 (2016).
[Crossref]

2015 (3)

S. Nie, C. Wang, H. Zeng, X. Xi, and S. Xia, “A revised terrain correction method for forest canopy height estimation using ICESat/GLAS data,” ISPRS J. Photogramm. 108, 183–190 (2015).
[Crossref]

P. M. Montesano, J. Rosette, G. Sun, P. North, R. F. Nelson, R. O. Dubayah, K. J. Ranson, and V. Kharuk, “The uncertainty of biomass estimates from modeled ICESat-2 returns across a boreal forest gradient,” Remote Sens. Environ. 158, 95–109 (2015).
[Crossref]

J. Zhang and J. Kerekes, “An adaptive density-based model for extracting surface returns from photon-counting laser altimeter data,” IEEE Trans. Geosci. Remote Sens. 12(4), 726–730 (2015).
[Crossref]

2014 (5)

M. S. Moussavi, W. Abdalati, T. Scambos, and A. Neuenschwander, “Applicability of an automatic surface detection approach to micro-pulse photon-counting LiDAR altimetry data: implications for canopy height retrieval from future ICESat-2 data,” Int. J. Remote Sens. 35(13), 5263–5279 (2014).
[Crossref]

J. Zhang and J. P. Kerekes, “First-principle simulation of spaceborne micropulse photon-counting LiDAR performance on complex surfaces,” IEEE Trans. Geosci. Remote Sens. 52(10), 6488–6496 (2014).
[Crossref]

L. Cao, N. Coops, T. Hermosilla, J. Innes, J. Dai, and G. She, “Using small-footprint discrete and full-waveform airborne LiDAR metrics to estimate total biomass and biomass components in Subtropical forests,” Remote Sens. 6(8), 7110–7135 (2014).
[Crossref]

J. Murgoitio, R. Shrestha, N. Glenn, and L. Spaete, “Airborne LiDAR and terrestrial laser scanning derived vegetation obstruction factors for visibility models,” Trans. GIS 18(1), 147–160 (2014).
[Crossref]

R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham, “Profiling sea ice with a multiple altimeter beam experimental LiDAR (MABEL),” J. Atmos. Ocean. Technol. 31(5), 1151–1168 (2014).
[Crossref]

2013 (3)

M. McGill, T. Markus, V. S. Scott, and T. Neumann, “The multiple altimeter beam experimental LiDAR (MABEL): an airborne simulator for the ICESat-2 mission,” J. Atmos. Ocean. Technol. 30(2), 345–352 (2013).
[Crossref]

B. Cook, L. Corp, R. Nelson, E. Middleton, D. Morton, J. McCorkel, J. Masek, K. Ranson, V. Ly, and P. Montesano, “NASA Goddard’s LiDAR, Hyperspectral and Thermal (G-LiHT) airborne imager,” Remote Sens. 5(8), 4045–4066 (2013).
[Crossref]

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, M. S. Moussavi, K. M. Walsh, W. B. Cook, and T. Markus, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Eos (Wash. D.C.) 10(4), 1707–1719 (2013).

2012 (3)

U. C. Herzfeld, B. W. Mcdonald, B. F. Wallins, T. Markus, T. A. Neumann, and A. Brenner, “An algorithm for detection of ground and canopy cover in micropulse photon-counting LiDAR altimeter data in preparation of the ICESat-2 Mission,” IEEE Trans. Geosci. Remote Sens. 52(4), 2109–2125 (2012).
[Crossref]

M. Garcia, S. Popescu, D. Riano, K. Zhao, A. Neuenschwander, M. Agca, and E. Chuvieco, “Characterization of canopy fuels using ICESat/GLAS data,” Remote Sens. Environ. 123, 81–89 (2012).
[Crossref]

M. A. Wulder, J. C. White, R. F. Nelson, E. Næsset, H. O. Ørka, N. C. Coops, T. Hilker, C. W. Bater, and T. Gobakken, “LiDAR sampling for large-area forest characterization: A review,” Remote Sens. Environ. 121, 196–209 (2012).
[Crossref]

2011 (4)

F. Pirotti, ““Analysis of full-waveform LiDAR data for forestry applications: a review of investigations and methods,” iForest – Biogeosci,” Forestry 4(3), 100–106 (2011).

X. Wang, X. Cheng, P. Gong, H. Huang, Z. Li, and X. Li, “Earth science applications of ICESat/GLAS: a review,” Int. J. Remote Sens. 32(23), 8837–8864 (2011).
[Crossref]

M. Simard, N. Pinto, J. B. Fisher, and A. Baccini, “Mapping forest canopy height globally with spaceborne LiDAR,” J. Geophys. Res. 116(G4), G04021 (2011).
[Crossref]

U. N. Singh, F. Hovis, R. Burnham, M. Storm, R. Edwards, P. Burns, E. Sullivan, J. Edelman, K. Andes, B. Walters, K. Le, C. Culpepper, J. Rudd, T. Chuang, X. Dang, J. Hwang, and T. Wysocki, “High efficiency laser designs for airborne and space-based LiDAR remote sensing systems,” Proc. SPIE 8159, 815903 (2011).
[Crossref]

2010 (3)

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 Laser Altimetry Mission,” Proc. IEEE 98(5), 735–751 (2010).
[Crossref]

R. Meynart, D. D. McLennan, S. P. Neeck, and H. Shimoda, ““Ice, Clouds and Land Elevation (ICESat-2) Mission,” Proceedings Volume 7826,” Sensors, Systems, and Next-Generation Satellites 14, 782610 (2010).

X. Meng, N. Currit, and K. Zhao, “Ground filtering algorithms for airborne LiDAR data: a review of critical issues,” Remote Sens. 2(3), 833–860 (2010).
[Crossref]

2008 (1)

J. D. Jang, V. Payan, A. A. Viau, and A. Devost, “The use of airborne LiDAR for orchard tree inventory,” Int. J. Remote Sens. 29(6), 1767–1780 (2008).
[Crossref]

2006 (1)

D. R. Streutker and N. F. Glenn, “LiDAR measurement of sagebrush steppe vegetation heights,” Remote Sens. Environ. 102(1–2), 135–145 (2006).
[Crossref]

2005 (1)

M. A. Lefsky, A. T. Hudak, W. B. Cohen, and S. A. Acker, “Geographic variability in LiDAR predictions of forest stand structure in the Pacific Northwest,” Remote Sens. Environ. 95(4), 532–548 (2005).
[Crossref]

2004 (1)

G. Sithole and G. Vosselman, “Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds,” ISPRS J. Photogramm. 59(1–2), 85–101 (2004).
[Crossref]

Abdalati, W.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. K. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

M. S. Moussavi, W. Abdalati, T. Scambos, and A. Neuenschwander, “Applicability of an automatic surface detection approach to micro-pulse photon-counting LiDAR altimetry data: implications for canopy height retrieval from future ICESat-2 data,” Int. J. Remote Sens. 35(13), 5263–5279 (2014).
[Crossref]

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 Laser Altimetry Mission,” Proc. IEEE 98(5), 735–751 (2010).
[Crossref]

Abdullah, Q. A.

J. M. Stoker, Q. A. Abdullah, A. Nayegandhi, and J. Winehouse, “Evaluation of single photon and Geiger mode LiDAR for the 3D elevation program,” Remote Sens. 8(9), 767 (2016).
[Crossref]

Acker, S. A.

M. A. Lefsky, A. T. Hudak, W. B. Cohen, and S. A. Acker, “Geographic variability in LiDAR predictions of forest stand structure in the Pacific Northwest,” Remote Sens. Environ. 95(4), 532–548 (2005).
[Crossref]

Agca, M.

M. Garcia, S. Popescu, D. Riano, K. Zhao, A. Neuenschwander, M. Agca, and E. Chuvieco, “Characterization of canopy fuels using ICESat/GLAS data,” Remote Sens. Environ. 123, 81–89 (2012).
[Crossref]

Amundson, J. M.

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, M. S. Moussavi, K. M. Walsh, W. B. Cook, and T. Markus, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Cryosphere. Discuss. 10(4), 1707–1719 (2016).
[Crossref]

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, M. S. Moussavi, K. M. Walsh, W. B. Cook, and T. Markus, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Eos (Wash. D.C.) 10(4), 1707–1719 (2013).

Andes, K.

U. N. Singh, F. Hovis, R. Burnham, M. Storm, R. Edwards, P. Burns, E. Sullivan, J. Edelman, K. Andes, B. Walters, K. Le, C. Culpepper, J. Rudd, T. Chuang, X. Dang, J. Hwang, and T. Wysocki, “High efficiency laser designs for airborne and space-based LiDAR remote sensing systems,” Proc. SPIE 8159, 815903 (2011).
[Crossref]

Arkle, R. S.

N. F. Glenn, A. Neuenschwander, L. A. Vierling, L. Spaete, A. Li, D. J. Shinneman, D. S. Pilliod, R. S. Arkle, and S. K. McIlroy, “Landsat 8 and ICESat-2: performance and potential synergies for quantifying dryland ecosystem vegetation cover and biomass,” Remote Sens. Environ. 185, 233–242 (2016).
[Crossref]

Baccini, A.

M. Simard, N. Pinto, J. B. Fisher, and A. Baccini, “Mapping forest canopy height globally with spaceborne LiDAR,” J. Geophys. Res. 116(G4), G04021 (2011).
[Crossref]

Baghdadi, N.

I. Fayad, N. Baghdadi, J. S. Bailly, N. Barbier, V. Gond, B. Herault, M. El Hajj, F. Fabre, and J. Perrin, “Regional scale rain-forest height mapping using regression-kriging of spaceborne and airborne LiDAR Data: application on French Guiana,” Remote Sens. 8(3), 240 (2016).
[Crossref]

Bailly, J. S.

I. Fayad, N. Baghdadi, J. S. Bailly, N. Barbier, V. Gond, B. Herault, M. El Hajj, F. Fabre, and J. Perrin, “Regional scale rain-forest height mapping using regression-kriging of spaceborne and airborne LiDAR Data: application on French Guiana,” Remote Sens. 8(3), 240 (2016).
[Crossref]

Barbier, N.

I. Fayad, N. Baghdadi, J. S. Bailly, N. Barbier, V. Gond, B. Herault, M. El Hajj, F. Fabre, and J. Perrin, “Regional scale rain-forest height mapping using regression-kriging of spaceborne and airborne LiDAR Data: application on French Guiana,” Remote Sens. 8(3), 240 (2016).
[Crossref]

Barrett, T.

H. Tang, A. Swatantran, T. Barrett, P. DeCola, and R. Dubayah, “Voxel-based spatial filtering method for canopy height retrieval from airborne single-photon LiDAR,” Remote Sens. 8(9), 771 (2016).
[Crossref]

A. Swatantran, H. Tang, T. Barrett, P. DeCola, and R. Dubayah, “Rapid, high-resolution forest structure and terrain mapping over large areas using single photon LiDAR,” Sci. Rep. 6(1), 28277 (2016).
[Crossref] [PubMed]

Q. H. Li, J. Degnan, T. Barrett, and J. Shan, “First evaluation on single photon-sensitive LiDAR data,” Photogramm. Eng. Remote Sensing 82(8), 455–463 (2016).
[Crossref]

Bater, C. W.

M. A. Wulder, J. C. White, R. F. Nelson, E. Næsset, H. O. Ørka, N. C. Coops, T. Hilker, C. W. Bater, and T. Gobakken, “LiDAR sampling for large-area forest characterization: A review,” Remote Sens. Environ. 121, 196–209 (2012).
[Crossref]

Bindschadler, R.

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 Laser Altimetry Mission,” Proc. IEEE 98(5), 735–751 (2010).
[Crossref]

Brenner, A.

U. C. Herzfeld, B. W. Mcdonald, B. F. Wallins, T. Markus, T. A. Neumann, and A. Brenner, “An algorithm for detection of ground and canopy cover in micropulse photon-counting LiDAR altimeter data in preparation of the ICESat-2 Mission,” IEEE Trans. Geosci. Remote Sens. 52(4), 2109–2125 (2012).
[Crossref]

Brunt, K.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. K. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

M. F. Jasinski, J. D. Stoll, W. B. Cook, M. Ondrusek, E. Stengel, and K. Brunt, “Inland and near-shore water profiles derived from the high-altitude multiple Altimeter Beam Experimental LiDAR (MABEL),” J. Coast. Res. 76, 44–55 (2016).
[Crossref]

Brunt, K. M.

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, M. S. Moussavi, K. M. Walsh, W. B. Cook, and T. Markus, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Cryosphere. Discuss. 10(4), 1707–1719 (2016).
[Crossref]

R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham, “Profiling sea ice with a multiple altimeter beam experimental LiDAR (MABEL),” J. Atmos. Ocean. Technol. 31(5), 1151–1168 (2014).
[Crossref]

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, M. S. Moussavi, K. M. Walsh, W. B. Cook, and T. Markus, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Eos (Wash. D.C.) 10(4), 1707–1719 (2013).

Burnham, R.

U. N. Singh, F. Hovis, R. Burnham, M. Storm, R. Edwards, P. Burns, E. Sullivan, J. Edelman, K. Andes, B. Walters, K. Le, C. Culpepper, J. Rudd, T. Chuang, X. Dang, J. Hwang, and T. Wysocki, “High efficiency laser designs for airborne and space-based LiDAR remote sensing systems,” Proc. SPIE 8159, 815903 (2011).
[Crossref]

Burns, P.

U. N. Singh, F. Hovis, R. Burnham, M. Storm, R. Edwards, P. Burns, E. Sullivan, J. Edelman, K. Andes, B. Walters, K. Le, C. Culpepper, J. Rudd, T. Chuang, X. Dang, J. Hwang, and T. Wysocki, “High efficiency laser designs for airborne and space-based LiDAR remote sensing systems,” Proc. SPIE 8159, 815903 (2011).
[Crossref]

Cao, L.

L. Cao, N. Coops, T. Hermosilla, J. Innes, J. Dai, and G. She, “Using small-footprint discrete and full-waveform airborne LiDAR metrics to estimate total biomass and biomass components in Subtropical forests,” Remote Sens. 6(8), 7110–7135 (2014).
[Crossref]

Cheng, X.

X. Wang, X. Cheng, P. Gong, H. Huang, Z. Li, and X. Li, “Earth science applications of ICESat/GLAS: a review,” Int. J. Remote Sens. 32(23), 8837–8864 (2011).
[Crossref]

Chuang, T.

U. N. Singh, F. Hovis, R. Burnham, M. Storm, R. Edwards, P. Burns, E. Sullivan, J. Edelman, K. Andes, B. Walters, K. Le, C. Culpepper, J. Rudd, T. Chuang, X. Dang, J. Hwang, and T. Wysocki, “High efficiency laser designs for airborne and space-based LiDAR remote sensing systems,” Proc. SPIE 8159, 815903 (2011).
[Crossref]

Chuvieco, E.

M. Garcia, S. Popescu, D. Riano, K. Zhao, A. Neuenschwander, M. Agca, and E. Chuvieco, “Characterization of canopy fuels using ICESat/GLAS data,” Remote Sens. Environ. 123, 81–89 (2012).
[Crossref]

Cohen, W. B.

M. A. Lefsky, A. T. Hudak, W. B. Cohen, and S. A. Acker, “Geographic variability in LiDAR predictions of forest stand structure in the Pacific Northwest,” Remote Sens. Environ. 95(4), 532–548 (2005).
[Crossref]

Cook, B.

B. Cook, L. Corp, R. Nelson, E. Middleton, D. Morton, J. McCorkel, J. Masek, K. Ranson, V. Ly, and P. Montesano, “NASA Goddard’s LiDAR, Hyperspectral and Thermal (G-LiHT) airborne imager,” Remote Sens. 5(8), 4045–4066 (2013).
[Crossref]

Cook, W. B.

M. F. Jasinski, J. D. Stoll, W. B. Cook, M. Ondrusek, E. Stengel, and K. Brunt, “Inland and near-shore water profiles derived from the high-altitude multiple Altimeter Beam Experimental LiDAR (MABEL),” J. Coast. Res. 76, 44–55 (2016).
[Crossref]

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, M. S. Moussavi, K. M. Walsh, W. B. Cook, and T. Markus, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Cryosphere. Discuss. 10(4), 1707–1719 (2016).
[Crossref]

R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham, “Profiling sea ice with a multiple altimeter beam experimental LiDAR (MABEL),” J. Atmos. Ocean. Technol. 31(5), 1151–1168 (2014).
[Crossref]

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, M. S. Moussavi, K. M. Walsh, W. B. Cook, and T. Markus, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Eos (Wash. D.C.) 10(4), 1707–1719 (2013).

Coops, N.

L. Cao, N. Coops, T. Hermosilla, J. Innes, J. Dai, and G. She, “Using small-footprint discrete and full-waveform airborne LiDAR metrics to estimate total biomass and biomass components in Subtropical forests,” Remote Sens. 6(8), 7110–7135 (2014).
[Crossref]

Coops, N. C.

M. A. Wulder, J. C. White, R. F. Nelson, E. Næsset, H. O. Ørka, N. C. Coops, T. Hilker, C. W. Bater, and T. Gobakken, “LiDAR sampling for large-area forest characterization: A review,” Remote Sens. Environ. 121, 196–209 (2012).
[Crossref]

Corp, L.

B. Cook, L. Corp, R. Nelson, E. Middleton, D. Morton, J. McCorkel, J. Masek, K. Ranson, V. Ly, and P. Montesano, “NASA Goddard’s LiDAR, Hyperspectral and Thermal (G-LiHT) airborne imager,” Remote Sens. 5(8), 4045–4066 (2013).
[Crossref]

Csatho, B.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. K. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 Laser Altimetry Mission,” Proc. IEEE 98(5), 735–751 (2010).
[Crossref]

Culpepper, C.

U. N. Singh, F. Hovis, R. Burnham, M. Storm, R. Edwards, P. Burns, E. Sullivan, J. Edelman, K. Andes, B. Walters, K. Le, C. Culpepper, J. Rudd, T. Chuang, X. Dang, J. Hwang, and T. Wysocki, “High efficiency laser designs for airborne and space-based LiDAR remote sensing systems,” Proc. SPIE 8159, 815903 (2011).
[Crossref]

Cunningham, G. F.

R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham, “Profiling sea ice with a multiple altimeter beam experimental LiDAR (MABEL),” J. Atmos. Ocean. Technol. 31(5), 1151–1168 (2014).
[Crossref]

Currit, N.

X. Meng, N. Currit, and K. Zhao, “Ground filtering algorithms for airborne LiDAR data: a review of critical issues,” Remote Sens. 2(3), 833–860 (2010).
[Crossref]

Dabney, P. W.

U. C. Herzfeld, T. M. Trantow, D. Harding, and P. W. Dabney, “Surface-height determination of Crevassed Glaciers-mathematical principles of an autoadaptive density-dimension algorithm and validation using ICESat-2 simulator (SIMPL) data,” IEEE Trans. Geosci. Remote Sens. 55(4), 1874–1896 (2017).
[Crossref]

Dai, J.

L. Cao, N. Coops, T. Hermosilla, J. Innes, J. Dai, and G. She, “Using small-footprint discrete and full-waveform airborne LiDAR metrics to estimate total biomass and biomass components in Subtropical forests,” Remote Sens. 6(8), 7110–7135 (2014).
[Crossref]

Dang, X.

U. N. Singh, F. Hovis, R. Burnham, M. Storm, R. Edwards, P. Burns, E. Sullivan, J. Edelman, K. Andes, B. Walters, K. Le, C. Culpepper, J. Rudd, T. Chuang, X. Dang, J. Hwang, and T. Wysocki, “High efficiency laser designs for airborne and space-based LiDAR remote sensing systems,” Proc. SPIE 8159, 815903 (2011).
[Crossref]

DeCola, P.

A. Swatantran, H. Tang, T. Barrett, P. DeCola, and R. Dubayah, “Rapid, high-resolution forest structure and terrain mapping over large areas using single photon LiDAR,” Sci. Rep. 6(1), 28277 (2016).
[Crossref] [PubMed]

H. Tang, A. Swatantran, T. Barrett, P. DeCola, and R. Dubayah, “Voxel-based spatial filtering method for canopy height retrieval from airborne single-photon LiDAR,” Remote Sens. 8(9), 771 (2016).
[Crossref]

Degnan, J.

Q. H. Li, J. Degnan, T. Barrett, and J. Shan, “First evaluation on single photon-sensitive LiDAR data,” Photogramm. Eng. Remote Sensing 82(8), 455–463 (2016).
[Crossref]

Devost, A.

J. D. Jang, V. Payan, A. A. Viau, and A. Devost, “The use of airborne LiDAR for orchard tree inventory,” Int. J. Remote Sens. 29(6), 1767–1780 (2008).
[Crossref]

Dong, P.

S. Nie, C. Wang, P. Dong, X. Xi, S. Luo, and H. Qin, “A revised progressive TIN densification for filtering airborne LiDAR data,” Measurement 104, 70–77 (2017).
[Crossref]

Dubayah, R.

H. Tang, A. Swatantran, T. Barrett, P. DeCola, and R. Dubayah, “Voxel-based spatial filtering method for canopy height retrieval from airborne single-photon LiDAR,” Remote Sens. 8(9), 771 (2016).
[Crossref]

A. Swatantran, H. Tang, T. Barrett, P. DeCola, and R. Dubayah, “Rapid, high-resolution forest structure and terrain mapping over large areas using single photon LiDAR,” Sci. Rep. 6(1), 28277 (2016).
[Crossref] [PubMed]

Dubayah, R. O.

P. M. Montesano, J. Rosette, G. Sun, P. North, R. F. Nelson, R. O. Dubayah, K. J. Ranson, and V. Kharuk, “The uncertainty of biomass estimates from modeled ICESat-2 returns across a boreal forest gradient,” Remote Sens. Environ. 158, 95–109 (2015).
[Crossref]

Edelman, J.

U. N. Singh, F. Hovis, R. Burnham, M. Storm, R. Edwards, P. Burns, E. Sullivan, J. Edelman, K. Andes, B. Walters, K. Le, C. Culpepper, J. Rudd, T. Chuang, X. Dang, J. Hwang, and T. Wysocki, “High efficiency laser designs for airborne and space-based LiDAR remote sensing systems,” Proc. SPIE 8159, 815903 (2011).
[Crossref]

Edwards, R.

U. N. Singh, F. Hovis, R. Burnham, M. Storm, R. Edwards, P. Burns, E. Sullivan, J. Edelman, K. Andes, B. Walters, K. Le, C. Culpepper, J. Rudd, T. Chuang, X. Dang, J. Hwang, and T. Wysocki, “High efficiency laser designs for airborne and space-based LiDAR remote sensing systems,” Proc. SPIE 8159, 815903 (2011).
[Crossref]

El Hajj, M.

I. Fayad, N. Baghdadi, J. S. Bailly, N. Barbier, V. Gond, B. Herault, M. El Hajj, F. Fabre, and J. Perrin, “Regional scale rain-forest height mapping using regression-kriging of spaceborne and airborne LiDAR Data: application on French Guiana,” Remote Sens. 8(3), 240 (2016).
[Crossref]

Fabre, F.

I. Fayad, N. Baghdadi, J. S. Bailly, N. Barbier, V. Gond, B. Herault, M. El Hajj, F. Fabre, and J. Perrin, “Regional scale rain-forest height mapping using regression-kriging of spaceborne and airborne LiDAR Data: application on French Guiana,” Remote Sens. 8(3), 240 (2016).
[Crossref]

Farrell, S.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. K. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Farrell, S. L.

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 Laser Altimetry Mission,” Proc. IEEE 98(5), 735–751 (2010).
[Crossref]

Fayad, I.

I. Fayad, N. Baghdadi, J. S. Bailly, N. Barbier, V. Gond, B. Herault, M. El Hajj, F. Fabre, and J. Perrin, “Regional scale rain-forest height mapping using regression-kriging of spaceborne and airborne LiDAR Data: application on French Guiana,” Remote Sens. 8(3), 240 (2016).
[Crossref]

Fisher, J. B.

M. Simard, N. Pinto, J. B. Fisher, and A. Baccini, “Mapping forest canopy height globally with spaceborne LiDAR,” J. Geophys. Res. 116(G4), G04021 (2011).
[Crossref]

Forfinski-Sarkozi, N.

N. Forfinski-Sarkozi and C. Parrish, “Analysis of MABEL bathymetry in Keweenaw bay and implications for ICESat-2 ATLAS,” Remote Sens. 8(9), 772 (2016).
[Crossref]

Fricker, H.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. K. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Fricker, H. A.

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 Laser Altimetry Mission,” Proc. IEEE 98(5), 735–751 (2010).
[Crossref]

Garcia, M.

M. Garcia, S. Popescu, D. Riano, K. Zhao, A. Neuenschwander, M. Agca, and E. Chuvieco, “Characterization of canopy fuels using ICESat/GLAS data,” Remote Sens. Environ. 123, 81–89 (2012).
[Crossref]

Gardner, A.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. K. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Glenn, N.

J. Murgoitio, R. Shrestha, N. Glenn, and L. Spaete, “Airborne LiDAR and terrestrial laser scanning derived vegetation obstruction factors for visibility models,” Trans. GIS 18(1), 147–160 (2014).
[Crossref]

Glenn, N. F.

N. F. Glenn, A. Neuenschwander, L. A. Vierling, L. Spaete, A. Li, D. J. Shinneman, D. S. Pilliod, R. S. Arkle, and S. K. McIlroy, “Landsat 8 and ICESat-2: performance and potential synergies for quantifying dryland ecosystem vegetation cover and biomass,” Remote Sens. Environ. 185, 233–242 (2016).
[Crossref]

D. R. Streutker and N. F. Glenn, “LiDAR measurement of sagebrush steppe vegetation heights,” Remote Sens. Environ. 102(1–2), 135–145 (2006).
[Crossref]

Glennie, C.

X. Wang, C. Glennie, and Z. G. Pan, “An adaptive ellipsoid searching filter for airborne single-photon LiDAR,” IEEE Trans. Geosci. Remote Sens. 14(8), 1258–1262 (2017).
[Crossref]

X. Wang, Z. Pan, and C. Glennie, “A novel noise filtering model for photon-counting laser altimeter data,” IEEE Trans. Geosci. Remote Sens. 13(7), 947–951 (2016).
[Crossref]

Gobakken, T.

M. A. Wulder, J. C. White, R. F. Nelson, E. Næsset, H. O. Ørka, N. C. Coops, T. Hilker, C. W. Bater, and T. Gobakken, “LiDAR sampling for large-area forest characterization: A review,” Remote Sens. Environ. 121, 196–209 (2012).
[Crossref]

Gond, V.

I. Fayad, N. Baghdadi, J. S. Bailly, N. Barbier, V. Gond, B. Herault, M. El Hajj, F. Fabre, and J. Perrin, “Regional scale rain-forest height mapping using regression-kriging of spaceborne and airborne LiDAR Data: application on French Guiana,” Remote Sens. 8(3), 240 (2016).
[Crossref]

Gong, P.

X. Wang, X. Cheng, P. Gong, H. Huang, Z. Li, and X. Li, “Earth science applications of ICESat/GLAS: a review,” Int. J. Remote Sens. 32(23), 8837–8864 (2011).
[Crossref]

Guo, Q. H.

Y. J. Su, Q. Ma, and Q. H. Guo, “Fine-resolution forest tree height estimation across the Sierra Nevada through the integration of spaceborne LiDAR, airborne LiDAR, and optical imagery,” Int. J. Digit. Earth 10(3), 307–323 (2017).
[Crossref]

Gwenzi, D.

D. Gwenzi, M. A. Lefsky, V. P. Suchdeo, and D. J. Harding, “Prospects of the ICESat-2 laser altimetry mission for savanna ecosystem structural studies based on airborne simulation data,” ISPRS J. Photogramm. 118, 68–82 (2016).
[Crossref]

Hancock, D. W.

R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham, “Profiling sea ice with a multiple altimeter beam experimental LiDAR (MABEL),” J. Atmos. Ocean. Technol. 31(5), 1151–1168 (2014).
[Crossref]

Harding, D.

U. C. Herzfeld, T. M. Trantow, D. Harding, and P. W. Dabney, “Surface-height determination of Crevassed Glaciers-mathematical principles of an autoadaptive density-dimension algorithm and validation using ICESat-2 simulator (SIMPL) data,” IEEE Trans. Geosci. Remote Sens. 55(4), 1874–1896 (2017).
[Crossref]

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. K. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 Laser Altimetry Mission,” Proc. IEEE 98(5), 735–751 (2010).
[Crossref]

Harding, D. J.

D. Gwenzi, M. A. Lefsky, V. P. Suchdeo, and D. J. Harding, “Prospects of the ICESat-2 laser altimetry mission for savanna ecosystem structural studies based on airborne simulation data,” ISPRS J. Photogramm. 118, 68–82 (2016).
[Crossref]

Herault, B.

I. Fayad, N. Baghdadi, J. S. Bailly, N. Barbier, V. Gond, B. Herault, M. El Hajj, F. Fabre, and J. Perrin, “Regional scale rain-forest height mapping using regression-kriging of spaceborne and airborne LiDAR Data: application on French Guiana,” Remote Sens. 8(3), 240 (2016).
[Crossref]

Hermosilla, T.

L. Cao, N. Coops, T. Hermosilla, J. Innes, J. Dai, and G. She, “Using small-footprint discrete and full-waveform airborne LiDAR metrics to estimate total biomass and biomass components in Subtropical forests,” Remote Sens. 6(8), 7110–7135 (2014).
[Crossref]

Herzfeld, U. C.

U. C. Herzfeld, T. M. Trantow, D. Harding, and P. W. Dabney, “Surface-height determination of Crevassed Glaciers-mathematical principles of an autoadaptive density-dimension algorithm and validation using ICESat-2 simulator (SIMPL) data,” IEEE Trans. Geosci. Remote Sens. 55(4), 1874–1896 (2017).
[Crossref]

U. C. Herzfeld, B. W. Mcdonald, B. F. Wallins, T. Markus, T. A. Neumann, and A. Brenner, “An algorithm for detection of ground and canopy cover in micropulse photon-counting LiDAR altimeter data in preparation of the ICESat-2 Mission,” IEEE Trans. Geosci. Remote Sens. 52(4), 2109–2125 (2012).
[Crossref]

Hilker, T.

M. A. Wulder, J. C. White, R. F. Nelson, E. Næsset, H. O. Ørka, N. C. Coops, T. Hilker, C. W. Bater, and T. Gobakken, “LiDAR sampling for large-area forest characterization: A review,” Remote Sens. Environ. 121, 196–209 (2012).
[Crossref]

Hovis, F.

U. N. Singh, F. Hovis, R. Burnham, M. Storm, R. Edwards, P. Burns, E. Sullivan, J. Edelman, K. Andes, B. Walters, K. Le, C. Culpepper, J. Rudd, T. Chuang, X. Dang, J. Hwang, and T. Wysocki, “High efficiency laser designs for airborne and space-based LiDAR remote sensing systems,” Proc. SPIE 8159, 815903 (2011).
[Crossref]

Huang, H.

X. Wang, X. Cheng, P. Gong, H. Huang, Z. Li, and X. Li, “Earth science applications of ICESat/GLAS: a review,” Int. J. Remote Sens. 32(23), 8837–8864 (2011).
[Crossref]

Hudak, A. T.

M. A. Lefsky, A. T. Hudak, W. B. Cohen, and S. A. Acker, “Geographic variability in LiDAR predictions of forest stand structure in the Pacific Northwest,” Remote Sens. Environ. 95(4), 532–548 (2005).
[Crossref]

Hwang, J.

U. N. Singh, F. Hovis, R. Burnham, M. Storm, R. Edwards, P. Burns, E. Sullivan, J. Edelman, K. Andes, B. Walters, K. Le, C. Culpepper, J. Rudd, T. Chuang, X. Dang, J. Hwang, and T. Wysocki, “High efficiency laser designs for airborne and space-based LiDAR remote sensing systems,” Proc. SPIE 8159, 815903 (2011).
[Crossref]

Innes, J.

L. Cao, N. Coops, T. Hermosilla, J. Innes, J. Dai, and G. She, “Using small-footprint discrete and full-waveform airborne LiDAR metrics to estimate total biomass and biomass components in Subtropical forests,” Remote Sens. 6(8), 7110–7135 (2014).
[Crossref]

Jang, J. D.

J. D. Jang, V. Payan, A. A. Viau, and A. Devost, “The use of airborne LiDAR for orchard tree inventory,” Int. J. Remote Sens. 29(6), 1767–1780 (2008).
[Crossref]

Jasinski, M.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. K. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Jasinski, M. F.

M. F. Jasinski, J. D. Stoll, W. B. Cook, M. Ondrusek, E. Stengel, and K. Brunt, “Inland and near-shore water profiles derived from the high-altitude multiple Altimeter Beam Experimental LiDAR (MABEL),” J. Coast. Res. 76, 44–55 (2016).
[Crossref]

Kavanaugh, J. L.

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, M. S. Moussavi, K. M. Walsh, W. B. Cook, and T. Markus, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Cryosphere. Discuss. 10(4), 1707–1719 (2016).
[Crossref]

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, M. S. Moussavi, K. M. Walsh, W. B. Cook, and T. Markus, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Eos (Wash. D.C.) 10(4), 1707–1719 (2013).

Kerekes, J.

J. Zhang and J. Kerekes, “An adaptive density-based model for extracting surface returns from photon-counting laser altimeter data,” IEEE Trans. Geosci. Remote Sens. 12(4), 726–730 (2015).
[Crossref]

Kerekes, J. P.

J. Zhang and J. P. Kerekes, “First-principle simulation of spaceborne micropulse photon-counting LiDAR performance on complex surfaces,” IEEE Trans. Geosci. Remote Sens. 52(10), 6488–6496 (2014).
[Crossref]

Kharuk, V.

P. M. Montesano, J. Rosette, G. Sun, P. North, R. F. Nelson, R. O. Dubayah, K. J. Ranson, and V. Kharuk, “The uncertainty of biomass estimates from modeled ICESat-2 returns across a boreal forest gradient,” Remote Sens. Environ. 158, 95–109 (2015).
[Crossref]

Kwok, R.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. K. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham, “Profiling sea ice with a multiple altimeter beam experimental LiDAR (MABEL),” J. Atmos. Ocean. Technol. 31(5), 1151–1168 (2014).
[Crossref]

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 Laser Altimetry Mission,” Proc. IEEE 98(5), 735–751 (2010).
[Crossref]

Le, K.

U. N. Singh, F. Hovis, R. Burnham, M. Storm, R. Edwards, P. Burns, E. Sullivan, J. Edelman, K. Andes, B. Walters, K. Le, C. Culpepper, J. Rudd, T. Chuang, X. Dang, J. Hwang, and T. Wysocki, “High efficiency laser designs for airborne and space-based LiDAR remote sensing systems,” Proc. SPIE 8159, 815903 (2011).
[Crossref]

Lefsky, M.

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 Laser Altimetry Mission,” Proc. IEEE 98(5), 735–751 (2010).
[Crossref]

Lefsky, M. A.

D. Gwenzi, M. A. Lefsky, V. P. Suchdeo, and D. J. Harding, “Prospects of the ICESat-2 laser altimetry mission for savanna ecosystem structural studies based on airborne simulation data,” ISPRS J. Photogramm. 118, 68–82 (2016).
[Crossref]

M. A. Lefsky, A. T. Hudak, W. B. Cohen, and S. A. Acker, “Geographic variability in LiDAR predictions of forest stand structure in the Pacific Northwest,” Remote Sens. Environ. 95(4), 532–548 (2005).
[Crossref]

Li, A.

N. F. Glenn, A. Neuenschwander, L. A. Vierling, L. Spaete, A. Li, D. J. Shinneman, D. S. Pilliod, R. S. Arkle, and S. K. McIlroy, “Landsat 8 and ICESat-2: performance and potential synergies for quantifying dryland ecosystem vegetation cover and biomass,” Remote Sens. Environ. 185, 233–242 (2016).
[Crossref]

Li, Q. H.

Q. H. Li, J. Degnan, T. Barrett, and J. Shan, “First evaluation on single photon-sensitive LiDAR data,” Photogramm. Eng. Remote Sensing 82(8), 455–463 (2016).
[Crossref]

Li, S.

S. Nie, C. Wang, X. Xi, S. Luo, S. Li, and J. Tian, “Estimating the height of wetland vegetation using airborne discrete-return LiDAR data,” Optik (Stuttg.) 154, 267–274 (2018).
[Crossref]

Li, X.

X. Wang, X. Cheng, P. Gong, H. Huang, Z. Li, and X. Li, “Earth science applications of ICESat/GLAS: a review,” Int. J. Remote Sens. 32(23), 8837–8864 (2011).
[Crossref]

Li, Z.

X. Wang, X. Cheng, P. Gong, H. Huang, Z. Li, and X. Li, “Earth science applications of ICESat/GLAS: a review,” Int. J. Remote Sens. 32(23), 8837–8864 (2011).
[Crossref]

Lubin, D.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. K. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Luo, S.

S. Nie, C. Wang, X. Xi, S. Luo, S. Li, and J. Tian, “Estimating the height of wetland vegetation using airborne discrete-return LiDAR data,” Optik (Stuttg.) 154, 267–274 (2018).
[Crossref]

S. Nie, C. Wang, P. Dong, X. Xi, S. Luo, and H. Qin, “A revised progressive TIN densification for filtering airborne LiDAR data,” Measurement 104, 70–77 (2017).
[Crossref]

Luthcke, S.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. K. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Ly, V.

B. Cook, L. Corp, R. Nelson, E. Middleton, D. Morton, J. McCorkel, J. Masek, K. Ranson, V. Ly, and P. Montesano, “NASA Goddard’s LiDAR, Hyperspectral and Thermal (G-LiHT) airborne imager,” Remote Sens. 5(8), 4045–4066 (2013).
[Crossref]

Ma, Q.

Y. J. Su, Q. Ma, and Q. H. Guo, “Fine-resolution forest tree height estimation across the Sierra Nevada through the integration of spaceborne LiDAR, airborne LiDAR, and optical imagery,” Int. J. Digit. Earth 10(3), 307–323 (2017).
[Crossref]

Magruder, L.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. K. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

A. Neuenschwander and L. Magruder, “The potential impact of vertical sampling uncertainty on ICESat-2/ATLAS terrain and canopy height retrievals for multiple ecosystems,” Remote Sens. 8(12), 1039 (2016).
[Crossref]

Markus, T.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. K. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, M. S. Moussavi, K. M. Walsh, W. B. Cook, and T. Markus, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Cryosphere. Discuss. 10(4), 1707–1719 (2016).
[Crossref]

R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham, “Profiling sea ice with a multiple altimeter beam experimental LiDAR (MABEL),” J. Atmos. Ocean. Technol. 31(5), 1151–1168 (2014).
[Crossref]

M. McGill, T. Markus, V. S. Scott, and T. Neumann, “The multiple altimeter beam experimental LiDAR (MABEL): an airborne simulator for the ICESat-2 mission,” J. Atmos. Ocean. Technol. 30(2), 345–352 (2013).
[Crossref]

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, M. S. Moussavi, K. M. Walsh, W. B. Cook, and T. Markus, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Eos (Wash. D.C.) 10(4), 1707–1719 (2013).

U. C. Herzfeld, B. W. Mcdonald, B. F. Wallins, T. Markus, T. A. Neumann, and A. Brenner, “An algorithm for detection of ground and canopy cover in micropulse photon-counting LiDAR altimeter data in preparation of the ICESat-2 Mission,” IEEE Trans. Geosci. Remote Sens. 52(4), 2109–2125 (2012).
[Crossref]

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 Laser Altimetry Mission,” Proc. IEEE 98(5), 735–751 (2010).
[Crossref]

Marshak, A.

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 Laser Altimetry Mission,” Proc. IEEE 98(5), 735–751 (2010).
[Crossref]

Martino, A.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. K. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Masek, J.

B. Cook, L. Corp, R. Nelson, E. Middleton, D. Morton, J. McCorkel, J. Masek, K. Ranson, V. Ly, and P. Montesano, “NASA Goddard’s LiDAR, Hyperspectral and Thermal (G-LiHT) airborne imager,” Remote Sens. 5(8), 4045–4066 (2013).
[Crossref]

McCorkel, J.

B. Cook, L. Corp, R. Nelson, E. Middleton, D. Morton, J. McCorkel, J. Masek, K. Ranson, V. Ly, and P. Montesano, “NASA Goddard’s LiDAR, Hyperspectral and Thermal (G-LiHT) airborne imager,” Remote Sens. 5(8), 4045–4066 (2013).
[Crossref]

Mcdonald, B. W.

U. C. Herzfeld, B. W. Mcdonald, B. F. Wallins, T. Markus, T. A. Neumann, and A. Brenner, “An algorithm for detection of ground and canopy cover in micropulse photon-counting LiDAR altimeter data in preparation of the ICESat-2 Mission,” IEEE Trans. Geosci. Remote Sens. 52(4), 2109–2125 (2012).
[Crossref]

McGill, M.

M. McGill, T. Markus, V. S. Scott, and T. Neumann, “The multiple altimeter beam experimental LiDAR (MABEL): an airborne simulator for the ICESat-2 mission,” J. Atmos. Ocean. Technol. 30(2), 345–352 (2013).
[Crossref]

McIlroy, S. K.

N. F. Glenn, A. Neuenschwander, L. A. Vierling, L. Spaete, A. Li, D. J. Shinneman, D. S. Pilliod, R. S. Arkle, and S. K. McIlroy, “Landsat 8 and ICESat-2: performance and potential synergies for quantifying dryland ecosystem vegetation cover and biomass,” Remote Sens. Environ. 185, 233–242 (2016).
[Crossref]

McLennan, D. D.

R. Meynart, D. D. McLennan, S. P. Neeck, and H. Shimoda, ““Ice, Clouds and Land Elevation (ICESat-2) Mission,” Proceedings Volume 7826,” Sensors, Systems, and Next-Generation Satellites 14, 782610 (2010).

Meng, X.

X. Meng, N. Currit, and K. Zhao, “Ground filtering algorithms for airborne LiDAR data: a review of critical issues,” Remote Sens. 2(3), 833–860 (2010).
[Crossref]

Meynart, R.

R. Meynart, D. D. McLennan, S. P. Neeck, and H. Shimoda, ““Ice, Clouds and Land Elevation (ICESat-2) Mission,” Proceedings Volume 7826,” Sensors, Systems, and Next-Generation Satellites 14, 782610 (2010).

Middleton, E.

B. Cook, L. Corp, R. Nelson, E. Middleton, D. Morton, J. McCorkel, J. Masek, K. Ranson, V. Ly, and P. Montesano, “NASA Goddard’s LiDAR, Hyperspectral and Thermal (G-LiHT) airborne imager,” Remote Sens. 5(8), 4045–4066 (2013).
[Crossref]

Montesano, P.

B. Cook, L. Corp, R. Nelson, E. Middleton, D. Morton, J. McCorkel, J. Masek, K. Ranson, V. Ly, and P. Montesano, “NASA Goddard’s LiDAR, Hyperspectral and Thermal (G-LiHT) airborne imager,” Remote Sens. 5(8), 4045–4066 (2013).
[Crossref]

Montesano, P. M.

P. M. Montesano, J. Rosette, G. Sun, P. North, R. F. Nelson, R. O. Dubayah, K. J. Ranson, and V. Kharuk, “The uncertainty of biomass estimates from modeled ICESat-2 returns across a boreal forest gradient,” Remote Sens. Environ. 158, 95–109 (2015).
[Crossref]

Morison, J.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. K. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham, “Profiling sea ice with a multiple altimeter beam experimental LiDAR (MABEL),” J. Atmos. Ocean. Technol. 31(5), 1151–1168 (2014).
[Crossref]

Morton, D.

B. Cook, L. Corp, R. Nelson, E. Middleton, D. Morton, J. McCorkel, J. Masek, K. Ranson, V. Ly, and P. Montesano, “NASA Goddard’s LiDAR, Hyperspectral and Thermal (G-LiHT) airborne imager,” Remote Sens. 5(8), 4045–4066 (2013).
[Crossref]

Moussavi, M. S.

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, M. S. Moussavi, K. M. Walsh, W. B. Cook, and T. Markus, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Cryosphere. Discuss. 10(4), 1707–1719 (2016).
[Crossref]

M. S. Moussavi, W. Abdalati, T. Scambos, and A. Neuenschwander, “Applicability of an automatic surface detection approach to micro-pulse photon-counting LiDAR altimetry data: implications for canopy height retrieval from future ICESat-2 data,” Int. J. Remote Sens. 35(13), 5263–5279 (2014).
[Crossref]

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, M. S. Moussavi, K. M. Walsh, W. B. Cook, and T. Markus, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Eos (Wash. D.C.) 10(4), 1707–1719 (2013).

Murgoitio, J.

J. Murgoitio, R. Shrestha, N. Glenn, and L. Spaete, “Airborne LiDAR and terrestrial laser scanning derived vegetation obstruction factors for visibility models,” Trans. GIS 18(1), 147–160 (2014).
[Crossref]

Næsset, E.

M. A. Wulder, J. C. White, R. F. Nelson, E. Næsset, H. O. Ørka, N. C. Coops, T. Hilker, C. W. Bater, and T. Gobakken, “LiDAR sampling for large-area forest characterization: A review,” Remote Sens. Environ. 121, 196–209 (2012).
[Crossref]

Nayegandhi, A.

J. M. Stoker, Q. A. Abdullah, A. Nayegandhi, and J. Winehouse, “Evaluation of single photon and Geiger mode LiDAR for the 3D elevation program,” Remote Sens. 8(9), 767 (2016).
[Crossref]

Neeck, S. P.

R. Meynart, D. D. McLennan, S. P. Neeck, and H. Shimoda, ““Ice, Clouds and Land Elevation (ICESat-2) Mission,” Proceedings Volume 7826,” Sensors, Systems, and Next-Generation Satellites 14, 782610 (2010).

Nelson, R.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. K. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

B. Cook, L. Corp, R. Nelson, E. Middleton, D. Morton, J. McCorkel, J. Masek, K. Ranson, V. Ly, and P. Montesano, “NASA Goddard’s LiDAR, Hyperspectral and Thermal (G-LiHT) airborne imager,” Remote Sens. 5(8), 4045–4066 (2013).
[Crossref]

Nelson, R. F.

P. M. Montesano, J. Rosette, G. Sun, P. North, R. F. Nelson, R. O. Dubayah, K. J. Ranson, and V. Kharuk, “The uncertainty of biomass estimates from modeled ICESat-2 returns across a boreal forest gradient,” Remote Sens. Environ. 158, 95–109 (2015).
[Crossref]

M. A. Wulder, J. C. White, R. F. Nelson, E. Næsset, H. O. Ørka, N. C. Coops, T. Hilker, C. W. Bater, and T. Gobakken, “LiDAR sampling for large-area forest characterization: A review,” Remote Sens. Environ. 121, 196–209 (2012).
[Crossref]

Neuenschwander, A.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. K. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

A. Neuenschwander and L. Magruder, “The potential impact of vertical sampling uncertainty on ICESat-2/ATLAS terrain and canopy height retrievals for multiple ecosystems,” Remote Sens. 8(12), 1039 (2016).
[Crossref]

N. F. Glenn, A. Neuenschwander, L. A. Vierling, L. Spaete, A. Li, D. J. Shinneman, D. S. Pilliod, R. S. Arkle, and S. K. McIlroy, “Landsat 8 and ICESat-2: performance and potential synergies for quantifying dryland ecosystem vegetation cover and biomass,” Remote Sens. Environ. 185, 233–242 (2016).
[Crossref]

M. S. Moussavi, W. Abdalati, T. Scambos, and A. Neuenschwander, “Applicability of an automatic surface detection approach to micro-pulse photon-counting LiDAR altimetry data: implications for canopy height retrieval from future ICESat-2 data,” Int. J. Remote Sens. 35(13), 5263–5279 (2014).
[Crossref]

M. Garcia, S. Popescu, D. Riano, K. Zhao, A. Neuenschwander, M. Agca, and E. Chuvieco, “Characterization of canopy fuels using ICESat/GLAS data,” Remote Sens. Environ. 123, 81–89 (2012).
[Crossref]

Neumann, T.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. K. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

M. McGill, T. Markus, V. S. Scott, and T. Neumann, “The multiple altimeter beam experimental LiDAR (MABEL): an airborne simulator for the ICESat-2 mission,” J. Atmos. Ocean. Technol. 30(2), 345–352 (2013).
[Crossref]

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 Laser Altimetry Mission,” Proc. IEEE 98(5), 735–751 (2010).
[Crossref]

Neumann, T. A.

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, M. S. Moussavi, K. M. Walsh, W. B. Cook, and T. Markus, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Cryosphere. Discuss. 10(4), 1707–1719 (2016).
[Crossref]

R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham, “Profiling sea ice with a multiple altimeter beam experimental LiDAR (MABEL),” J. Atmos. Ocean. Technol. 31(5), 1151–1168 (2014).
[Crossref]

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, M. S. Moussavi, K. M. Walsh, W. B. Cook, and T. Markus, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Eos (Wash. D.C.) 10(4), 1707–1719 (2013).

U. C. Herzfeld, B. W. Mcdonald, B. F. Wallins, T. Markus, T. A. Neumann, and A. Brenner, “An algorithm for detection of ground and canopy cover in micropulse photon-counting LiDAR altimeter data in preparation of the ICESat-2 Mission,” IEEE Trans. Geosci. Remote Sens. 52(4), 2109–2125 (2012).
[Crossref]

Nie, S.

S. Nie, C. Wang, X. Xi, S. Luo, S. Li, and J. Tian, “Estimating the height of wetland vegetation using airborne discrete-return LiDAR data,” Optik (Stuttg.) 154, 267–274 (2018).
[Crossref]

S. Nie, C. Wang, P. Dong, X. Xi, S. Luo, and H. Qin, “A revised progressive TIN densification for filtering airborne LiDAR data,” Measurement 104, 70–77 (2017).
[Crossref]

S. Nie, C. Wang, H. Zeng, X. Xi, and S. Xia, “A revised terrain correction method for forest canopy height estimation using ICESat/GLAS data,” ISPRS J. Photogramm. 108, 183–190 (2015).
[Crossref]

North, P.

P. M. Montesano, J. Rosette, G. Sun, P. North, R. F. Nelson, R. O. Dubayah, K. J. Ranson, and V. Kharuk, “The uncertainty of biomass estimates from modeled ICESat-2 returns across a boreal forest gradient,” Remote Sens. Environ. 158, 95–109 (2015).
[Crossref]

Ondrusek, M.

M. F. Jasinski, J. D. Stoll, W. B. Cook, M. Ondrusek, E. Stengel, and K. Brunt, “Inland and near-shore water profiles derived from the high-altitude multiple Altimeter Beam Experimental LiDAR (MABEL),” J. Coast. Res. 76, 44–55 (2016).
[Crossref]

Ørka, H. O.

M. A. Wulder, J. C. White, R. F. Nelson, E. Næsset, H. O. Ørka, N. C. Coops, T. Hilker, C. W. Bater, and T. Gobakken, “LiDAR sampling for large-area forest characterization: A review,” Remote Sens. Environ. 121, 196–209 (2012).
[Crossref]

Palm, S.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. K. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 Laser Altimetry Mission,” Proc. IEEE 98(5), 735–751 (2010).
[Crossref]

Palm, S. P.

R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham, “Profiling sea ice with a multiple altimeter beam experimental LiDAR (MABEL),” J. Atmos. Ocean. Technol. 31(5), 1151–1168 (2014).
[Crossref]

Pan, Z.

X. Wang, Z. Pan, and C. Glennie, “A novel noise filtering model for photon-counting laser altimeter data,” IEEE Trans. Geosci. Remote Sens. 13(7), 947–951 (2016).
[Crossref]

Pan, Z. G.

X. Wang, C. Glennie, and Z. G. Pan, “An adaptive ellipsoid searching filter for airborne single-photon LiDAR,” IEEE Trans. Geosci. Remote Sens. 14(8), 1258–1262 (2017).
[Crossref]

Parrish, C.

N. Forfinski-Sarkozi and C. Parrish, “Analysis of MABEL bathymetry in Keweenaw bay and implications for ICESat-2 ATLAS,” Remote Sens. 8(9), 772 (2016).
[Crossref]

Payan, V.

J. D. Jang, V. Payan, A. A. Viau, and A. Devost, “The use of airborne LiDAR for orchard tree inventory,” Int. J. Remote Sens. 29(6), 1767–1780 (2008).
[Crossref]

Perrin, J.

I. Fayad, N. Baghdadi, J. S. Bailly, N. Barbier, V. Gond, B. Herault, M. El Hajj, F. Fabre, and J. Perrin, “Regional scale rain-forest height mapping using regression-kriging of spaceborne and airborne LiDAR Data: application on French Guiana,” Remote Sens. 8(3), 240 (2016).
[Crossref]

Pilliod, D. S.

N. F. Glenn, A. Neuenschwander, L. A. Vierling, L. Spaete, A. Li, D. J. Shinneman, D. S. Pilliod, R. S. Arkle, and S. K. McIlroy, “Landsat 8 and ICESat-2: performance and potential synergies for quantifying dryland ecosystem vegetation cover and biomass,” Remote Sens. Environ. 185, 233–242 (2016).
[Crossref]

Pinto, N.

M. Simard, N. Pinto, J. B. Fisher, and A. Baccini, “Mapping forest canopy height globally with spaceborne LiDAR,” J. Geophys. Res. 116(G4), G04021 (2011).
[Crossref]

Pirotti, F.

F. Pirotti, ““Analysis of full-waveform LiDAR data for forestry applications: a review of investigations and methods,” iForest – Biogeosci,” Forestry 4(3), 100–106 (2011).

Popescu, S.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. K. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

M. Garcia, S. Popescu, D. Riano, K. Zhao, A. Neuenschwander, M. Agca, and E. Chuvieco, “Characterization of canopy fuels using ICESat/GLAS data,” Remote Sens. Environ. 123, 81–89 (2012).
[Crossref]

Qin, H.

S. Nie, C. Wang, P. Dong, X. Xi, S. Luo, and H. Qin, “A revised progressive TIN densification for filtering airborne LiDAR data,” Measurement 104, 70–77 (2017).
[Crossref]

Ranson, K.

B. Cook, L. Corp, R. Nelson, E. Middleton, D. Morton, J. McCorkel, J. Masek, K. Ranson, V. Ly, and P. Montesano, “NASA Goddard’s LiDAR, Hyperspectral and Thermal (G-LiHT) airborne imager,” Remote Sens. 5(8), 4045–4066 (2013).
[Crossref]

Ranson, K. J.

P. M. Montesano, J. Rosette, G. Sun, P. North, R. F. Nelson, R. O. Dubayah, K. J. Ranson, and V. Kharuk, “The uncertainty of biomass estimates from modeled ICESat-2 returns across a boreal forest gradient,” Remote Sens. Environ. 158, 95–109 (2015).
[Crossref]

Riano, D.

M. Garcia, S. Popescu, D. Riano, K. Zhao, A. Neuenschwander, M. Agca, and E. Chuvieco, “Characterization of canopy fuels using ICESat/GLAS data,” Remote Sens. Environ. 123, 81–89 (2012).
[Crossref]

Rosette, J.

P. M. Montesano, J. Rosette, G. Sun, P. North, R. F. Nelson, R. O. Dubayah, K. J. Ranson, and V. Kharuk, “The uncertainty of biomass estimates from modeled ICESat-2 returns across a boreal forest gradient,” Remote Sens. Environ. 158, 95–109 (2015).
[Crossref]

Rudd, J.

U. N. Singh, F. Hovis, R. Burnham, M. Storm, R. Edwards, P. Burns, E. Sullivan, J. Edelman, K. Andes, B. Walters, K. Le, C. Culpepper, J. Rudd, T. Chuang, X. Dang, J. Hwang, and T. Wysocki, “High efficiency laser designs for airborne and space-based LiDAR remote sensing systems,” Proc. SPIE 8159, 815903 (2011).
[Crossref]

Scambos, T.

M. S. Moussavi, W. Abdalati, T. Scambos, and A. Neuenschwander, “Applicability of an automatic surface detection approach to micro-pulse photon-counting LiDAR altimetry data: implications for canopy height retrieval from future ICESat-2 data,” Int. J. Remote Sens. 35(13), 5263–5279 (2014).
[Crossref]

Schutz, B.

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 Laser Altimetry Mission,” Proc. IEEE 98(5), 735–751 (2010).
[Crossref]

Schutz, B. E.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. K. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Scott, V. S.

M. McGill, T. Markus, V. S. Scott, and T. Neumann, “The multiple altimeter beam experimental LiDAR (MABEL): an airborne simulator for the ICESat-2 mission,” J. Atmos. Ocean. Technol. 30(2), 345–352 (2013).
[Crossref]

Shan, J.

Q. H. Li, J. Degnan, T. Barrett, and J. Shan, “First evaluation on single photon-sensitive LiDAR data,” Photogramm. Eng. Remote Sensing 82(8), 455–463 (2016).
[Crossref]

She, G.

L. Cao, N. Coops, T. Hermosilla, J. Innes, J. Dai, and G. She, “Using small-footprint discrete and full-waveform airborne LiDAR metrics to estimate total biomass and biomass components in Subtropical forests,” Remote Sens. 6(8), 7110–7135 (2014).
[Crossref]

Shimoda, H.

R. Meynart, D. D. McLennan, S. P. Neeck, and H. Shimoda, ““Ice, Clouds and Land Elevation (ICESat-2) Mission,” Proceedings Volume 7826,” Sensors, Systems, and Next-Generation Satellites 14, 782610 (2010).

Shinneman, D. J.

N. F. Glenn, A. Neuenschwander, L. A. Vierling, L. Spaete, A. Li, D. J. Shinneman, D. S. Pilliod, R. S. Arkle, and S. K. McIlroy, “Landsat 8 and ICESat-2: performance and potential synergies for quantifying dryland ecosystem vegetation cover and biomass,” Remote Sens. Environ. 185, 233–242 (2016).
[Crossref]

Shrestha, R.

J. Murgoitio, R. Shrestha, N. Glenn, and L. Spaete, “Airborne LiDAR and terrestrial laser scanning derived vegetation obstruction factors for visibility models,” Trans. GIS 18(1), 147–160 (2014).
[Crossref]

Shum, C. K.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. K. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Simard, M.

M. Simard, N. Pinto, J. B. Fisher, and A. Baccini, “Mapping forest canopy height globally with spaceborne LiDAR,” J. Geophys. Res. 116(G4), G04021 (2011).
[Crossref]

Singh, U. N.

U. N. Singh, F. Hovis, R. Burnham, M. Storm, R. Edwards, P. Burns, E. Sullivan, J. Edelman, K. Andes, B. Walters, K. Le, C. Culpepper, J. Rudd, T. Chuang, X. Dang, J. Hwang, and T. Wysocki, “High efficiency laser designs for airborne and space-based LiDAR remote sensing systems,” Proc. SPIE 8159, 815903 (2011).
[Crossref]

Sithole, G.

G. Sithole and G. Vosselman, “Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds,” ISPRS J. Photogramm. 59(1–2), 85–101 (2004).
[Crossref]

Smith, B.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. K. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 Laser Altimetry Mission,” Proc. IEEE 98(5), 735–751 (2010).
[Crossref]

Spaete, L.

N. F. Glenn, A. Neuenschwander, L. A. Vierling, L. Spaete, A. Li, D. J. Shinneman, D. S. Pilliod, R. S. Arkle, and S. K. McIlroy, “Landsat 8 and ICESat-2: performance and potential synergies for quantifying dryland ecosystem vegetation cover and biomass,” Remote Sens. Environ. 185, 233–242 (2016).
[Crossref]

J. Murgoitio, R. Shrestha, N. Glenn, and L. Spaete, “Airborne LiDAR and terrestrial laser scanning derived vegetation obstruction factors for visibility models,” Trans. GIS 18(1), 147–160 (2014).
[Crossref]

Spinhirne, J.

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 Laser Altimetry Mission,” Proc. IEEE 98(5), 735–751 (2010).
[Crossref]

Stengel, E.

M. F. Jasinski, J. D. Stoll, W. B. Cook, M. Ondrusek, E. Stengel, and K. Brunt, “Inland and near-shore water profiles derived from the high-altitude multiple Altimeter Beam Experimental LiDAR (MABEL),” J. Coast. Res. 76, 44–55 (2016).
[Crossref]

Stoker, J. M.

J. M. Stoker, Q. A. Abdullah, A. Nayegandhi, and J. Winehouse, “Evaluation of single photon and Geiger mode LiDAR for the 3D elevation program,” Remote Sens. 8(9), 767 (2016).
[Crossref]

Stoll, J. D.

M. F. Jasinski, J. D. Stoll, W. B. Cook, M. Ondrusek, E. Stengel, and K. Brunt, “Inland and near-shore water profiles derived from the high-altitude multiple Altimeter Beam Experimental LiDAR (MABEL),” J. Coast. Res. 76, 44–55 (2016).
[Crossref]

Storm, M.

U. N. Singh, F. Hovis, R. Burnham, M. Storm, R. Edwards, P. Burns, E. Sullivan, J. Edelman, K. Andes, B. Walters, K. Le, C. Culpepper, J. Rudd, T. Chuang, X. Dang, J. Hwang, and T. Wysocki, “High efficiency laser designs for airborne and space-based LiDAR remote sensing systems,” Proc. SPIE 8159, 815903 (2011).
[Crossref]

Streutker, D. R.

D. R. Streutker and N. F. Glenn, “LiDAR measurement of sagebrush steppe vegetation heights,” Remote Sens. Environ. 102(1–2), 135–145 (2006).
[Crossref]

Su, Y. J.

Y. J. Su, Q. Ma, and Q. H. Guo, “Fine-resolution forest tree height estimation across the Sierra Nevada through the integration of spaceborne LiDAR, airborne LiDAR, and optical imagery,” Int. J. Digit. Earth 10(3), 307–323 (2017).
[Crossref]

Suchdeo, V. P.

D. Gwenzi, M. A. Lefsky, V. P. Suchdeo, and D. J. Harding, “Prospects of the ICESat-2 laser altimetry mission for savanna ecosystem structural studies based on airborne simulation data,” ISPRS J. Photogramm. 118, 68–82 (2016).
[Crossref]

Sullivan, E.

U. N. Singh, F. Hovis, R. Burnham, M. Storm, R. Edwards, P. Burns, E. Sullivan, J. Edelman, K. Andes, B. Walters, K. Le, C. Culpepper, J. Rudd, T. Chuang, X. Dang, J. Hwang, and T. Wysocki, “High efficiency laser designs for airborne and space-based LiDAR remote sensing systems,” Proc. SPIE 8159, 815903 (2011).
[Crossref]

Sun, G.

P. M. Montesano, J. Rosette, G. Sun, P. North, R. F. Nelson, R. O. Dubayah, K. J. Ranson, and V. Kharuk, “The uncertainty of biomass estimates from modeled ICESat-2 returns across a boreal forest gradient,” Remote Sens. Environ. 158, 95–109 (2015).
[Crossref]

Swatantran, A.

H. Tang, A. Swatantran, T. Barrett, P. DeCola, and R. Dubayah, “Voxel-based spatial filtering method for canopy height retrieval from airborne single-photon LiDAR,” Remote Sens. 8(9), 771 (2016).
[Crossref]

A. Swatantran, H. Tang, T. Barrett, P. DeCola, and R. Dubayah, “Rapid, high-resolution forest structure and terrain mapping over large areas using single photon LiDAR,” Sci. Rep. 6(1), 28277 (2016).
[Crossref] [PubMed]

Tang, H.

A. Swatantran, H. Tang, T. Barrett, P. DeCola, and R. Dubayah, “Rapid, high-resolution forest structure and terrain mapping over large areas using single photon LiDAR,” Sci. Rep. 6(1), 28277 (2016).
[Crossref] [PubMed]

H. Tang, A. Swatantran, T. Barrett, P. DeCola, and R. Dubayah, “Voxel-based spatial filtering method for canopy height retrieval from airborne single-photon LiDAR,” Remote Sens. 8(9), 771 (2016).
[Crossref]

Tian, J.

S. Nie, C. Wang, X. Xi, S. Luo, S. Li, and J. Tian, “Estimating the height of wetland vegetation using airborne discrete-return LiDAR data,” Optik (Stuttg.) 154, 267–274 (2018).
[Crossref]

Trantow, T. M.

U. C. Herzfeld, T. M. Trantow, D. Harding, and P. W. Dabney, “Surface-height determination of Crevassed Glaciers-mathematical principles of an autoadaptive density-dimension algorithm and validation using ICESat-2 simulator (SIMPL) data,” IEEE Trans. Geosci. Remote Sens. 55(4), 1874–1896 (2017).
[Crossref]

Viau, A. A.

J. D. Jang, V. Payan, A. A. Viau, and A. Devost, “The use of airborne LiDAR for orchard tree inventory,” Int. J. Remote Sens. 29(6), 1767–1780 (2008).
[Crossref]

Vierling, L. A.

N. F. Glenn, A. Neuenschwander, L. A. Vierling, L. Spaete, A. Li, D. J. Shinneman, D. S. Pilliod, R. S. Arkle, and S. K. McIlroy, “Landsat 8 and ICESat-2: performance and potential synergies for quantifying dryland ecosystem vegetation cover and biomass,” Remote Sens. Environ. 185, 233–242 (2016).
[Crossref]

Vosselman, G.

G. Sithole and G. Vosselman, “Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds,” ISPRS J. Photogramm. 59(1–2), 85–101 (2004).
[Crossref]

Wallins, B. F.

U. C. Herzfeld, B. W. Mcdonald, B. F. Wallins, T. Markus, T. A. Neumann, and A. Brenner, “An algorithm for detection of ground and canopy cover in micropulse photon-counting LiDAR altimeter data in preparation of the ICESat-2 Mission,” IEEE Trans. Geosci. Remote Sens. 52(4), 2109–2125 (2012).
[Crossref]

Walsh, K. M.

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, M. S. Moussavi, K. M. Walsh, W. B. Cook, and T. Markus, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Cryosphere. Discuss. 10(4), 1707–1719 (2016).
[Crossref]

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, M. S. Moussavi, K. M. Walsh, W. B. Cook, and T. Markus, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Eos (Wash. D.C.) 10(4), 1707–1719 (2013).

Walters, B.

U. N. Singh, F. Hovis, R. Burnham, M. Storm, R. Edwards, P. Burns, E. Sullivan, J. Edelman, K. Andes, B. Walters, K. Le, C. Culpepper, J. Rudd, T. Chuang, X. Dang, J. Hwang, and T. Wysocki, “High efficiency laser designs for airborne and space-based LiDAR remote sensing systems,” Proc. SPIE 8159, 815903 (2011).
[Crossref]

Wang, C.

S. Nie, C. Wang, X. Xi, S. Luo, S. Li, and J. Tian, “Estimating the height of wetland vegetation using airborne discrete-return LiDAR data,” Optik (Stuttg.) 154, 267–274 (2018).
[Crossref]

S. Nie, C. Wang, P. Dong, X. Xi, S. Luo, and H. Qin, “A revised progressive TIN densification for filtering airborne LiDAR data,” Measurement 104, 70–77 (2017).
[Crossref]

S. Nie, C. Wang, H. Zeng, X. Xi, and S. Xia, “A revised terrain correction method for forest canopy height estimation using ICESat/GLAS data,” ISPRS J. Photogramm. 108, 183–190 (2015).
[Crossref]

Wang, X.

X. Wang, C. Glennie, and Z. G. Pan, “An adaptive ellipsoid searching filter for airborne single-photon LiDAR,” IEEE Trans. Geosci. Remote Sens. 14(8), 1258–1262 (2017).
[Crossref]

X. Wang, Z. Pan, and C. Glennie, “A novel noise filtering model for photon-counting laser altimeter data,” IEEE Trans. Geosci. Remote Sens. 13(7), 947–951 (2016).
[Crossref]

X. Wang, X. Cheng, P. Gong, H. Huang, Z. Li, and X. Li, “Earth science applications of ICESat/GLAS: a review,” Int. J. Remote Sens. 32(23), 8837–8864 (2011).
[Crossref]

Webb, C.

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 Laser Altimetry Mission,” Proc. IEEE 98(5), 735–751 (2010).
[Crossref]

White, J. C.

M. A. Wulder, J. C. White, R. F. Nelson, E. Næsset, H. O. Ørka, N. C. Coops, T. Hilker, C. W. Bater, and T. Gobakken, “LiDAR sampling for large-area forest characterization: A review,” Remote Sens. Environ. 121, 196–209 (2012).
[Crossref]

Winehouse, J.

J. M. Stoker, Q. A. Abdullah, A. Nayegandhi, and J. Winehouse, “Evaluation of single photon and Geiger mode LiDAR for the 3D elevation program,” Remote Sens. 8(9), 767 (2016).
[Crossref]

Wulder, M. A.

M. A. Wulder, J. C. White, R. F. Nelson, E. Næsset, H. O. Ørka, N. C. Coops, T. Hilker, C. W. Bater, and T. Gobakken, “LiDAR sampling for large-area forest characterization: A review,” Remote Sens. Environ. 121, 196–209 (2012).
[Crossref]

Wysocki, T.

U. N. Singh, F. Hovis, R. Burnham, M. Storm, R. Edwards, P. Burns, E. Sullivan, J. Edelman, K. Andes, B. Walters, K. Le, C. Culpepper, J. Rudd, T. Chuang, X. Dang, J. Hwang, and T. Wysocki, “High efficiency laser designs for airborne and space-based LiDAR remote sensing systems,” Proc. SPIE 8159, 815903 (2011).
[Crossref]

Xi, X.

S. Nie, C. Wang, X. Xi, S. Luo, S. Li, and J. Tian, “Estimating the height of wetland vegetation using airborne discrete-return LiDAR data,” Optik (Stuttg.) 154, 267–274 (2018).
[Crossref]

S. Nie, C. Wang, P. Dong, X. Xi, S. Luo, and H. Qin, “A revised progressive TIN densification for filtering airborne LiDAR data,” Measurement 104, 70–77 (2017).
[Crossref]

S. Nie, C. Wang, H. Zeng, X. Xi, and S. Xia, “A revised terrain correction method for forest canopy height estimation using ICESat/GLAS data,” ISPRS J. Photogramm. 108, 183–190 (2015).
[Crossref]

Xia, S.

S. Nie, C. Wang, H. Zeng, X. Xi, and S. Xia, “A revised terrain correction method for forest canopy height estimation using ICESat/GLAS data,” ISPRS J. Photogramm. 108, 183–190 (2015).
[Crossref]

Yang, Y.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. K. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Zeng, H.

S. Nie, C. Wang, H. Zeng, X. Xi, and S. Xia, “A revised terrain correction method for forest canopy height estimation using ICESat/GLAS data,” ISPRS J. Photogramm. 108, 183–190 (2015).
[Crossref]

Zhang, J.

J. Zhang and J. Kerekes, “An adaptive density-based model for extracting surface returns from photon-counting laser altimeter data,” IEEE Trans. Geosci. Remote Sens. 12(4), 726–730 (2015).
[Crossref]

J. Zhang and J. P. Kerekes, “First-principle simulation of spaceborne micropulse photon-counting LiDAR performance on complex surfaces,” IEEE Trans. Geosci. Remote Sens. 52(10), 6488–6496 (2014).
[Crossref]

Zhao, K.

M. Garcia, S. Popescu, D. Riano, K. Zhao, A. Neuenschwander, M. Agca, and E. Chuvieco, “Characterization of canopy fuels using ICESat/GLAS data,” Remote Sens. Environ. 123, 81–89 (2012).
[Crossref]

X. Meng, N. Currit, and K. Zhao, “Ground filtering algorithms for airborne LiDAR data: a review of critical issues,” Remote Sens. 2(3), 833–860 (2010).
[Crossref]

Zwally, H. J.

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 Laser Altimetry Mission,” Proc. IEEE 98(5), 735–751 (2010).
[Crossref]

Zwally, J.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. K. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Cryosphere. Discuss. (1)

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, M. S. Moussavi, K. M. Walsh, W. B. Cook, and T. Markus, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Cryosphere. Discuss. 10(4), 1707–1719 (2016).
[Crossref]

Eos (Wash. D.C.) (1)

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, M. S. Moussavi, K. M. Walsh, W. B. Cook, and T. Markus, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Eos (Wash. D.C.) 10(4), 1707–1719 (2013).

Forestry (1)

F. Pirotti, ““Analysis of full-waveform LiDAR data for forestry applications: a review of investigations and methods,” iForest – Biogeosci,” Forestry 4(3), 100–106 (2011).

IEEE Trans. Geosci. Remote Sens. (6)

J. Zhang and J. P. Kerekes, “First-principle simulation of spaceborne micropulse photon-counting LiDAR performance on complex surfaces,” IEEE Trans. Geosci. Remote Sens. 52(10), 6488–6496 (2014).
[Crossref]

J. Zhang and J. Kerekes, “An adaptive density-based model for extracting surface returns from photon-counting laser altimeter data,” IEEE Trans. Geosci. Remote Sens. 12(4), 726–730 (2015).
[Crossref]

X. Wang, Z. Pan, and C. Glennie, “A novel noise filtering model for photon-counting laser altimeter data,” IEEE Trans. Geosci. Remote Sens. 13(7), 947–951 (2016).
[Crossref]

U. C. Herzfeld, B. W. Mcdonald, B. F. Wallins, T. Markus, T. A. Neumann, and A. Brenner, “An algorithm for detection of ground and canopy cover in micropulse photon-counting LiDAR altimeter data in preparation of the ICESat-2 Mission,” IEEE Trans. Geosci. Remote Sens. 52(4), 2109–2125 (2012).
[Crossref]

U. C. Herzfeld, T. M. Trantow, D. Harding, and P. W. Dabney, “Surface-height determination of Crevassed Glaciers-mathematical principles of an autoadaptive density-dimension algorithm and validation using ICESat-2 simulator (SIMPL) data,” IEEE Trans. Geosci. Remote Sens. 55(4), 1874–1896 (2017).
[Crossref]

X. Wang, C. Glennie, and Z. G. Pan, “An adaptive ellipsoid searching filter for airborne single-photon LiDAR,” IEEE Trans. Geosci. Remote Sens. 14(8), 1258–1262 (2017).
[Crossref]

Int. J. Digit. Earth (1)

Y. J. Su, Q. Ma, and Q. H. Guo, “Fine-resolution forest tree height estimation across the Sierra Nevada through the integration of spaceborne LiDAR, airborne LiDAR, and optical imagery,” Int. J. Digit. Earth 10(3), 307–323 (2017).
[Crossref]

Int. J. Remote Sens. (3)

X. Wang, X. Cheng, P. Gong, H. Huang, Z. Li, and X. Li, “Earth science applications of ICESat/GLAS: a review,” Int. J. Remote Sens. 32(23), 8837–8864 (2011).
[Crossref]

J. D. Jang, V. Payan, A. A. Viau, and A. Devost, “The use of airborne LiDAR for orchard tree inventory,” Int. J. Remote Sens. 29(6), 1767–1780 (2008).
[Crossref]

M. S. Moussavi, W. Abdalati, T. Scambos, and A. Neuenschwander, “Applicability of an automatic surface detection approach to micro-pulse photon-counting LiDAR altimetry data: implications for canopy height retrieval from future ICESat-2 data,” Int. J. Remote Sens. 35(13), 5263–5279 (2014).
[Crossref]

ISPRS J. Photogramm. (3)

G. Sithole and G. Vosselman, “Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds,” ISPRS J. Photogramm. 59(1–2), 85–101 (2004).
[Crossref]

D. Gwenzi, M. A. Lefsky, V. P. Suchdeo, and D. J. Harding, “Prospects of the ICESat-2 laser altimetry mission for savanna ecosystem structural studies based on airborne simulation data,” ISPRS J. Photogramm. 118, 68–82 (2016).
[Crossref]

S. Nie, C. Wang, H. Zeng, X. Xi, and S. Xia, “A revised terrain correction method for forest canopy height estimation using ICESat/GLAS data,” ISPRS J. Photogramm. 108, 183–190 (2015).
[Crossref]

J. Atmos. Ocean. Technol. (2)

R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham, “Profiling sea ice with a multiple altimeter beam experimental LiDAR (MABEL),” J. Atmos. Ocean. Technol. 31(5), 1151–1168 (2014).
[Crossref]

M. McGill, T. Markus, V. S. Scott, and T. Neumann, “The multiple altimeter beam experimental LiDAR (MABEL): an airborne simulator for the ICESat-2 mission,” J. Atmos. Ocean. Technol. 30(2), 345–352 (2013).
[Crossref]

J. Coast. Res. (1)

M. F. Jasinski, J. D. Stoll, W. B. Cook, M. Ondrusek, E. Stengel, and K. Brunt, “Inland and near-shore water profiles derived from the high-altitude multiple Altimeter Beam Experimental LiDAR (MABEL),” J. Coast. Res. 76, 44–55 (2016).
[Crossref]

J. Geophys. Res. (1)

M. Simard, N. Pinto, J. B. Fisher, and A. Baccini, “Mapping forest canopy height globally with spaceborne LiDAR,” J. Geophys. Res. 116(G4), G04021 (2011).
[Crossref]

Measurement (1)

S. Nie, C. Wang, P. Dong, X. Xi, S. Luo, and H. Qin, “A revised progressive TIN densification for filtering airborne LiDAR data,” Measurement 104, 70–77 (2017).
[Crossref]

Optik (Stuttg.) (1)

S. Nie, C. Wang, X. Xi, S. Luo, S. Li, and J. Tian, “Estimating the height of wetland vegetation using airborne discrete-return LiDAR data,” Optik (Stuttg.) 154, 267–274 (2018).
[Crossref]

Photogramm. Eng. Remote Sensing (1)

Q. H. Li, J. Degnan, T. Barrett, and J. Shan, “First evaluation on single photon-sensitive LiDAR data,” Photogramm. Eng. Remote Sensing 82(8), 455–463 (2016).
[Crossref]

Proc. IEEE (1)

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 Laser Altimetry Mission,” Proc. IEEE 98(5), 735–751 (2010).
[Crossref]

Proc. SPIE (1)

U. N. Singh, F. Hovis, R. Burnham, M. Storm, R. Edwards, P. Burns, E. Sullivan, J. Edelman, K. Andes, B. Walters, K. Le, C. Culpepper, J. Rudd, T. Chuang, X. Dang, J. Hwang, and T. Wysocki, “High efficiency laser designs for airborne and space-based LiDAR remote sensing systems,” Proc. SPIE 8159, 815903 (2011).
[Crossref]

Remote Sens. (8)

A. Neuenschwander and L. Magruder, “The potential impact of vertical sampling uncertainty on ICESat-2/ATLAS terrain and canopy height retrievals for multiple ecosystems,” Remote Sens. 8(12), 1039 (2016).
[Crossref]

X. Meng, N. Currit, and K. Zhao, “Ground filtering algorithms for airborne LiDAR data: a review of critical issues,” Remote Sens. 2(3), 833–860 (2010).
[Crossref]

L. Cao, N. Coops, T. Hermosilla, J. Innes, J. Dai, and G. She, “Using small-footprint discrete and full-waveform airborne LiDAR metrics to estimate total biomass and biomass components in Subtropical forests,” Remote Sens. 6(8), 7110–7135 (2014).
[Crossref]

I. Fayad, N. Baghdadi, J. S. Bailly, N. Barbier, V. Gond, B. Herault, M. El Hajj, F. Fabre, and J. Perrin, “Regional scale rain-forest height mapping using regression-kriging of spaceborne and airborne LiDAR Data: application on French Guiana,” Remote Sens. 8(3), 240 (2016).
[Crossref]

B. Cook, L. Corp, R. Nelson, E. Middleton, D. Morton, J. McCorkel, J. Masek, K. Ranson, V. Ly, and P. Montesano, “NASA Goddard’s LiDAR, Hyperspectral and Thermal (G-LiHT) airborne imager,” Remote Sens. 5(8), 4045–4066 (2013).
[Crossref]

H. Tang, A. Swatantran, T. Barrett, P. DeCola, and R. Dubayah, “Voxel-based spatial filtering method for canopy height retrieval from airborne single-photon LiDAR,” Remote Sens. 8(9), 771 (2016).
[Crossref]

J. M. Stoker, Q. A. Abdullah, A. Nayegandhi, and J. Winehouse, “Evaluation of single photon and Geiger mode LiDAR for the 3D elevation program,” Remote Sens. 8(9), 767 (2016).
[Crossref]

N. Forfinski-Sarkozi and C. Parrish, “Analysis of MABEL bathymetry in Keweenaw bay and implications for ICESat-2 ATLAS,” Remote Sens. 8(9), 772 (2016).
[Crossref]

Remote Sens. Environ. (7)

D. R. Streutker and N. F. Glenn, “LiDAR measurement of sagebrush steppe vegetation heights,” Remote Sens. Environ. 102(1–2), 135–145 (2006).
[Crossref]

M. A. Wulder, J. C. White, R. F. Nelson, E. Næsset, H. O. Ørka, N. C. Coops, T. Hilker, C. W. Bater, and T. Gobakken, “LiDAR sampling for large-area forest characterization: A review,” Remote Sens. Environ. 121, 196–209 (2012).
[Crossref]

M. A. Lefsky, A. T. Hudak, W. B. Cohen, and S. A. Acker, “Geographic variability in LiDAR predictions of forest stand structure in the Pacific Northwest,” Remote Sens. Environ. 95(4), 532–548 (2005).
[Crossref]

M. Garcia, S. Popescu, D. Riano, K. Zhao, A. Neuenschwander, M. Agca, and E. Chuvieco, “Characterization of canopy fuels using ICESat/GLAS data,” Remote Sens. Environ. 123, 81–89 (2012).
[Crossref]

N. F. Glenn, A. Neuenschwander, L. A. Vierling, L. Spaete, A. Li, D. J. Shinneman, D. S. Pilliod, R. S. Arkle, and S. K. McIlroy, “Landsat 8 and ICESat-2: performance and potential synergies for quantifying dryland ecosystem vegetation cover and biomass,” Remote Sens. Environ. 185, 233–242 (2016).
[Crossref]

P. M. Montesano, J. Rosette, G. Sun, P. North, R. F. Nelson, R. O. Dubayah, K. J. Ranson, and V. Kharuk, “The uncertainty of biomass estimates from modeled ICESat-2 returns across a boreal forest gradient,” Remote Sens. Environ. 158, 95–109 (2015).
[Crossref]

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. K. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Sci. Rep. (1)

A. Swatantran, H. Tang, T. Barrett, P. DeCola, and R. Dubayah, “Rapid, high-resolution forest structure and terrain mapping over large areas using single photon LiDAR,” Sci. Rep. 6(1), 28277 (2016).
[Crossref] [PubMed]

Sensors, Systems, and Next-Generation Satellites (1)

R. Meynart, D. D. McLennan, S. P. Neeck, and H. Shimoda, ““Ice, Clouds and Land Elevation (ICESat-2) Mission,” Proceedings Volume 7826,” Sensors, Systems, and Next-Generation Satellites 14, 782610 (2010).

Trans. GIS (1)

J. Murgoitio, R. Shrestha, N. Glenn, and L. Spaete, “Airborne LiDAR and terrestrial laser scanning derived vegetation obstruction factors for visibility models,” Trans. GIS 18(1), 147–160 (2014).
[Crossref]

Other (8)

R. Edwards, N. W. Sawruk, F. E. Hovis, P. Burns, T. Wysocki, J. Rudd, B. Walters, E. Fakhoury, and V. Prisciandaro, “ICESat-2 laser technology development,” in LiDAR Remote Sensing for Environmental Monitoring Xiv, U. N. Singh, ed. (2013).

A. Brenner, H. Zwally, C. Bentley, B. Csatho, D. Harding, M. Hofton, J. Minster, L. Roberts, J. Saba, and R. Thomas, “Geoscience Laser Altimeter System (GLAS)—derivation of range and range distributions from laser pulse waveform analysis for surface elevations, roughness, slope, and vegetation heights. AlgorithmTheoretical Basis Document—Version 4.1,” Algorithm Theoretical Basis Document-Version 4 (2003).

L. A. Magruder, M. E. Wharton, III, K. D. Stout, and A. L. Neuenschwander, “Noise filtering techniques for photon-counting LADAR data,” Laser Radar Technology and Applications Xvii 8379 (2012).
[Crossref]

B. Chen and Y. Pang, “A denoising approach for detection of canopy and ground from ICESat-2's airborne simulator data in Maryland, USA,” in Applied Optics and Photonics China (2015), p. 96711S.

A. W. Yu, M. A. Stephen, S. X. Li, G. B. Shaw, A. Seas, E. Dowdye, E. Troupaki, P. Liiva, D. Poulios, and K. Mascetti, “Space Laser Transmitter Development for ICESat-2 Mission,” in Solid State Lasers Xix: Technology and Devices, W. A. Clarkson, N. Hodgson, and R. K. Shori, eds. (2010).

T. Evans, “Integration and alignment of ATLAS instrument engineering model components in Optical Development System Lab,” in Optical System Alignment, Tolerancing, and Verification Vii, J. Sasian, and R. N. Youngworth, eds. (2013).

N. Forfinski and C. Parrish, “ICESat-2 bathymetry: an empirical feasibility assessment using MABEL,” in SPIE Remote Sens. (2016).

P. Axelsson, “DEM generation from laser scanner data using adaptive TIN models,” in Int. Arch. Photogramm. Remote Sens. (2000)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 The flow chart of new noise removal algorithm.
Fig. 2
Fig. 2 The flow chart of the adapted photon classification algorithm.
Fig. 3
Fig. 3 The schematic diagram of angle and distance measurements.
Fig. 4
Fig. 4 Simulated ICESat-2 data (reference classification data) over the Cedar-2 flight line with a background noise rate of 5 MHz.
Fig. 5
Fig. 5 The noise removal result using NR algorithm 1 over the Cedar-2 flight line with a background noise rate of 5 MHz.
Fig. 6
Fig. 6 The noise removal result using NR algorithm 2 over the Cedar-2 flight line with a background noise rate of 5 MHz.
Fig. 7
Fig. 7 The noise removal result using NR algorithm 3 over the Cedar-2 flight line with a background noise rate of 5 MHz.
Fig. 8
Fig. 8 Simulated ICESat-2 data (reference classification data) over the SERC-1 flight line with a background noise rate of 5 MHz.
Fig. 9
Fig. 9 The noise removal results using NR algorithm 1 over the SERC-1 flight line with a background noise rate of 5 MHz.
Fig. 10
Fig. 10 The noise removal results using NR algorithm 2 over the SERC-1 flight line with a background noise rate of 5 MHz.
Fig. 11
Fig. 11 The noise removal results using NR algorithm 3 over the SERC-1 flight line with a background noise rate of 5 MHz.
Fig. 12
Fig. 12 Comparison of F-measure values of three different noise removal algorithms over simulated ICESat-2 data generated from Sigma Space LiDAR data: (a) with a noise rate of 0.5 MHz; (b) with a noise rate of 2.0 MHz; (c) with a noise rate of 5.0 MHz.
Fig. 13
Fig. 13 The scatterplots of (a) the LiDAR-derived ground elevations versus retrieved ground photon elevations using our adapted photon classification algorithm; (b) the LiDAR-derived ground elevations versus estimated ground photon elevations using PC algorithm 2; (c) the LiDAR-derived DTM elevations versus estimated DTM elevations using our adapted photon classification algorithm; (d) the LiDAR-derived DTM elevations versus estimated DTM elevations using the PC algorithm 2 over EC.
Fig. 14
Fig. 14 The scatterplots of (a) the LiDAR-derived ground elevations versus retrieved ground photon elevations using our adapted photon classification algorithm; (b) the LiDAR-derived ground elevations versus estimated ground photon elevations using PC algorithm 2; (c) the LiDAR-derived DTM elevations versus estimated DTM elevations using our adapted photon classification algorithm; (d) the LiDAR-derived DTM elevations versus estimated DTM elevations using the PC algorithm 2 in WC forest.
Fig. 15
Fig. 15 The scatterplots of (a) the LiDAR-derived canopy heights versus estimated canopy heights using HE method 1; (b) the LiDAR-derived canopy heights versus estimated canopy heights using HE method 2 over EC site.
Fig. 16
Fig. 16 The scatterplots of (a) the LiDAR-derived canopy heights versus estimated canopy heights using HE method 1; (b) the LiDAR-derived canopy heights versus estimated canopy heights using HE method 2 in WC forest.

Tables (1)

Tables Icon

Table 1 Three statistical indicators of three different noise removal algorithms.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ψ i ( x i , z i )G,1ik; D i ={ψ(x,z)| (x x i ) 2 / a 2 + (z z i ) 2 / b 2 1} Densit y i =n( D i )
x mirror =2 x border x p z mirror = z p
DenCor r i = Densit y i λ i
γ i = DenCor r i max(DenCor r i )
R = TP TP+FN
P = TP TP+FP
F = 2PR P+R

Metrics