Abstract

The liquid phase crystallization (LPC) of silicon is an emerging technology for fabricating 10 − 20 µm thin multi-crystalline silicon layers on glass. LPC silicon solar cells exhibit similar electronic performance to multi-crystalline wafer-based devices. Due to the reduced absorber thickness, however, effective measures for light trapping have to be taken. We present tailor-made micro-structures for light trapping at the LPC silicon back-side, whereby a nano-imprinted resist layer serves as a three-dimensional etching mask in subsequent reactive ion etching. Contrary to state-of-the-art random pyramid textures produced by wet-chemical etching, this method allows to produce tailor-made textures independent of grain orientation. Differently shaped micro-textures were replicated in LPC silicon. Absorptance and external quantum efficiency of periodic honeycomb patterns and random pyramids were found to be equivalent. Thus, the method enables the potential to further optimize light trapping in LPC silicon solar cells.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Combining tailor-made textures for light in-coupling and light trapping in liquid phase crystallized silicon thin-film solar cells

Grit Köppel, David Eisenhauer, Bernd Rech, and Christiane Becker
Opt. Express 25(12) A467-A472 (2017)

Light trapping in periodically textured amorphous silicon thin film solar cells using realistic interface morphologies

Vladislav Jovanov, Ujwol Palanchoke, Philipp Magnus, Helmut Stiebig, Jürgen Hüpkes, Porponth Sichanugrist, Makoto Konagai, Samuel Wiesendanger, Carsten Rockstuhl, and Dietmar Knipp
Opt. Express 21(S4) A595-A606 (2013)

Light trapping in thin-film silicon solar cells with submicron surface texture

Rahul Dewan, Marko Marinkovic, Rodrigo Noriega, Sujay Phadke, Alberto Salleo, and Dietmar Knipp
Opt. Express 17(25) 23058-23065 (2009)

References

  • View by:
  • |
  • |
  • |

  1. C. T. Trinh, N. Preissler, P. Sonntag, M. Muske, K. Jäger, M. Trahms, R. Schlatmann, B. Rech, and D. Amkreutz, “Potential of interdigitated back-contact silicon heterojunction solar cells for liquid phase crystallized silicon on glass with efficiency above 14%,” Sol. Energy Mat. Sol. Cells 174, 187–195 (2018).
    [Crossref]
  2. J. Benick, A. Richter, R. Müller, H. Hauser, F. Feldmann, P. Krenckel, S. Riepe, F. Schindler, M. C. Schubert, M. Hermle, A. W. Bett, and S. W. Glunz, “High-Efficiency n-Type HP mc Silicon Solar Cells,” IEEE J. Photovoltaics 7, 1171–1175 (2017).
    [Crossref]
  3. V. Preidel, D. Amkreutz, J. Haschke, M. Wollgarten, B. Rech, and C. Becker, “Balance of optical, structural, and electrical properties of textured liquid phase crystallized Si solar cells,” J. Appl. Phys. 117, 225306 (2015).
    [Crossref]
  4. G. Köppel, B. Rech, and C. Becker, “Sinusoidal nanotextures for light management in silicon thin-film solar cells,” Nanoscale 8, 8722–8728 (2016).
    [Crossref] [PubMed]
  5. D. Eisenhauer, G. Köppel, K. Jäger, D. Chen, O. Shargaieva, P. Sonntag, D. Amkreutz, B. Rech, and C. Becker, “Smooth anti-reflective three-dimensional textures for liquid phase crystallized silicon thin-film solar cells on glass,” Sci. Rep. 7, 2658 (2017).
    [Crossref] [PubMed]
  6. P. Sonntag, N. Preissler, M. Bokalič, M. Trahms, J. Haschke, R. Schlatmann, M. Topič, B. Rech, and D. Amkreutz, “Silicon Solar Cells on Glass with Power Conversion Efficiency above 13% at Thickness below 15 Micrometer,” Sci. Rep. 7, 873 (2017).
    [Crossref]
  7. G. Köppel, D. Eisenhauer, B. Rech, and C. Becker, “Combining tailor-made textures for light incoupling and light trapping in liquid phase crystallized silicon thin-film solar cells,” Opt. Exp. 25, A467–A472 (2017).
    [Crossref]
  8. P. Sonntag, J. Haschke, S. Kühnapfel, O. Gabriel, D. Amkreutz, and B. Rech, “Properties of liquid phase crystallized interdigitated back-contact solar cells on glass,” Energy Procedia 77, 487–492 (2015).
    [Crossref]
  9. M. Python, O. Madani, D. Dominé, F. Meillaud, E. Vallat-Sauvain, and C. Ballif, “Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells,” Sol. Energy Mat. Sol. Cells 93, 1714–1720 (2009).
    [Crossref]
  10. S. E. Han and G. Chen, “Toward the Lambertian Limit of Light Trapping in Thin Nanostructured Silicon Solar Cells,” Nano Lett. 10, 4692–4696 (2010).
    [Crossref] [PubMed]
  11. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Exp. 18, A366–A380 (2010).
    [Crossref]
  12. C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charriè, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light Trapping in Solar Cells: Can Periodic Beat Random?” ACS Nano 6, 2790–2797 (2012).
    [Crossref] [PubMed]
  13. H. Sai, K. Saito, N. Hozuki, and M. Kondo, “Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells,” Appl. Phys. Lett. 102, 053509 (2013).
    [Crossref]
  14. H. Sai, T. Matsui, K. Saito, M. Kondo, and I. Yoshida, “Photocurrent enhancement in thin-film silicon solar cells by combination of anti-reflective sub-wavelength structures and light-trapping textures,” Prog. Photovolt: Res. Appl. 23, 1572–1580 (2015).
    [Crossref]
  15. O. Gabriel, T. Frijnts, N. Preissler, D. Amkreutz, S. Calnan, S. Ring, B. Stannowski, B. Rech, and R. Schlatmann, “Crystalline silicon on glass - interface passivation and absorber material quality,” Prog. Photovolt: Res. Appl. 24, 1499–1512 (2015).
    [Crossref]
  16. L. J. Guo, “Nano-imprint lithography: Methods and Material Requirements,” Adv. Mater. 19, 495–513 (2007).
    [Crossref]
  17. J. Haschke, D. Amkreutz, L. Korte, F. Ruske, and B. Rech, “Towards wafer quality crystalline silicon thin-film solar cells on glass,” Sol. Energy Mat. Sol. Cells 128, 190–197 (2014).
    [Crossref]
  18. Y. Wang, R. Luo, J. Ma, and S.-Q. Man, “Fabrication of the pyramidal microstructure on silicon substrate using KOH solution,” 5th International Conference on Advanced Engineering Materials and Technology 5, 302–307 (2015).
  19. M. Moreno, D. Daineka, and P. Roca i Cabarrocas, “Plasma texturing for silicon solar cells: From pyramids to inverted pyramids-like structures,” Sol. Energy Mat. Sol. Cells 94, 733–737 (2010).
    [Crossref]
  20. M. Moreno, D. Muias, J. Martínez, C. Reyes-Betanzo, A. Torres, R. Ambrosio, P Rosales, P. Roca i Cabarrocas, and M. Escobar, “A comparative study of wet and dry texturing processes of c-Si wafers for the fabrication of solar cells,” Solar Energy 101, 182–191 (2014).
    [Crossref]

2018 (1)

C. T. Trinh, N. Preissler, P. Sonntag, M. Muske, K. Jäger, M. Trahms, R. Schlatmann, B. Rech, and D. Amkreutz, “Potential of interdigitated back-contact silicon heterojunction solar cells for liquid phase crystallized silicon on glass with efficiency above 14%,” Sol. Energy Mat. Sol. Cells 174, 187–195 (2018).
[Crossref]

2017 (4)

J. Benick, A. Richter, R. Müller, H. Hauser, F. Feldmann, P. Krenckel, S. Riepe, F. Schindler, M. C. Schubert, M. Hermle, A. W. Bett, and S. W. Glunz, “High-Efficiency n-Type HP mc Silicon Solar Cells,” IEEE J. Photovoltaics 7, 1171–1175 (2017).
[Crossref]

D. Eisenhauer, G. Köppel, K. Jäger, D. Chen, O. Shargaieva, P. Sonntag, D. Amkreutz, B. Rech, and C. Becker, “Smooth anti-reflective three-dimensional textures for liquid phase crystallized silicon thin-film solar cells on glass,” Sci. Rep. 7, 2658 (2017).
[Crossref] [PubMed]

P. Sonntag, N. Preissler, M. Bokalič, M. Trahms, J. Haschke, R. Schlatmann, M. Topič, B. Rech, and D. Amkreutz, “Silicon Solar Cells on Glass with Power Conversion Efficiency above 13% at Thickness below 15 Micrometer,” Sci. Rep. 7, 873 (2017).
[Crossref]

G. Köppel, D. Eisenhauer, B. Rech, and C. Becker, “Combining tailor-made textures for light incoupling and light trapping in liquid phase crystallized silicon thin-film solar cells,” Opt. Exp. 25, A467–A472 (2017).
[Crossref]

2016 (1)

G. Köppel, B. Rech, and C. Becker, “Sinusoidal nanotextures for light management in silicon thin-film solar cells,” Nanoscale 8, 8722–8728 (2016).
[Crossref] [PubMed]

2015 (5)

H. Sai, T. Matsui, K. Saito, M. Kondo, and I. Yoshida, “Photocurrent enhancement in thin-film silicon solar cells by combination of anti-reflective sub-wavelength structures and light-trapping textures,” Prog. Photovolt: Res. Appl. 23, 1572–1580 (2015).
[Crossref]

O. Gabriel, T. Frijnts, N. Preissler, D. Amkreutz, S. Calnan, S. Ring, B. Stannowski, B. Rech, and R. Schlatmann, “Crystalline silicon on glass - interface passivation and absorber material quality,” Prog. Photovolt: Res. Appl. 24, 1499–1512 (2015).
[Crossref]

Y. Wang, R. Luo, J. Ma, and S.-Q. Man, “Fabrication of the pyramidal microstructure on silicon substrate using KOH solution,” 5th International Conference on Advanced Engineering Materials and Technology 5, 302–307 (2015).

P. Sonntag, J. Haschke, S. Kühnapfel, O. Gabriel, D. Amkreutz, and B. Rech, “Properties of liquid phase crystallized interdigitated back-contact solar cells on glass,” Energy Procedia 77, 487–492 (2015).
[Crossref]

V. Preidel, D. Amkreutz, J. Haschke, M. Wollgarten, B. Rech, and C. Becker, “Balance of optical, structural, and electrical properties of textured liquid phase crystallized Si solar cells,” J. Appl. Phys. 117, 225306 (2015).
[Crossref]

2014 (2)

J. Haschke, D. Amkreutz, L. Korte, F. Ruske, and B. Rech, “Towards wafer quality crystalline silicon thin-film solar cells on glass,” Sol. Energy Mat. Sol. Cells 128, 190–197 (2014).
[Crossref]

M. Moreno, D. Muias, J. Martínez, C. Reyes-Betanzo, A. Torres, R. Ambrosio, P Rosales, P. Roca i Cabarrocas, and M. Escobar, “A comparative study of wet and dry texturing processes of c-Si wafers for the fabrication of solar cells,” Solar Energy 101, 182–191 (2014).
[Crossref]

2013 (1)

H. Sai, K. Saito, N. Hozuki, and M. Kondo, “Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells,” Appl. Phys. Lett. 102, 053509 (2013).
[Crossref]

2012 (1)

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charriè, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light Trapping in Solar Cells: Can Periodic Beat Random?” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

2010 (3)

M. Moreno, D. Daineka, and P. Roca i Cabarrocas, “Plasma texturing for silicon solar cells: From pyramids to inverted pyramids-like structures,” Sol. Energy Mat. Sol. Cells 94, 733–737 (2010).
[Crossref]

S. E. Han and G. Chen, “Toward the Lambertian Limit of Light Trapping in Thin Nanostructured Silicon Solar Cells,” Nano Lett. 10, 4692–4696 (2010).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Exp. 18, A366–A380 (2010).
[Crossref]

2009 (1)

M. Python, O. Madani, D. Dominé, F. Meillaud, E. Vallat-Sauvain, and C. Ballif, “Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells,” Sol. Energy Mat. Sol. Cells 93, 1714–1720 (2009).
[Crossref]

2007 (1)

L. J. Guo, “Nano-imprint lithography: Methods and Material Requirements,” Adv. Mater. 19, 495–513 (2007).
[Crossref]

Alexander, D. T. L.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charriè, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light Trapping in Solar Cells: Can Periodic Beat Random?” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Ambrosio, R.

M. Moreno, D. Muias, J. Martínez, C. Reyes-Betanzo, A. Torres, R. Ambrosio, P Rosales, P. Roca i Cabarrocas, and M. Escobar, “A comparative study of wet and dry texturing processes of c-Si wafers for the fabrication of solar cells,” Solar Energy 101, 182–191 (2014).
[Crossref]

Amkreutz, D.

C. T. Trinh, N. Preissler, P. Sonntag, M. Muske, K. Jäger, M. Trahms, R. Schlatmann, B. Rech, and D. Amkreutz, “Potential of interdigitated back-contact silicon heterojunction solar cells for liquid phase crystallized silicon on glass with efficiency above 14%,” Sol. Energy Mat. Sol. Cells 174, 187–195 (2018).
[Crossref]

D. Eisenhauer, G. Köppel, K. Jäger, D. Chen, O. Shargaieva, P. Sonntag, D. Amkreutz, B. Rech, and C. Becker, “Smooth anti-reflective three-dimensional textures for liquid phase crystallized silicon thin-film solar cells on glass,” Sci. Rep. 7, 2658 (2017).
[Crossref] [PubMed]

P. Sonntag, N. Preissler, M. Bokalič, M. Trahms, J. Haschke, R. Schlatmann, M. Topič, B. Rech, and D. Amkreutz, “Silicon Solar Cells on Glass with Power Conversion Efficiency above 13% at Thickness below 15 Micrometer,” Sci. Rep. 7, 873 (2017).
[Crossref]

P. Sonntag, J. Haschke, S. Kühnapfel, O. Gabriel, D. Amkreutz, and B. Rech, “Properties of liquid phase crystallized interdigitated back-contact solar cells on glass,” Energy Procedia 77, 487–492 (2015).
[Crossref]

V. Preidel, D. Amkreutz, J. Haschke, M. Wollgarten, B. Rech, and C. Becker, “Balance of optical, structural, and electrical properties of textured liquid phase crystallized Si solar cells,” J. Appl. Phys. 117, 225306 (2015).
[Crossref]

O. Gabriel, T. Frijnts, N. Preissler, D. Amkreutz, S. Calnan, S. Ring, B. Stannowski, B. Rech, and R. Schlatmann, “Crystalline silicon on glass - interface passivation and absorber material quality,” Prog. Photovolt: Res. Appl. 24, 1499–1512 (2015).
[Crossref]

J. Haschke, D. Amkreutz, L. Korte, F. Ruske, and B. Rech, “Towards wafer quality crystalline silicon thin-film solar cells on glass,” Sol. Energy Mat. Sol. Cells 128, 190–197 (2014).
[Crossref]

Ballif, C.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charriè, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light Trapping in Solar Cells: Can Periodic Beat Random?” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

M. Python, O. Madani, D. Dominé, F. Meillaud, E. Vallat-Sauvain, and C. Ballif, “Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells,” Sol. Energy Mat. Sol. Cells 93, 1714–1720 (2009).
[Crossref]

Battaglia, C.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charriè, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light Trapping in Solar Cells: Can Periodic Beat Random?” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Becker, C.

D. Eisenhauer, G. Köppel, K. Jäger, D. Chen, O. Shargaieva, P. Sonntag, D. Amkreutz, B. Rech, and C. Becker, “Smooth anti-reflective three-dimensional textures for liquid phase crystallized silicon thin-film solar cells on glass,” Sci. Rep. 7, 2658 (2017).
[Crossref] [PubMed]

G. Köppel, D. Eisenhauer, B. Rech, and C. Becker, “Combining tailor-made textures for light incoupling and light trapping in liquid phase crystallized silicon thin-film solar cells,” Opt. Exp. 25, A467–A472 (2017).
[Crossref]

G. Köppel, B. Rech, and C. Becker, “Sinusoidal nanotextures for light management in silicon thin-film solar cells,” Nanoscale 8, 8722–8728 (2016).
[Crossref] [PubMed]

V. Preidel, D. Amkreutz, J. Haschke, M. Wollgarten, B. Rech, and C. Becker, “Balance of optical, structural, and electrical properties of textured liquid phase crystallized Si solar cells,” J. Appl. Phys. 117, 225306 (2015).
[Crossref]

Benick, J.

J. Benick, A. Richter, R. Müller, H. Hauser, F. Feldmann, P. Krenckel, S. Riepe, F. Schindler, M. C. Schubert, M. Hermle, A. W. Bett, and S. W. Glunz, “High-Efficiency n-Type HP mc Silicon Solar Cells,” IEEE J. Photovoltaics 7, 1171–1175 (2017).
[Crossref]

Bett, A. W.

J. Benick, A. Richter, R. Müller, H. Hauser, F. Feldmann, P. Krenckel, S. Riepe, F. Schindler, M. C. Schubert, M. Hermle, A. W. Bett, and S. W. Glunz, “High-Efficiency n-Type HP mc Silicon Solar Cells,” IEEE J. Photovoltaics 7, 1171–1175 (2017).
[Crossref]

Boccard, M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charriè, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light Trapping in Solar Cells: Can Periodic Beat Random?” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Bokalic, M.

P. Sonntag, N. Preissler, M. Bokalič, M. Trahms, J. Haschke, R. Schlatmann, M. Topič, B. Rech, and D. Amkreutz, “Silicon Solar Cells on Glass with Power Conversion Efficiency above 13% at Thickness below 15 Micrometer,” Sci. Rep. 7, 873 (2017).
[Crossref]

Calnan, S.

O. Gabriel, T. Frijnts, N. Preissler, D. Amkreutz, S. Calnan, S. Ring, B. Stannowski, B. Rech, and R. Schlatmann, “Crystalline silicon on glass - interface passivation and absorber material quality,” Prog. Photovolt: Res. Appl. 24, 1499–1512 (2015).
[Crossref]

Cantoni, M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charriè, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light Trapping in Solar Cells: Can Periodic Beat Random?” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Charriè, M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charriè, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light Trapping in Solar Cells: Can Periodic Beat Random?” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Chen, D.

D. Eisenhauer, G. Köppel, K. Jäger, D. Chen, O. Shargaieva, P. Sonntag, D. Amkreutz, B. Rech, and C. Becker, “Smooth anti-reflective three-dimensional textures for liquid phase crystallized silicon thin-film solar cells on glass,” Sci. Rep. 7, 2658 (2017).
[Crossref] [PubMed]

Chen, G.

S. E. Han and G. Chen, “Toward the Lambertian Limit of Light Trapping in Thin Nanostructured Silicon Solar Cells,” Nano Lett. 10, 4692–4696 (2010).
[Crossref] [PubMed]

Cui, Y.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charriè, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light Trapping in Solar Cells: Can Periodic Beat Random?” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Daineka, D.

M. Moreno, D. Daineka, and P. Roca i Cabarrocas, “Plasma texturing for silicon solar cells: From pyramids to inverted pyramids-like structures,” Sol. Energy Mat. Sol. Cells 94, 733–737 (2010).
[Crossref]

Despeisse, M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charriè, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light Trapping in Solar Cells: Can Periodic Beat Random?” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Dominé, D.

M. Python, O. Madani, D. Dominé, F. Meillaud, E. Vallat-Sauvain, and C. Ballif, “Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells,” Sol. Energy Mat. Sol. Cells 93, 1714–1720 (2009).
[Crossref]

Eisenhauer, D.

D. Eisenhauer, G. Köppel, K. Jäger, D. Chen, O. Shargaieva, P. Sonntag, D. Amkreutz, B. Rech, and C. Becker, “Smooth anti-reflective three-dimensional textures for liquid phase crystallized silicon thin-film solar cells on glass,” Sci. Rep. 7, 2658 (2017).
[Crossref] [PubMed]

G. Köppel, D. Eisenhauer, B. Rech, and C. Becker, “Combining tailor-made textures for light incoupling and light trapping in liquid phase crystallized silicon thin-film solar cells,” Opt. Exp. 25, A467–A472 (2017).
[Crossref]

Escarré, J.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charriè, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light Trapping in Solar Cells: Can Periodic Beat Random?” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Escobar, M.

M. Moreno, D. Muias, J. Martínez, C. Reyes-Betanzo, A. Torres, R. Ambrosio, P Rosales, P. Roca i Cabarrocas, and M. Escobar, “A comparative study of wet and dry texturing processes of c-Si wafers for the fabrication of solar cells,” Solar Energy 101, 182–191 (2014).
[Crossref]

Fan, S.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Exp. 18, A366–A380 (2010).
[Crossref]

Feldmann, F.

J. Benick, A. Richter, R. Müller, H. Hauser, F. Feldmann, P. Krenckel, S. Riepe, F. Schindler, M. C. Schubert, M. Hermle, A. W. Bett, and S. W. Glunz, “High-Efficiency n-Type HP mc Silicon Solar Cells,” IEEE J. Photovoltaics 7, 1171–1175 (2017).
[Crossref]

Frijnts, T.

O. Gabriel, T. Frijnts, N. Preissler, D. Amkreutz, S. Calnan, S. Ring, B. Stannowski, B. Rech, and R. Schlatmann, “Crystalline silicon on glass - interface passivation and absorber material quality,” Prog. Photovolt: Res. Appl. 24, 1499–1512 (2015).
[Crossref]

Gabriel, O.

O. Gabriel, T. Frijnts, N. Preissler, D. Amkreutz, S. Calnan, S. Ring, B. Stannowski, B. Rech, and R. Schlatmann, “Crystalline silicon on glass - interface passivation and absorber material quality,” Prog. Photovolt: Res. Appl. 24, 1499–1512 (2015).
[Crossref]

P. Sonntag, J. Haschke, S. Kühnapfel, O. Gabriel, D. Amkreutz, and B. Rech, “Properties of liquid phase crystallized interdigitated back-contact solar cells on glass,” Energy Procedia 77, 487–492 (2015).
[Crossref]

Glunz, S. W.

J. Benick, A. Richter, R. Müller, H. Hauser, F. Feldmann, P. Krenckel, S. Riepe, F. Schindler, M. C. Schubert, M. Hermle, A. W. Bett, and S. W. Glunz, “High-Efficiency n-Type HP mc Silicon Solar Cells,” IEEE J. Photovoltaics 7, 1171–1175 (2017).
[Crossref]

Guo, L. J.

L. J. Guo, “Nano-imprint lithography: Methods and Material Requirements,” Adv. Mater. 19, 495–513 (2007).
[Crossref]

Han, S. E.

S. E. Han and G. Chen, “Toward the Lambertian Limit of Light Trapping in Thin Nanostructured Silicon Solar Cells,” Nano Lett. 10, 4692–4696 (2010).
[Crossref] [PubMed]

Haschke, J.

P. Sonntag, N. Preissler, M. Bokalič, M. Trahms, J. Haschke, R. Schlatmann, M. Topič, B. Rech, and D. Amkreutz, “Silicon Solar Cells on Glass with Power Conversion Efficiency above 13% at Thickness below 15 Micrometer,” Sci. Rep. 7, 873 (2017).
[Crossref]

P. Sonntag, J. Haschke, S. Kühnapfel, O. Gabriel, D. Amkreutz, and B. Rech, “Properties of liquid phase crystallized interdigitated back-contact solar cells on glass,” Energy Procedia 77, 487–492 (2015).
[Crossref]

V. Preidel, D. Amkreutz, J. Haschke, M. Wollgarten, B. Rech, and C. Becker, “Balance of optical, structural, and electrical properties of textured liquid phase crystallized Si solar cells,” J. Appl. Phys. 117, 225306 (2015).
[Crossref]

J. Haschke, D. Amkreutz, L. Korte, F. Ruske, and B. Rech, “Towards wafer quality crystalline silicon thin-film solar cells on glass,” Sol. Energy Mat. Sol. Cells 128, 190–197 (2014).
[Crossref]

Haug, F.-J.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charriè, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light Trapping in Solar Cells: Can Periodic Beat Random?” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Hauser, H.

J. Benick, A. Richter, R. Müller, H. Hauser, F. Feldmann, P. Krenckel, S. Riepe, F. Schindler, M. C. Schubert, M. Hermle, A. W. Bett, and S. W. Glunz, “High-Efficiency n-Type HP mc Silicon Solar Cells,” IEEE J. Photovoltaics 7, 1171–1175 (2017).
[Crossref]

Hermle, M.

J. Benick, A. Richter, R. Müller, H. Hauser, F. Feldmann, P. Krenckel, S. Riepe, F. Schindler, M. C. Schubert, M. Hermle, A. W. Bett, and S. W. Glunz, “High-Efficiency n-Type HP mc Silicon Solar Cells,” IEEE J. Photovoltaics 7, 1171–1175 (2017).
[Crossref]

Hozuki, N.

H. Sai, K. Saito, N. Hozuki, and M. Kondo, “Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells,” Appl. Phys. Lett. 102, 053509 (2013).
[Crossref]

Hsu, C.-M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charriè, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light Trapping in Solar Cells: Can Periodic Beat Random?” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Jäger, K.

C. T. Trinh, N. Preissler, P. Sonntag, M. Muske, K. Jäger, M. Trahms, R. Schlatmann, B. Rech, and D. Amkreutz, “Potential of interdigitated back-contact silicon heterojunction solar cells for liquid phase crystallized silicon on glass with efficiency above 14%,” Sol. Energy Mat. Sol. Cells 174, 187–195 (2018).
[Crossref]

D. Eisenhauer, G. Köppel, K. Jäger, D. Chen, O. Shargaieva, P. Sonntag, D. Amkreutz, B. Rech, and C. Becker, “Smooth anti-reflective three-dimensional textures for liquid phase crystallized silicon thin-film solar cells on glass,” Sci. Rep. 7, 2658 (2017).
[Crossref] [PubMed]

Kondo, M.

H. Sai, T. Matsui, K. Saito, M. Kondo, and I. Yoshida, “Photocurrent enhancement in thin-film silicon solar cells by combination of anti-reflective sub-wavelength structures and light-trapping textures,” Prog. Photovolt: Res. Appl. 23, 1572–1580 (2015).
[Crossref]

H. Sai, K. Saito, N. Hozuki, and M. Kondo, “Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells,” Appl. Phys. Lett. 102, 053509 (2013).
[Crossref]

Köppel, G.

D. Eisenhauer, G. Köppel, K. Jäger, D. Chen, O. Shargaieva, P. Sonntag, D. Amkreutz, B. Rech, and C. Becker, “Smooth anti-reflective three-dimensional textures for liquid phase crystallized silicon thin-film solar cells on glass,” Sci. Rep. 7, 2658 (2017).
[Crossref] [PubMed]

G. Köppel, D. Eisenhauer, B. Rech, and C. Becker, “Combining tailor-made textures for light incoupling and light trapping in liquid phase crystallized silicon thin-film solar cells,” Opt. Exp. 25, A467–A472 (2017).
[Crossref]

G. Köppel, B. Rech, and C. Becker, “Sinusoidal nanotextures for light management in silicon thin-film solar cells,” Nanoscale 8, 8722–8728 (2016).
[Crossref] [PubMed]

Korte, L.

J. Haschke, D. Amkreutz, L. Korte, F. Ruske, and B. Rech, “Towards wafer quality crystalline silicon thin-film solar cells on glass,” Sol. Energy Mat. Sol. Cells 128, 190–197 (2014).
[Crossref]

Krenckel, P.

J. Benick, A. Richter, R. Müller, H. Hauser, F. Feldmann, P. Krenckel, S. Riepe, F. Schindler, M. C. Schubert, M. Hermle, A. W. Bett, and S. W. Glunz, “High-Efficiency n-Type HP mc Silicon Solar Cells,” IEEE J. Photovoltaics 7, 1171–1175 (2017).
[Crossref]

Kühnapfel, S.

P. Sonntag, J. Haschke, S. Kühnapfel, O. Gabriel, D. Amkreutz, and B. Rech, “Properties of liquid phase crystallized interdigitated back-contact solar cells on glass,” Energy Procedia 77, 487–492 (2015).
[Crossref]

Luo, R.

Y. Wang, R. Luo, J. Ma, and S.-Q. Man, “Fabrication of the pyramidal microstructure on silicon substrate using KOH solution,” 5th International Conference on Advanced Engineering Materials and Technology 5, 302–307 (2015).

Ma, J.

Y. Wang, R. Luo, J. Ma, and S.-Q. Man, “Fabrication of the pyramidal microstructure on silicon substrate using KOH solution,” 5th International Conference on Advanced Engineering Materials and Technology 5, 302–307 (2015).

Madani, O.

M. Python, O. Madani, D. Dominé, F. Meillaud, E. Vallat-Sauvain, and C. Ballif, “Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells,” Sol. Energy Mat. Sol. Cells 93, 1714–1720 (2009).
[Crossref]

Man, S.-Q.

Y. Wang, R. Luo, J. Ma, and S.-Q. Man, “Fabrication of the pyramidal microstructure on silicon substrate using KOH solution,” 5th International Conference on Advanced Engineering Materials and Technology 5, 302–307 (2015).

Martínez, J.

M. Moreno, D. Muias, J. Martínez, C. Reyes-Betanzo, A. Torres, R. Ambrosio, P Rosales, P. Roca i Cabarrocas, and M. Escobar, “A comparative study of wet and dry texturing processes of c-Si wafers for the fabrication of solar cells,” Solar Energy 101, 182–191 (2014).
[Crossref]

Matsui, T.

H. Sai, T. Matsui, K. Saito, M. Kondo, and I. Yoshida, “Photocurrent enhancement in thin-film silicon solar cells by combination of anti-reflective sub-wavelength structures and light-trapping textures,” Prog. Photovolt: Res. Appl. 23, 1572–1580 (2015).
[Crossref]

Meillaud, F.

M. Python, O. Madani, D. Dominé, F. Meillaud, E. Vallat-Sauvain, and C. Ballif, “Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells,” Sol. Energy Mat. Sol. Cells 93, 1714–1720 (2009).
[Crossref]

Moreno, M.

M. Moreno, D. Muias, J. Martínez, C. Reyes-Betanzo, A. Torres, R. Ambrosio, P Rosales, P. Roca i Cabarrocas, and M. Escobar, “A comparative study of wet and dry texturing processes of c-Si wafers for the fabrication of solar cells,” Solar Energy 101, 182–191 (2014).
[Crossref]

M. Moreno, D. Daineka, and P. Roca i Cabarrocas, “Plasma texturing for silicon solar cells: From pyramids to inverted pyramids-like structures,” Sol. Energy Mat. Sol. Cells 94, 733–737 (2010).
[Crossref]

Muias, D.

M. Moreno, D. Muias, J. Martínez, C. Reyes-Betanzo, A. Torres, R. Ambrosio, P Rosales, P. Roca i Cabarrocas, and M. Escobar, “A comparative study of wet and dry texturing processes of c-Si wafers for the fabrication of solar cells,” Solar Energy 101, 182–191 (2014).
[Crossref]

Müller, R.

J. Benick, A. Richter, R. Müller, H. Hauser, F. Feldmann, P. Krenckel, S. Riepe, F. Schindler, M. C. Schubert, M. Hermle, A. W. Bett, and S. W. Glunz, “High-Efficiency n-Type HP mc Silicon Solar Cells,” IEEE J. Photovoltaics 7, 1171–1175 (2017).
[Crossref]

Muske, M.

C. T. Trinh, N. Preissler, P. Sonntag, M. Muske, K. Jäger, M. Trahms, R. Schlatmann, B. Rech, and D. Amkreutz, “Potential of interdigitated back-contact silicon heterojunction solar cells for liquid phase crystallized silicon on glass with efficiency above 14%,” Sol. Energy Mat. Sol. Cells 174, 187–195 (2018).
[Crossref]

Preidel, V.

V. Preidel, D. Amkreutz, J. Haschke, M. Wollgarten, B. Rech, and C. Becker, “Balance of optical, structural, and electrical properties of textured liquid phase crystallized Si solar cells,” J. Appl. Phys. 117, 225306 (2015).
[Crossref]

Preissler, N.

C. T. Trinh, N. Preissler, P. Sonntag, M. Muske, K. Jäger, M. Trahms, R. Schlatmann, B. Rech, and D. Amkreutz, “Potential of interdigitated back-contact silicon heterojunction solar cells for liquid phase crystallized silicon on glass with efficiency above 14%,” Sol. Energy Mat. Sol. Cells 174, 187–195 (2018).
[Crossref]

P. Sonntag, N. Preissler, M. Bokalič, M. Trahms, J. Haschke, R. Schlatmann, M. Topič, B. Rech, and D. Amkreutz, “Silicon Solar Cells on Glass with Power Conversion Efficiency above 13% at Thickness below 15 Micrometer,” Sci. Rep. 7, 873 (2017).
[Crossref]

O. Gabriel, T. Frijnts, N. Preissler, D. Amkreutz, S. Calnan, S. Ring, B. Stannowski, B. Rech, and R. Schlatmann, “Crystalline silicon on glass - interface passivation and absorber material quality,” Prog. Photovolt: Res. Appl. 24, 1499–1512 (2015).
[Crossref]

Python, M.

M. Python, O. Madani, D. Dominé, F. Meillaud, E. Vallat-Sauvain, and C. Ballif, “Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells,” Sol. Energy Mat. Sol. Cells 93, 1714–1720 (2009).
[Crossref]

Raman, A.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Exp. 18, A366–A380 (2010).
[Crossref]

Rech, B.

C. T. Trinh, N. Preissler, P. Sonntag, M. Muske, K. Jäger, M. Trahms, R. Schlatmann, B. Rech, and D. Amkreutz, “Potential of interdigitated back-contact silicon heterojunction solar cells for liquid phase crystallized silicon on glass with efficiency above 14%,” Sol. Energy Mat. Sol. Cells 174, 187–195 (2018).
[Crossref]

D. Eisenhauer, G. Köppel, K. Jäger, D. Chen, O. Shargaieva, P. Sonntag, D. Amkreutz, B. Rech, and C. Becker, “Smooth anti-reflective three-dimensional textures for liquid phase crystallized silicon thin-film solar cells on glass,” Sci. Rep. 7, 2658 (2017).
[Crossref] [PubMed]

P. Sonntag, N. Preissler, M. Bokalič, M. Trahms, J. Haschke, R. Schlatmann, M. Topič, B. Rech, and D. Amkreutz, “Silicon Solar Cells on Glass with Power Conversion Efficiency above 13% at Thickness below 15 Micrometer,” Sci. Rep. 7, 873 (2017).
[Crossref]

G. Köppel, D. Eisenhauer, B. Rech, and C. Becker, “Combining tailor-made textures for light incoupling and light trapping in liquid phase crystallized silicon thin-film solar cells,” Opt. Exp. 25, A467–A472 (2017).
[Crossref]

G. Köppel, B. Rech, and C. Becker, “Sinusoidal nanotextures for light management in silicon thin-film solar cells,” Nanoscale 8, 8722–8728 (2016).
[Crossref] [PubMed]

P. Sonntag, J. Haschke, S. Kühnapfel, O. Gabriel, D. Amkreutz, and B. Rech, “Properties of liquid phase crystallized interdigitated back-contact solar cells on glass,” Energy Procedia 77, 487–492 (2015).
[Crossref]

V. Preidel, D. Amkreutz, J. Haschke, M. Wollgarten, B. Rech, and C. Becker, “Balance of optical, structural, and electrical properties of textured liquid phase crystallized Si solar cells,” J. Appl. Phys. 117, 225306 (2015).
[Crossref]

O. Gabriel, T. Frijnts, N. Preissler, D. Amkreutz, S. Calnan, S. Ring, B. Stannowski, B. Rech, and R. Schlatmann, “Crystalline silicon on glass - interface passivation and absorber material quality,” Prog. Photovolt: Res. Appl. 24, 1499–1512 (2015).
[Crossref]

J. Haschke, D. Amkreutz, L. Korte, F. Ruske, and B. Rech, “Towards wafer quality crystalline silicon thin-film solar cells on glass,” Sol. Energy Mat. Sol. Cells 128, 190–197 (2014).
[Crossref]

Reyes-Betanzo, C.

M. Moreno, D. Muias, J. Martínez, C. Reyes-Betanzo, A. Torres, R. Ambrosio, P Rosales, P. Roca i Cabarrocas, and M. Escobar, “A comparative study of wet and dry texturing processes of c-Si wafers for the fabrication of solar cells,” Solar Energy 101, 182–191 (2014).
[Crossref]

Richter, A.

J. Benick, A. Richter, R. Müller, H. Hauser, F. Feldmann, P. Krenckel, S. Riepe, F. Schindler, M. C. Schubert, M. Hermle, A. W. Bett, and S. W. Glunz, “High-Efficiency n-Type HP mc Silicon Solar Cells,” IEEE J. Photovoltaics 7, 1171–1175 (2017).
[Crossref]

Riepe, S.

J. Benick, A. Richter, R. Müller, H. Hauser, F. Feldmann, P. Krenckel, S. Riepe, F. Schindler, M. C. Schubert, M. Hermle, A. W. Bett, and S. W. Glunz, “High-Efficiency n-Type HP mc Silicon Solar Cells,” IEEE J. Photovoltaics 7, 1171–1175 (2017).
[Crossref]

Ring, S.

O. Gabriel, T. Frijnts, N. Preissler, D. Amkreutz, S. Calnan, S. Ring, B. Stannowski, B. Rech, and R. Schlatmann, “Crystalline silicon on glass - interface passivation and absorber material quality,” Prog. Photovolt: Res. Appl. 24, 1499–1512 (2015).
[Crossref]

Roca i Cabarrocas, P.

M. Moreno, D. Muias, J. Martínez, C. Reyes-Betanzo, A. Torres, R. Ambrosio, P Rosales, P. Roca i Cabarrocas, and M. Escobar, “A comparative study of wet and dry texturing processes of c-Si wafers for the fabrication of solar cells,” Solar Energy 101, 182–191 (2014).
[Crossref]

M. Moreno, D. Daineka, and P. Roca i Cabarrocas, “Plasma texturing for silicon solar cells: From pyramids to inverted pyramids-like structures,” Sol. Energy Mat. Sol. Cells 94, 733–737 (2010).
[Crossref]

Rosales, P

M. Moreno, D. Muias, J. Martínez, C. Reyes-Betanzo, A. Torres, R. Ambrosio, P Rosales, P. Roca i Cabarrocas, and M. Escobar, “A comparative study of wet and dry texturing processes of c-Si wafers for the fabrication of solar cells,” Solar Energy 101, 182–191 (2014).
[Crossref]

Ruske, F.

J. Haschke, D. Amkreutz, L. Korte, F. Ruske, and B. Rech, “Towards wafer quality crystalline silicon thin-film solar cells on glass,” Sol. Energy Mat. Sol. Cells 128, 190–197 (2014).
[Crossref]

Sai, H.

H. Sai, T. Matsui, K. Saito, M. Kondo, and I. Yoshida, “Photocurrent enhancement in thin-film silicon solar cells by combination of anti-reflective sub-wavelength structures and light-trapping textures,” Prog. Photovolt: Res. Appl. 23, 1572–1580 (2015).
[Crossref]

H. Sai, K. Saito, N. Hozuki, and M. Kondo, “Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells,” Appl. Phys. Lett. 102, 053509 (2013).
[Crossref]

Saito, K.

H. Sai, T. Matsui, K. Saito, M. Kondo, and I. Yoshida, “Photocurrent enhancement in thin-film silicon solar cells by combination of anti-reflective sub-wavelength structures and light-trapping textures,” Prog. Photovolt: Res. Appl. 23, 1572–1580 (2015).
[Crossref]

H. Sai, K. Saito, N. Hozuki, and M. Kondo, “Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells,” Appl. Phys. Lett. 102, 053509 (2013).
[Crossref]

Schindler, F.

J. Benick, A. Richter, R. Müller, H. Hauser, F. Feldmann, P. Krenckel, S. Riepe, F. Schindler, M. C. Schubert, M. Hermle, A. W. Bett, and S. W. Glunz, “High-Efficiency n-Type HP mc Silicon Solar Cells,” IEEE J. Photovoltaics 7, 1171–1175 (2017).
[Crossref]

Schlatmann, R.

C. T. Trinh, N. Preissler, P. Sonntag, M. Muske, K. Jäger, M. Trahms, R. Schlatmann, B. Rech, and D. Amkreutz, “Potential of interdigitated back-contact silicon heterojunction solar cells for liquid phase crystallized silicon on glass with efficiency above 14%,” Sol. Energy Mat. Sol. Cells 174, 187–195 (2018).
[Crossref]

P. Sonntag, N. Preissler, M. Bokalič, M. Trahms, J. Haschke, R. Schlatmann, M. Topič, B. Rech, and D. Amkreutz, “Silicon Solar Cells on Glass with Power Conversion Efficiency above 13% at Thickness below 15 Micrometer,” Sci. Rep. 7, 873 (2017).
[Crossref]

O. Gabriel, T. Frijnts, N. Preissler, D. Amkreutz, S. Calnan, S. Ring, B. Stannowski, B. Rech, and R. Schlatmann, “Crystalline silicon on glass - interface passivation and absorber material quality,” Prog. Photovolt: Res. Appl. 24, 1499–1512 (2015).
[Crossref]

Schubert, M. C.

J. Benick, A. Richter, R. Müller, H. Hauser, F. Feldmann, P. Krenckel, S. Riepe, F. Schindler, M. C. Schubert, M. Hermle, A. W. Bett, and S. W. Glunz, “High-Efficiency n-Type HP mc Silicon Solar Cells,” IEEE J. Photovoltaics 7, 1171–1175 (2017).
[Crossref]

Shargaieva, O.

D. Eisenhauer, G. Köppel, K. Jäger, D. Chen, O. Shargaieva, P. Sonntag, D. Amkreutz, B. Rech, and C. Becker, “Smooth anti-reflective three-dimensional textures for liquid phase crystallized silicon thin-film solar cells on glass,” Sci. Rep. 7, 2658 (2017).
[Crossref] [PubMed]

Söderström, K.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charriè, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light Trapping in Solar Cells: Can Periodic Beat Random?” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Sonntag, P.

C. T. Trinh, N. Preissler, P. Sonntag, M. Muske, K. Jäger, M. Trahms, R. Schlatmann, B. Rech, and D. Amkreutz, “Potential of interdigitated back-contact silicon heterojunction solar cells for liquid phase crystallized silicon on glass with efficiency above 14%,” Sol. Energy Mat. Sol. Cells 174, 187–195 (2018).
[Crossref]

D. Eisenhauer, G. Köppel, K. Jäger, D. Chen, O. Shargaieva, P. Sonntag, D. Amkreutz, B. Rech, and C. Becker, “Smooth anti-reflective three-dimensional textures for liquid phase crystallized silicon thin-film solar cells on glass,” Sci. Rep. 7, 2658 (2017).
[Crossref] [PubMed]

P. Sonntag, N. Preissler, M. Bokalič, M. Trahms, J. Haschke, R. Schlatmann, M. Topič, B. Rech, and D. Amkreutz, “Silicon Solar Cells on Glass with Power Conversion Efficiency above 13% at Thickness below 15 Micrometer,” Sci. Rep. 7, 873 (2017).
[Crossref]

P. Sonntag, J. Haschke, S. Kühnapfel, O. Gabriel, D. Amkreutz, and B. Rech, “Properties of liquid phase crystallized interdigitated back-contact solar cells on glass,” Energy Procedia 77, 487–492 (2015).
[Crossref]

Stannowski, B.

O. Gabriel, T. Frijnts, N. Preissler, D. Amkreutz, S. Calnan, S. Ring, B. Stannowski, B. Rech, and R. Schlatmann, “Crystalline silicon on glass - interface passivation and absorber material quality,” Prog. Photovolt: Res. Appl. 24, 1499–1512 (2015).
[Crossref]

Topic, M.

P. Sonntag, N. Preissler, M. Bokalič, M. Trahms, J. Haschke, R. Schlatmann, M. Topič, B. Rech, and D. Amkreutz, “Silicon Solar Cells on Glass with Power Conversion Efficiency above 13% at Thickness below 15 Micrometer,” Sci. Rep. 7, 873 (2017).
[Crossref]

Torres, A.

M. Moreno, D. Muias, J. Martínez, C. Reyes-Betanzo, A. Torres, R. Ambrosio, P Rosales, P. Roca i Cabarrocas, and M. Escobar, “A comparative study of wet and dry texturing processes of c-Si wafers for the fabrication of solar cells,” Solar Energy 101, 182–191 (2014).
[Crossref]

Trahms, M.

C. T. Trinh, N. Preissler, P. Sonntag, M. Muske, K. Jäger, M. Trahms, R. Schlatmann, B. Rech, and D. Amkreutz, “Potential of interdigitated back-contact silicon heterojunction solar cells for liquid phase crystallized silicon on glass with efficiency above 14%,” Sol. Energy Mat. Sol. Cells 174, 187–195 (2018).
[Crossref]

P. Sonntag, N. Preissler, M. Bokalič, M. Trahms, J. Haschke, R. Schlatmann, M. Topič, B. Rech, and D. Amkreutz, “Silicon Solar Cells on Glass with Power Conversion Efficiency above 13% at Thickness below 15 Micrometer,” Sci. Rep. 7, 873 (2017).
[Crossref]

Trinh, C. T.

C. T. Trinh, N. Preissler, P. Sonntag, M. Muske, K. Jäger, M. Trahms, R. Schlatmann, B. Rech, and D. Amkreutz, “Potential of interdigitated back-contact silicon heterojunction solar cells for liquid phase crystallized silicon on glass with efficiency above 14%,” Sol. Energy Mat. Sol. Cells 174, 187–195 (2018).
[Crossref]

Vallat-Sauvain, E.

M. Python, O. Madani, D. Dominé, F. Meillaud, E. Vallat-Sauvain, and C. Ballif, “Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells,” Sol. Energy Mat. Sol. Cells 93, 1714–1720 (2009).
[Crossref]

Wang, Y.

Y. Wang, R. Luo, J. Ma, and S.-Q. Man, “Fabrication of the pyramidal microstructure on silicon substrate using KOH solution,” 5th International Conference on Advanced Engineering Materials and Technology 5, 302–307 (2015).

Wollgarten, M.

V. Preidel, D. Amkreutz, J. Haschke, M. Wollgarten, B. Rech, and C. Becker, “Balance of optical, structural, and electrical properties of textured liquid phase crystallized Si solar cells,” J. Appl. Phys. 117, 225306 (2015).
[Crossref]

Yoshida, I.

H. Sai, T. Matsui, K. Saito, M. Kondo, and I. Yoshida, “Photocurrent enhancement in thin-film silicon solar cells by combination of anti-reflective sub-wavelength structures and light-trapping textures,” Prog. Photovolt: Res. Appl. 23, 1572–1580 (2015).
[Crossref]

Yu, Z.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Exp. 18, A366–A380 (2010).
[Crossref]

5th International Conference on Advanced Engineering Materials and Technology (1)

Y. Wang, R. Luo, J. Ma, and S.-Q. Man, “Fabrication of the pyramidal microstructure on silicon substrate using KOH solution,” 5th International Conference on Advanced Engineering Materials and Technology 5, 302–307 (2015).

ACS Nano (1)

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charriè, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light Trapping in Solar Cells: Can Periodic Beat Random?” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Adv. Mater. (1)

L. J. Guo, “Nano-imprint lithography: Methods and Material Requirements,” Adv. Mater. 19, 495–513 (2007).
[Crossref]

Appl. Phys. Lett. (1)

H. Sai, K. Saito, N. Hozuki, and M. Kondo, “Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells,” Appl. Phys. Lett. 102, 053509 (2013).
[Crossref]

Energy Procedia (1)

P. Sonntag, J. Haschke, S. Kühnapfel, O. Gabriel, D. Amkreutz, and B. Rech, “Properties of liquid phase crystallized interdigitated back-contact solar cells on glass,” Energy Procedia 77, 487–492 (2015).
[Crossref]

IEEE J. Photovoltaics (1)

J. Benick, A. Richter, R. Müller, H. Hauser, F. Feldmann, P. Krenckel, S. Riepe, F. Schindler, M. C. Schubert, M. Hermle, A. W. Bett, and S. W. Glunz, “High-Efficiency n-Type HP mc Silicon Solar Cells,” IEEE J. Photovoltaics 7, 1171–1175 (2017).
[Crossref]

J. Appl. Phys. (1)

V. Preidel, D. Amkreutz, J. Haschke, M. Wollgarten, B. Rech, and C. Becker, “Balance of optical, structural, and electrical properties of textured liquid phase crystallized Si solar cells,” J. Appl. Phys. 117, 225306 (2015).
[Crossref]

Nano Lett. (1)

S. E. Han and G. Chen, “Toward the Lambertian Limit of Light Trapping in Thin Nanostructured Silicon Solar Cells,” Nano Lett. 10, 4692–4696 (2010).
[Crossref] [PubMed]

Nanoscale (1)

G. Köppel, B. Rech, and C. Becker, “Sinusoidal nanotextures for light management in silicon thin-film solar cells,” Nanoscale 8, 8722–8728 (2016).
[Crossref] [PubMed]

Opt. Exp. (2)

G. Köppel, D. Eisenhauer, B. Rech, and C. Becker, “Combining tailor-made textures for light incoupling and light trapping in liquid phase crystallized silicon thin-film solar cells,” Opt. Exp. 25, A467–A472 (2017).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Exp. 18, A366–A380 (2010).
[Crossref]

Prog. Photovolt: Res. Appl. (2)

H. Sai, T. Matsui, K. Saito, M. Kondo, and I. Yoshida, “Photocurrent enhancement in thin-film silicon solar cells by combination of anti-reflective sub-wavelength structures and light-trapping textures,” Prog. Photovolt: Res. Appl. 23, 1572–1580 (2015).
[Crossref]

O. Gabriel, T. Frijnts, N. Preissler, D. Amkreutz, S. Calnan, S. Ring, B. Stannowski, B. Rech, and R. Schlatmann, “Crystalline silicon on glass - interface passivation and absorber material quality,” Prog. Photovolt: Res. Appl. 24, 1499–1512 (2015).
[Crossref]

Sci. Rep. (2)

D. Eisenhauer, G. Köppel, K. Jäger, D. Chen, O. Shargaieva, P. Sonntag, D. Amkreutz, B. Rech, and C. Becker, “Smooth anti-reflective three-dimensional textures for liquid phase crystallized silicon thin-film solar cells on glass,” Sci. Rep. 7, 2658 (2017).
[Crossref] [PubMed]

P. Sonntag, N. Preissler, M. Bokalič, M. Trahms, J. Haschke, R. Schlatmann, M. Topič, B. Rech, and D. Amkreutz, “Silicon Solar Cells on Glass with Power Conversion Efficiency above 13% at Thickness below 15 Micrometer,” Sci. Rep. 7, 873 (2017).
[Crossref]

Sol. Energy Mat. Sol. Cells (4)

C. T. Trinh, N. Preissler, P. Sonntag, M. Muske, K. Jäger, M. Trahms, R. Schlatmann, B. Rech, and D. Amkreutz, “Potential of interdigitated back-contact silicon heterojunction solar cells for liquid phase crystallized silicon on glass with efficiency above 14%,” Sol. Energy Mat. Sol. Cells 174, 187–195 (2018).
[Crossref]

M. Python, O. Madani, D. Dominé, F. Meillaud, E. Vallat-Sauvain, and C. Ballif, “Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells,” Sol. Energy Mat. Sol. Cells 93, 1714–1720 (2009).
[Crossref]

J. Haschke, D. Amkreutz, L. Korte, F. Ruske, and B. Rech, “Towards wafer quality crystalline silicon thin-film solar cells on glass,” Sol. Energy Mat. Sol. Cells 128, 190–197 (2014).
[Crossref]

M. Moreno, D. Daineka, and P. Roca i Cabarrocas, “Plasma texturing for silicon solar cells: From pyramids to inverted pyramids-like structures,” Sol. Energy Mat. Sol. Cells 94, 733–737 (2010).
[Crossref]

Solar Energy (1)

M. Moreno, D. Muias, J. Martínez, C. Reyes-Betanzo, A. Torres, R. Ambrosio, P Rosales, P. Roca i Cabarrocas, and M. Escobar, “A comparative study of wet and dry texturing processes of c-Si wafers for the fabrication of solar cells,” Solar Energy 101, 182–191 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic fabrication processes of micro-textures in liquid phase crystallized silicon. Upper row: Honeycomb textures produced by nano-imprint lithography (NIL) and subsequent reactive ion etching (RIE). Lower row: state-of-the-art wet-chemical etching of random pyramidal textures in potassium hydroxide (KOH).
Fig. 2
Fig. 2 Laser scanning confocal microscope images of the back-side textures investigated, namely a random pyramid texture produced by wet-chemical etching in potassium hydroxide (KOH texture), a random micro-texture produced by reactive ion etching in SF6/O2 plasma (SF6/O2 texture) [19], an array of inverted pyramids and honeycomb textures produced by NIL+RIE. All images contain one grain boundary, which is highlighted by an arrow.
Fig. 3
Fig. 3 (a) Laser scanning confocal microscope images of honeycomb textures for periods of P = 6.0 µm, P = 3.0 µm, and P = 1.5 µm and a height-to-period ratio of 0.2. Highlighted in blue are the surface profiles analyzed in atomic force microscopy. (b) Surface profiles measured by atomic force microscopy of a LPC silicon surface with honeycomb texture with periods of 6.0 µm (black) and 1.5 µm (blue).
Fig. 4
Fig. 4 Mean absorptance between 800 nm and 1100 nm of 16 µm thick LPC silicon absorbers with honeycomb textures produced by NIL+RIE, for periods P = 1.5 µm (green), 3.0 µm (blue), and 6.0 µm (red) and varied height-to-period ratios.
Fig. 5
Fig. 5 Absorptance of 16 µm thick LPC silicon absorbers with different back-side texture.
Fig. 6
Fig. 6 Mean absorptance and standard deviation for four spots on 16 µm thick multi-crystalline LPC silicon absorbers with a KOH pyramid texture (black) and the optimized honeycomb texture (red), highlighted for the wavelength range from 700 nm to 1200 nm.
Fig. 7
Fig. 7 Mean absorptance from 700 nm to 1100 nm in dependency of the angle of incidence of the incoming light for 16 µm thick LPC silicon absorbers with a planar back-side (grey), KOH pyramid texture (black) and the optimized honeycomb texture (red).
Fig. 8
Fig. 8 External quantum efficiency (EQE, solid) and absorptance (dashed) for LPC silicon thin-film solar cells with a KOH textured (black) and honeycomb textured (red) back-side.

Metrics