Abstract

Breaking the total internal reflection far above a critical angle (i.e., outcoupling deep-trap guided modes) can dramatically improve existing light-emitting devices. Here, we report a deep-trap guided modes outcoupler using densely arranged microstructured hollow cavities. Measurements of the leaky mode dispersions of hollow-cavity gratings accurately quantify the wavelength-dependent outcoupling strength above a critical angle, which is progressively improved over the full visible spectrum by increasing the packing density. Comparing hollow- and filled-cavity gratings, which have identical morphologies except for their inner materials (void vs. solid sapphire), reveals the effectiveness of using the hollow-cavity grating to outcouple deep-trap guided modes, which results from its enhanced transmittance at near-horizontal incidence. Scattering analysis shows that the outcoupling characteristics of a cavity array are dictated by the forward scattering characteristics of their individual cavities, suggesting the importance of a rationally designed single cavity. We believe that a hollow-cavity array tailored for different structures and spectra will lead to a technological breakthrough in any type of light-emitting device.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
MgO nano-pyramids structure for enhancement of light extraction efficiency in vertical light-emitting diodes

Jun Ho Son, Hak Ki Yu, and Jong-Lam Lee
Opt. Express 18(S3) A403-A410 (2010)

Understanding light trapping by resonant coupling to guided modes and the importance of the mode profile

Fiona J. Beck, Alexandros Stavrinadis, Tania Lasanta, John-Paul Szczepanick, and Gerasimos Konstantatos
Opt. Express 24(2) 759-772 (2016)

Light extraction from surface plasmons and waveguide modes in an organic light-emitting layer by nanoimprinted gratings

Jörg Frischeisen, Quan Niu, Alaa Abdellah, Jörg B. Kinzel, Robert Gehlhaar, Giuseppe Scarpa, Chihaya Adachi, Paolo Lugli, and Wolfgang Brütting
Opt. Express 19(S1) A7-A19 (2011)

References

  • View by:
  • |
  • |
  • |

  1. S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, “Nanophase-Separated Polymer Films as High-Performance Antireflection Coatings,” Science 283(5401), 520–522 (1999).
    [Crossref] [PubMed]
  2. P. Kuang, S. Eyderman, M.-L. Hsieh, A. Post, S. John, and S.-Y. Lin, “Achieving an Accurate Surface Profile of a Photonic Crystal for Near-Unity Solar Absorption in a Super Thin-Film Architecture,” ACS Nano 10(6), 6116–6124 (2016).
    [Crossref] [PubMed]
  3. M. Jacobs, M. Lopez-Garcia, O.-P. Phrathep, T. Lawson, R. Oulton, and H. M. Whitney, “Photonic multilayer structure of Begonia chloroplasts enhances photosynthetic efficiency,” Nat. Plants 2(11), 16162 (2016).
    [Crossref] [PubMed]
  4. M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
    [Crossref] [PubMed]
  5. J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
    [Crossref]
  6. S. J. Oh, S. Chhajed, D. J. Poxson, J. Cho, E. F. Schubert, S. J. Tark, D. Kim, and J. K. Kim, “Enhanced broadband and omni-directional performance of polycrystalline Si solar cells by using discrete multilayer antireflection coatings,” Opt. Express 21(S1Suppl 1), A157–A166 (2013).
    [Crossref] [PubMed]
  7. K. L. Morgan, D. E. Brocker, S. D. Campbell, D. H. Werner, and P. L. Werner, “Transformation-optics-inspired anti-reflective coating design for gradient index lenses,” Opt. Lett. 40(11), 2521–2524 (2015).
    [Crossref] [PubMed]
  8. C. Onwudinanti, R. Vismara, O. Isabella, L. Grenet, F. Emieux, and M. Zeman, “Advanced light management based on periodic textures for Cu(In,Ga)Se2 thin-film solar cells,” Opt. Express 24(6), A693–A707 (2016).
    [Crossref] [PubMed]
  9. J. H. Son, J. U. Kim, Y. H. Song, B. J. Kim, C. J. Ryu, and J.-L. Lee, “Design Rule of Nanostructures in Light-Emitting Diodes for Complete Elimination of Total Internal Reflection,” Adv. Mater. 24(17), 2259–2262 (2012).
    [Crossref] [PubMed]
  10. A. David, M. R. Sharma, F. S. Diana, S. P. DenBaars, E. Hu, S. Nakamura, and C. Weisbuch, “Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction,” Appl. Phys. Lett. 87(10), 101107 (2005).
    [Crossref]
  11. A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S. P. DenBaars, E. L. Hu, C. Weisbuch, and H. Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett. 88(6), 061124 (2006).
    [Crossref]
  12. S. Noda and M. Fujita, “Light-emitting diodes: Photonic crystal efficiency boost,” Nat. Photonics 3(3), 129–130 (2009).
    [Crossref]
  13. C. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, “Photonic crystal LEDs-designing light extraction,” Laser Photonics Rev. 3(3), 262–286 (2009).
    [Crossref]
  14. J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
    [Crossref]
  15. Y.-J. Moon, D. Moon, J. Jang, J.-Y. Na, J.-H. Song, M.-K. Seo, S. Kim, D. Bae, E. H. Park, Y. Park, S.-K. Kim, and E. Yoon, “Microstructured Air Cavities as High-Index Contrast Substrates with Strong Diffraction for Light-Emitting Diodes,” Nano Lett. 16(5), 3301–3308 (2016).
    [Crossref] [PubMed]
  16. E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, E. Hu, and C. Weisbuch, “High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals,” Appl. Phys. Lett. 96(3), 031108 (2010).
    [Crossref]
  17. J. Kim, H. Woo, K. Joo, S. Tae, J. Park, D. Moon, S. H. Park, J. Jang, Y. Cho, J. Park, H. Yuh, G.-D. Lee, I.-S. Choi, Y. Nanishi, H. N. Han, K. Char, and E. Yoon, “Less strained and more efficient GaN light-emitting diodes with embedded silica hollow nanospheres,” Sci. Rep. 3(1), 3201 (2013).
    [Crossref] [PubMed]
  18. J. Jang, D. Moon, H.-J. Lee, D. Lee, D. Choi, D. Bae, H. Yuh, Y. Moon, Y. Park, and E. Yoon, “Incorporation of air-cavity into sapphire substrate and its effect on GaN growth and optical properties,” J. Cryst. Growth 430, 41–45 (2015).
    [Crossref]
  19. A. David, H. Benisty, and C. Weisbuch, “Optimization of Light-Diffracting Photonic-Crystals for High Extraction Efficiency LEDs,” J. Disp. Technol. 3(2), 133–148 (2007).
    [Crossref]
  20. Ch. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, “Analysis of the emission characteristics of photonic crystal LEDs,” Proc. SPIE 6989, 69890L (2008).
    [Crossref]
  21. N. N. Shi, C.-C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, “Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants,” Science 349(6245), 298–301 (2015).
    [Crossref] [PubMed]
  22. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2009).
  23. L. Bragg, “X-ray crystallography,” Sci. Am. 219(1), 58–70 (1968).
    [Crossref] [PubMed]
  24. C. Kittel, Introduction to Solid State Physics (Wiley, 2004).
  25. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3(1), 692 (2012).
    [Crossref] [PubMed]
  26. A. I. Zayed, “A Convolution and Product Theorem for the Fractional Fourier Transform,” IEEE Signal Process. Lett. 5(4), 101–103 (1998).
    [Crossref]

2016 (4)

P. Kuang, S. Eyderman, M.-L. Hsieh, A. Post, S. John, and S.-Y. Lin, “Achieving an Accurate Surface Profile of a Photonic Crystal for Near-Unity Solar Absorption in a Super Thin-Film Architecture,” ACS Nano 10(6), 6116–6124 (2016).
[Crossref] [PubMed]

M. Jacobs, M. Lopez-Garcia, O.-P. Phrathep, T. Lawson, R. Oulton, and H. M. Whitney, “Photonic multilayer structure of Begonia chloroplasts enhances photosynthetic efficiency,” Nat. Plants 2(11), 16162 (2016).
[Crossref] [PubMed]

C. Onwudinanti, R. Vismara, O. Isabella, L. Grenet, F. Emieux, and M. Zeman, “Advanced light management based on periodic textures for Cu(In,Ga)Se2 thin-film solar cells,” Opt. Express 24(6), A693–A707 (2016).
[Crossref] [PubMed]

Y.-J. Moon, D. Moon, J. Jang, J.-Y. Na, J.-H. Song, M.-K. Seo, S. Kim, D. Bae, E. H. Park, Y. Park, S.-K. Kim, and E. Yoon, “Microstructured Air Cavities as High-Index Contrast Substrates with Strong Diffraction for Light-Emitting Diodes,” Nano Lett. 16(5), 3301–3308 (2016).
[Crossref] [PubMed]

2015 (3)

J. Jang, D. Moon, H.-J. Lee, D. Lee, D. Choi, D. Bae, H. Yuh, Y. Moon, Y. Park, and E. Yoon, “Incorporation of air-cavity into sapphire substrate and its effect on GaN growth and optical properties,” J. Cryst. Growth 430, 41–45 (2015).
[Crossref]

K. L. Morgan, D. E. Brocker, S. D. Campbell, D. H. Werner, and P. L. Werner, “Transformation-optics-inspired anti-reflective coating design for gradient index lenses,” Opt. Lett. 40(11), 2521–2524 (2015).
[Crossref] [PubMed]

N. N. Shi, C.-C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, “Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants,” Science 349(6245), 298–301 (2015).
[Crossref] [PubMed]

2014 (1)

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

2013 (2)

S. J. Oh, S. Chhajed, D. J. Poxson, J. Cho, E. F. Schubert, S. J. Tark, D. Kim, and J. K. Kim, “Enhanced broadband and omni-directional performance of polycrystalline Si solar cells by using discrete multilayer antireflection coatings,” Opt. Express 21(S1Suppl 1), A157–A166 (2013).
[Crossref] [PubMed]

J. Kim, H. Woo, K. Joo, S. Tae, J. Park, D. Moon, S. H. Park, J. Jang, Y. Cho, J. Park, H. Yuh, G.-D. Lee, I.-S. Choi, Y. Nanishi, H. N. Han, K. Char, and E. Yoon, “Less strained and more efficient GaN light-emitting diodes with embedded silica hollow nanospheres,” Sci. Rep. 3(1), 3201 (2013).
[Crossref] [PubMed]

2012 (2)

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3(1), 692 (2012).
[Crossref] [PubMed]

J. H. Son, J. U. Kim, Y. H. Song, B. J. Kim, C. J. Ryu, and J.-L. Lee, “Design Rule of Nanostructures in Light-Emitting Diodes for Complete Elimination of Total Internal Reflection,” Adv. Mater. 24(17), 2259–2262 (2012).
[Crossref] [PubMed]

2010 (1)

E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, E. Hu, and C. Weisbuch, “High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals,” Appl. Phys. Lett. 96(3), 031108 (2010).
[Crossref]

2009 (3)

S. Noda and M. Fujita, “Light-emitting diodes: Photonic crystal efficiency boost,” Nat. Photonics 3(3), 129–130 (2009).
[Crossref]

C. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, “Photonic crystal LEDs-designing light extraction,” Laser Photonics Rev. 3(3), 262–286 (2009).
[Crossref]

J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
[Crossref]

2008 (1)

Ch. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, “Analysis of the emission characteristics of photonic crystal LEDs,” Proc. SPIE 6989, 69890L (2008).
[Crossref]

2007 (2)

A. David, H. Benisty, and C. Weisbuch, “Optimization of Light-Diffracting Photonic-Crystals for High Extraction Efficiency LEDs,” J. Disp. Technol. 3(2), 133–148 (2007).
[Crossref]

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

2006 (1)

A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S. P. DenBaars, E. L. Hu, C. Weisbuch, and H. Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett. 88(6), 061124 (2006).
[Crossref]

2005 (1)

A. David, M. R. Sharma, F. S. Diana, S. P. DenBaars, E. Hu, S. Nakamura, and C. Weisbuch, “Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction,” Appl. Phys. Lett. 87(10), 101107 (2005).
[Crossref]

1999 (1)

S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, “Nanophase-Separated Polymer Films as High-Performance Antireflection Coatings,” Science 283(5401), 520–522 (1999).
[Crossref] [PubMed]

1998 (1)

A. I. Zayed, “A Convolution and Product Theorem for the Fractional Fourier Transform,” IEEE Signal Process. Lett. 5(4), 101–103 (1998).
[Crossref]

1968 (1)

L. Bragg, “X-ray crystallography,” Sci. Am. 219(1), 58–70 (1968).
[Crossref] [PubMed]

Bae, D.

Y.-J. Moon, D. Moon, J. Jang, J.-Y. Na, J.-H. Song, M.-K. Seo, S. Kim, D. Bae, E. H. Park, Y. Park, S.-K. Kim, and E. Yoon, “Microstructured Air Cavities as High-Index Contrast Substrates with Strong Diffraction for Light-Emitting Diodes,” Nano Lett. 16(5), 3301–3308 (2016).
[Crossref] [PubMed]

J. Jang, D. Moon, H.-J. Lee, D. Lee, D. Choi, D. Bae, H. Yuh, Y. Moon, Y. Park, and E. Yoon, “Incorporation of air-cavity into sapphire substrate and its effect on GaN growth and optical properties,” J. Cryst. Growth 430, 41–45 (2015).
[Crossref]

Benisty, H.

A. David, H. Benisty, and C. Weisbuch, “Optimization of Light-Diffracting Photonic-Crystals for High Extraction Efficiency LEDs,” J. Disp. Technol. 3(2), 133–148 (2007).
[Crossref]

A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S. P. DenBaars, E. L. Hu, C. Weisbuch, and H. Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett. 88(6), 061124 (2006).
[Crossref]

Bergenek, K.

C. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, “Photonic crystal LEDs-designing light extraction,” Laser Photonics Rev. 3(3), 262–286 (2009).
[Crossref]

Ch. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, “Analysis of the emission characteristics of photonic crystal LEDs,” Proc. SPIE 6989, 69890L (2008).
[Crossref]

Bernard, G. D.

N. N. Shi, C.-C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, “Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants,” Science 349(6245), 298–301 (2015).
[Crossref] [PubMed]

Bragg, L.

L. Bragg, “X-ray crystallography,” Sci. Am. 219(1), 58–70 (1968).
[Crossref] [PubMed]

Brocker, D. E.

Brongersma, M. L.

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

Camino, F.

N. N. Shi, C.-C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, “Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants,” Science 349(6245), 298–301 (2015).
[Crossref] [PubMed]

Campbell, S. D.

Char, K.

J. Kim, H. Woo, K. Joo, S. Tae, J. Park, D. Moon, S. H. Park, J. Jang, Y. Cho, J. Park, H. Yuh, G.-D. Lee, I.-S. Choi, Y. Nanishi, H. N. Han, K. Char, and E. Yoon, “Less strained and more efficient GaN light-emitting diodes with embedded silica hollow nanospheres,” Sci. Rep. 3(1), 3201 (2013).
[Crossref] [PubMed]

Chen, M.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Chhajed, S.

Cho, J.

Cho, Y.

J. Kim, H. Woo, K. Joo, S. Tae, J. Park, D. Moon, S. H. Park, J. Jang, Y. Cho, J. Park, H. Yuh, G.-D. Lee, I.-S. Choi, Y. Nanishi, H. N. Han, K. Char, and E. Yoon, “Less strained and more efficient GaN light-emitting diodes with embedded silica hollow nanospheres,” Sci. Rep. 3(1), 3201 (2013).
[Crossref] [PubMed]

Choi, D.

J. Jang, D. Moon, H.-J. Lee, D. Lee, D. Choi, D. Bae, H. Yuh, Y. Moon, Y. Park, and E. Yoon, “Incorporation of air-cavity into sapphire substrate and its effect on GaN growth and optical properties,” J. Cryst. Growth 430, 41–45 (2015).
[Crossref]

Choi, I.-S.

J. Kim, H. Woo, K. Joo, S. Tae, J. Park, D. Moon, S. H. Park, J. Jang, Y. Cho, J. Park, H. Yuh, G.-D. Lee, I.-S. Choi, Y. Nanishi, H. N. Han, K. Char, and E. Yoon, “Less strained and more efficient GaN light-emitting diodes with embedded silica hollow nanospheres,” Sci. Rep. 3(1), 3201 (2013).
[Crossref] [PubMed]

Cui, Y.

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

David, A.

J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
[Crossref]

A. David, H. Benisty, and C. Weisbuch, “Optimization of Light-Diffracting Photonic-Crystals for High Extraction Efficiency LEDs,” J. Disp. Technol. 3(2), 133–148 (2007).
[Crossref]

A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S. P. DenBaars, E. L. Hu, C. Weisbuch, and H. Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett. 88(6), 061124 (2006).
[Crossref]

A. David, M. R. Sharma, F. S. Diana, S. P. DenBaars, E. Hu, S. Nakamura, and C. Weisbuch, “Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction,” Appl. Phys. Lett. 87(10), 101107 (2005).
[Crossref]

DenBaars, S. P.

A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S. P. DenBaars, E. L. Hu, C. Weisbuch, and H. Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett. 88(6), 061124 (2006).
[Crossref]

A. David, M. R. Sharma, F. S. Diana, S. P. DenBaars, E. Hu, S. Nakamura, and C. Weisbuch, “Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction,” Appl. Phys. Lett. 87(10), 101107 (2005).
[Crossref]

Diana, F. S.

A. David, M. R. Sharma, F. S. Diana, S. P. DenBaars, E. Hu, S. Nakamura, and C. Weisbuch, “Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction,” Appl. Phys. Lett. 87(10), 101107 (2005).
[Crossref]

Emieux, F.

Eyderman, S.

P. Kuang, S. Eyderman, M.-L. Hsieh, A. Post, S. John, and S.-Y. Lin, “Achieving an Accurate Surface Profile of a Photonic Crystal for Near-Unity Solar Absorption in a Super Thin-Film Architecture,” ACS Nano 10(6), 6116–6124 (2016).
[Crossref] [PubMed]

Fan, S.

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

Fleury, B.

E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, E. Hu, and C. Weisbuch, “High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals,” Appl. Phys. Lett. 96(3), 031108 (2010).
[Crossref]

Fujii, T.

A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S. P. DenBaars, E. L. Hu, C. Weisbuch, and H. Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett. 88(6), 061124 (2006).
[Crossref]

Fujita, M.

S. Noda and M. Fujita, “Light-emitting diodes: Photonic crystal efficiency boost,” Nat. Photonics 3(3), 129–130 (2009).
[Crossref]

Grenet, L.

Han, H. N.

J. Kim, H. Woo, K. Joo, S. Tae, J. Park, D. Moon, S. H. Park, J. Jang, Y. Cho, J. Park, H. Yuh, G.-D. Lee, I.-S. Choi, Y. Nanishi, H. N. Han, K. Char, and E. Yoon, “Less strained and more efficient GaN light-emitting diodes with embedded silica hollow nanospheres,” Sci. Rep. 3(1), 3201 (2013).
[Crossref] [PubMed]

Hsieh, M.-L.

P. Kuang, S. Eyderman, M.-L. Hsieh, A. Post, S. John, and S.-Y. Lin, “Achieving an Accurate Surface Profile of a Photonic Crystal for Near-Unity Solar Absorption in a Super Thin-Film Architecture,” ACS Nano 10(6), 6116–6124 (2016).
[Crossref] [PubMed]

Hu, E.

E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, E. Hu, and C. Weisbuch, “High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals,” Appl. Phys. Lett. 96(3), 031108 (2010).
[Crossref]

A. David, M. R. Sharma, F. S. Diana, S. P. DenBaars, E. Hu, S. Nakamura, and C. Weisbuch, “Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction,” Appl. Phys. Lett. 87(10), 101107 (2005).
[Crossref]

Hu, E. L.

A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S. P. DenBaars, E. L. Hu, C. Weisbuch, and H. Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett. 88(6), 061124 (2006).
[Crossref]

Isabella, O.

Iza, M.

E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, E. Hu, and C. Weisbuch, “High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals,” Appl. Phys. Lett. 96(3), 031108 (2010).
[Crossref]

Jacobs, M.

M. Jacobs, M. Lopez-Garcia, O.-P. Phrathep, T. Lawson, R. Oulton, and H. M. Whitney, “Photonic multilayer structure of Begonia chloroplasts enhances photosynthetic efficiency,” Nat. Plants 2(11), 16162 (2016).
[Crossref] [PubMed]

Jang, J.

Y.-J. Moon, D. Moon, J. Jang, J.-Y. Na, J.-H. Song, M.-K. Seo, S. Kim, D. Bae, E. H. Park, Y. Park, S.-K. Kim, and E. Yoon, “Microstructured Air Cavities as High-Index Contrast Substrates with Strong Diffraction for Light-Emitting Diodes,” Nano Lett. 16(5), 3301–3308 (2016).
[Crossref] [PubMed]

J. Jang, D. Moon, H.-J. Lee, D. Lee, D. Choi, D. Bae, H. Yuh, Y. Moon, Y. Park, and E. Yoon, “Incorporation of air-cavity into sapphire substrate and its effect on GaN growth and optical properties,” J. Cryst. Growth 430, 41–45 (2015).
[Crossref]

J. Kim, H. Woo, K. Joo, S. Tae, J. Park, D. Moon, S. H. Park, J. Jang, Y. Cho, J. Park, H. Yuh, G.-D. Lee, I.-S. Choi, Y. Nanishi, H. N. Han, K. Char, and E. Yoon, “Less strained and more efficient GaN light-emitting diodes with embedded silica hollow nanospheres,” Sci. Rep. 3(1), 3201 (2013).
[Crossref] [PubMed]

John, S.

P. Kuang, S. Eyderman, M.-L. Hsieh, A. Post, S. John, and S.-Y. Lin, “Achieving an Accurate Surface Profile of a Photonic Crystal for Near-Unity Solar Absorption in a Super Thin-Film Architecture,” ACS Nano 10(6), 6116–6124 (2016).
[Crossref] [PubMed]

Joo, K.

J. Kim, H. Woo, K. Joo, S. Tae, J. Park, D. Moon, S. H. Park, J. Jang, Y. Cho, J. Park, H. Yuh, G.-D. Lee, I.-S. Choi, Y. Nanishi, H. N. Han, K. Char, and E. Yoon, “Less strained and more efficient GaN light-emitting diodes with embedded silica hollow nanospheres,” Sci. Rep. 3(1), 3201 (2013).
[Crossref] [PubMed]

Kim, B. J.

J. H. Son, J. U. Kim, Y. H. Song, B. J. Kim, C. J. Ryu, and J.-L. Lee, “Design Rule of Nanostructures in Light-Emitting Diodes for Complete Elimination of Total Internal Reflection,” Adv. Mater. 24(17), 2259–2262 (2012).
[Crossref] [PubMed]

Kim, D.

Kim, J.

J. Kim, H. Woo, K. Joo, S. Tae, J. Park, D. Moon, S. H. Park, J. Jang, Y. Cho, J. Park, H. Yuh, G.-D. Lee, I.-S. Choi, Y. Nanishi, H. N. Han, K. Char, and E. Yoon, “Less strained and more efficient GaN light-emitting diodes with embedded silica hollow nanospheres,” Sci. Rep. 3(1), 3201 (2013).
[Crossref] [PubMed]

Kim, J. K.

S. J. Oh, S. Chhajed, D. J. Poxson, J. Cho, E. F. Schubert, S. J. Tark, D. Kim, and J. K. Kim, “Enhanced broadband and omni-directional performance of polycrystalline Si solar cells by using discrete multilayer antireflection coatings,” Opt. Express 21(S1Suppl 1), A157–A166 (2013).
[Crossref] [PubMed]

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Kim, J. U.

J. H. Son, J. U. Kim, Y. H. Song, B. J. Kim, C. J. Ryu, and J.-L. Lee, “Design Rule of Nanostructures in Light-Emitting Diodes for Complete Elimination of Total Internal Reflection,” Adv. Mater. 24(17), 2259–2262 (2012).
[Crossref] [PubMed]

Kim, S.

Y.-J. Moon, D. Moon, J. Jang, J.-Y. Na, J.-H. Song, M.-K. Seo, S. Kim, D. Bae, E. H. Park, Y. Park, S.-K. Kim, and E. Yoon, “Microstructured Air Cavities as High-Index Contrast Substrates with Strong Diffraction for Light-Emitting Diodes,” Nano Lett. 16(5), 3301–3308 (2016).
[Crossref] [PubMed]

Kim, S.-K.

Y.-J. Moon, D. Moon, J. Jang, J.-Y. Na, J.-H. Song, M.-K. Seo, S. Kim, D. Bae, E. H. Park, Y. Park, S.-K. Kim, and E. Yoon, “Microstructured Air Cavities as High-Index Contrast Substrates with Strong Diffraction for Light-Emitting Diodes,” Nano Lett. 16(5), 3301–3308 (2016).
[Crossref] [PubMed]

Kuang, P.

P. Kuang, S. Eyderman, M.-L. Hsieh, A. Post, S. John, and S.-Y. Lin, “Achieving an Accurate Surface Profile of a Photonic Crystal for Near-Unity Solar Absorption in a Super Thin-Film Architecture,” ACS Nano 10(6), 6116–6124 (2016).
[Crossref] [PubMed]

Lawson, T.

M. Jacobs, M. Lopez-Garcia, O.-P. Phrathep, T. Lawson, R. Oulton, and H. M. Whitney, “Photonic multilayer structure of Begonia chloroplasts enhances photosynthetic efficiency,” Nat. Plants 2(11), 16162 (2016).
[Crossref] [PubMed]

Lee, D.

J. Jang, D. Moon, H.-J. Lee, D. Lee, D. Choi, D. Bae, H. Yuh, Y. Moon, Y. Park, and E. Yoon, “Incorporation of air-cavity into sapphire substrate and its effect on GaN growth and optical properties,” J. Cryst. Growth 430, 41–45 (2015).
[Crossref]

Lee, G.-D.

J. Kim, H. Woo, K. Joo, S. Tae, J. Park, D. Moon, S. H. Park, J. Jang, Y. Cho, J. Park, H. Yuh, G.-D. Lee, I.-S. Choi, Y. Nanishi, H. N. Han, K. Char, and E. Yoon, “Less strained and more efficient GaN light-emitting diodes with embedded silica hollow nanospheres,” Sci. Rep. 3(1), 3201 (2013).
[Crossref] [PubMed]

Lee, H.-J.

J. Jang, D. Moon, H.-J. Lee, D. Lee, D. Choi, D. Bae, H. Yuh, Y. Moon, Y. Park, and E. Yoon, “Incorporation of air-cavity into sapphire substrate and its effect on GaN growth and optical properties,” J. Cryst. Growth 430, 41–45 (2015).
[Crossref]

Lee, J.-L.

J. H. Son, J. U. Kim, Y. H. Song, B. J. Kim, C. J. Ryu, and J.-L. Lee, “Design Rule of Nanostructures in Light-Emitting Diodes for Complete Elimination of Total Internal Reflection,” Adv. Mater. 24(17), 2259–2262 (2012).
[Crossref] [PubMed]

Lin, S.-Y.

P. Kuang, S. Eyderman, M.-L. Hsieh, A. Post, S. John, and S.-Y. Lin, “Achieving an Accurate Surface Profile of a Photonic Crystal for Near-Unity Solar Absorption in a Super Thin-Film Architecture,” ACS Nano 10(6), 6116–6124 (2016).
[Crossref] [PubMed]

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Linder, N.

C. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, “Photonic crystal LEDs-designing light extraction,” Laser Photonics Rev. 3(3), 262–286 (2009).
[Crossref]

Ch. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, “Analysis of the emission characteristics of photonic crystal LEDs,” Proc. SPIE 6989, 69890L (2008).
[Crossref]

Liu, W.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Lopez-Garcia, M.

M. Jacobs, M. Lopez-Garcia, O.-P. Phrathep, T. Lawson, R. Oulton, and H. M. Whitney, “Photonic multilayer structure of Begonia chloroplasts enhances photosynthetic efficiency,” Nat. Plants 2(11), 16162 (2016).
[Crossref] [PubMed]

Matioli, E.

E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, E. Hu, and C. Weisbuch, “High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals,” Appl. Phys. Lett. 96(3), 031108 (2010).
[Crossref]

McGroddy, K.

A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S. P. DenBaars, E. L. Hu, C. Weisbuch, and H. Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett. 88(6), 061124 (2006).
[Crossref]

Megens, M. M.

J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
[Crossref]

Mlynek, J.

S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, “Nanophase-Separated Polymer Films as High-Performance Antireflection Coatings,” Science 283(5401), 520–522 (1999).
[Crossref] [PubMed]

Moon, D.

Y.-J. Moon, D. Moon, J. Jang, J.-Y. Na, J.-H. Song, M.-K. Seo, S. Kim, D. Bae, E. H. Park, Y. Park, S.-K. Kim, and E. Yoon, “Microstructured Air Cavities as High-Index Contrast Substrates with Strong Diffraction for Light-Emitting Diodes,” Nano Lett. 16(5), 3301–3308 (2016).
[Crossref] [PubMed]

J. Jang, D. Moon, H.-J. Lee, D. Lee, D. Choi, D. Bae, H. Yuh, Y. Moon, Y. Park, and E. Yoon, “Incorporation of air-cavity into sapphire substrate and its effect on GaN growth and optical properties,” J. Cryst. Growth 430, 41–45 (2015).
[Crossref]

J. Kim, H. Woo, K. Joo, S. Tae, J. Park, D. Moon, S. H. Park, J. Jang, Y. Cho, J. Park, H. Yuh, G.-D. Lee, I.-S. Choi, Y. Nanishi, H. N. Han, K. Char, and E. Yoon, “Less strained and more efficient GaN light-emitting diodes with embedded silica hollow nanospheres,” Sci. Rep. 3(1), 3201 (2013).
[Crossref] [PubMed]

Moon, Y.

J. Jang, D. Moon, H.-J. Lee, D. Lee, D. Choi, D. Bae, H. Yuh, Y. Moon, Y. Park, and E. Yoon, “Incorporation of air-cavity into sapphire substrate and its effect on GaN growth and optical properties,” J. Cryst. Growth 430, 41–45 (2015).
[Crossref]

Moon, Y.-J.

Y.-J. Moon, D. Moon, J. Jang, J.-Y. Na, J.-H. Song, M.-K. Seo, S. Kim, D. Bae, E. H. Park, Y. Park, S.-K. Kim, and E. Yoon, “Microstructured Air Cavities as High-Index Contrast Substrates with Strong Diffraction for Light-Emitting Diodes,” Nano Lett. 16(5), 3301–3308 (2016).
[Crossref] [PubMed]

Morgan, K. L.

Na, J.-Y.

Y.-J. Moon, D. Moon, J. Jang, J.-Y. Na, J.-H. Song, M.-K. Seo, S. Kim, D. Bae, E. H. Park, Y. Park, S.-K. Kim, and E. Yoon, “Microstructured Air Cavities as High-Index Contrast Substrates with Strong Diffraction for Light-Emitting Diodes,” Nano Lett. 16(5), 3301–3308 (2016).
[Crossref] [PubMed]

Nakamura, S.

A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S. P. DenBaars, E. L. Hu, C. Weisbuch, and H. Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett. 88(6), 061124 (2006).
[Crossref]

A. David, M. R. Sharma, F. S. Diana, S. P. DenBaars, E. Hu, S. Nakamura, and C. Weisbuch, “Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction,” Appl. Phys. Lett. 87(10), 101107 (2005).
[Crossref]

Nanishi, Y.

J. Kim, H. Woo, K. Joo, S. Tae, J. Park, D. Moon, S. H. Park, J. Jang, Y. Cho, J. Park, H. Yuh, G.-D. Lee, I.-S. Choi, Y. Nanishi, H. N. Han, K. Char, and E. Yoon, “Less strained and more efficient GaN light-emitting diodes with embedded silica hollow nanospheres,” Sci. Rep. 3(1), 3201 (2013).
[Crossref] [PubMed]

Noda, S.

S. Noda and M. Fujita, “Light-emitting diodes: Photonic crystal efficiency boost,” Nat. Photonics 3(3), 129–130 (2009).
[Crossref]

Oh, S. J.

Onwudinanti, C.

Oulton, R.

M. Jacobs, M. Lopez-Garcia, O.-P. Phrathep, T. Lawson, R. Oulton, and H. M. Whitney, “Photonic multilayer structure of Begonia chloroplasts enhances photosynthetic efficiency,” Nat. Plants 2(11), 16162 (2016).
[Crossref] [PubMed]

Park, E. H.

Y.-J. Moon, D. Moon, J. Jang, J.-Y. Na, J.-H. Song, M.-K. Seo, S. Kim, D. Bae, E. H. Park, Y. Park, S.-K. Kim, and E. Yoon, “Microstructured Air Cavities as High-Index Contrast Substrates with Strong Diffraction for Light-Emitting Diodes,” Nano Lett. 16(5), 3301–3308 (2016).
[Crossref] [PubMed]

Park, J.

J. Kim, H. Woo, K. Joo, S. Tae, J. Park, D. Moon, S. H. Park, J. Jang, Y. Cho, J. Park, H. Yuh, G.-D. Lee, I.-S. Choi, Y. Nanishi, H. N. Han, K. Char, and E. Yoon, “Less strained and more efficient GaN light-emitting diodes with embedded silica hollow nanospheres,” Sci. Rep. 3(1), 3201 (2013).
[Crossref] [PubMed]

J. Kim, H. Woo, K. Joo, S. Tae, J. Park, D. Moon, S. H. Park, J. Jang, Y. Cho, J. Park, H. Yuh, G.-D. Lee, I.-S. Choi, Y. Nanishi, H. N. Han, K. Char, and E. Yoon, “Less strained and more efficient GaN light-emitting diodes with embedded silica hollow nanospheres,” Sci. Rep. 3(1), 3201 (2013).
[Crossref] [PubMed]

Park, S. H.

J. Kim, H. Woo, K. Joo, S. Tae, J. Park, D. Moon, S. H. Park, J. Jang, Y. Cho, J. Park, H. Yuh, G.-D. Lee, I.-S. Choi, Y. Nanishi, H. N. Han, K. Char, and E. Yoon, “Less strained and more efficient GaN light-emitting diodes with embedded silica hollow nanospheres,” Sci. Rep. 3(1), 3201 (2013).
[Crossref] [PubMed]

Park, Y.

Y.-J. Moon, D. Moon, J. Jang, J.-Y. Na, J.-H. Song, M.-K. Seo, S. Kim, D. Bae, E. H. Park, Y. Park, S.-K. Kim, and E. Yoon, “Microstructured Air Cavities as High-Index Contrast Substrates with Strong Diffraction for Light-Emitting Diodes,” Nano Lett. 16(5), 3301–3308 (2016).
[Crossref] [PubMed]

J. Jang, D. Moon, H.-J. Lee, D. Lee, D. Choi, D. Bae, H. Yuh, Y. Moon, Y. Park, and E. Yoon, “Incorporation of air-cavity into sapphire substrate and its effect on GaN growth and optical properties,” J. Cryst. Growth 430, 41–45 (2015).
[Crossref]

Pfaff, N.

E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, E. Hu, and C. Weisbuch, “High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals,” Appl. Phys. Lett. 96(3), 031108 (2010).
[Crossref]

Phrathep, O.-P.

M. Jacobs, M. Lopez-Garcia, O.-P. Phrathep, T. Lawson, R. Oulton, and H. M. Whitney, “Photonic multilayer structure of Begonia chloroplasts enhances photosynthetic efficiency,” Nat. Plants 2(11), 16162 (2016).
[Crossref] [PubMed]

Polman, A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3(1), 692 (2012).
[Crossref] [PubMed]

Post, A.

P. Kuang, S. Eyderman, M.-L. Hsieh, A. Post, S. John, and S.-Y. Lin, “Achieving an Accurate Surface Profile of a Photonic Crystal for Near-Unity Solar Absorption in a Super Thin-Film Architecture,” ACS Nano 10(6), 6116–6124 (2016).
[Crossref] [PubMed]

Poxson, D. J.

Rangel, E.

E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, E. Hu, and C. Weisbuch, “High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals,” Appl. Phys. Lett. 96(3), 031108 (2010).
[Crossref]

Ryu, C. J.

J. H. Son, J. U. Kim, Y. H. Song, B. J. Kim, C. J. Ryu, and J.-L. Lee, “Design Rule of Nanostructures in Light-Emitting Diodes for Complete Elimination of Total Internal Reflection,” Adv. Mater. 24(17), 2259–2262 (2012).
[Crossref] [PubMed]

Schaffer, E.

S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, “Nanophase-Separated Polymer Films as High-Performance Antireflection Coatings,” Science 283(5401), 520–522 (1999).
[Crossref] [PubMed]

Schubert, E. F.

S. J. Oh, S. Chhajed, D. J. Poxson, J. Cho, E. F. Schubert, S. J. Tark, D. Kim, and J. K. Kim, “Enhanced broadband and omni-directional performance of polycrystalline Si solar cells by using discrete multilayer antireflection coatings,” Opt. Express 21(S1Suppl 1), A157–A166 (2013).
[Crossref] [PubMed]

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Schubert, M. F.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Schwarz, U. T.

C. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, “Photonic crystal LEDs-designing light extraction,” Laser Photonics Rev. 3(3), 262–286 (2009).
[Crossref]

Ch. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, “Analysis of the emission characteristics of photonic crystal LEDs,” Proc. SPIE 6989, 69890L (2008).
[Crossref]

Seo, M.-K.

Y.-J. Moon, D. Moon, J. Jang, J.-Y. Na, J.-H. Song, M.-K. Seo, S. Kim, D. Bae, E. H. Park, Y. Park, S.-K. Kim, and E. Yoon, “Microstructured Air Cavities as High-Index Contrast Substrates with Strong Diffraction for Light-Emitting Diodes,” Nano Lett. 16(5), 3301–3308 (2016).
[Crossref] [PubMed]

Sharma, M. R.

A. David, M. R. Sharma, F. S. Diana, S. P. DenBaars, E. Hu, S. Nakamura, and C. Weisbuch, “Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction,” Appl. Phys. Lett. 87(10), 101107 (2005).
[Crossref]

Sharma, R.

A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S. P. DenBaars, E. L. Hu, C. Weisbuch, and H. Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett. 88(6), 061124 (2006).
[Crossref]

Shi, N. N.

N. N. Shi, C.-C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, “Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants,” Science 349(6245), 298–301 (2015).
[Crossref] [PubMed]

Smart, J. A.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Son, J. H.

J. H. Son, J. U. Kim, Y. H. Song, B. J. Kim, C. J. Ryu, and J.-L. Lee, “Design Rule of Nanostructures in Light-Emitting Diodes for Complete Elimination of Total Internal Reflection,” Adv. Mater. 24(17), 2259–2262 (2012).
[Crossref] [PubMed]

Song, J.-H.

Y.-J. Moon, D. Moon, J. Jang, J.-Y. Na, J.-H. Song, M.-K. Seo, S. Kim, D. Bae, E. H. Park, Y. Park, S.-K. Kim, and E. Yoon, “Microstructured Air Cavities as High-Index Contrast Substrates with Strong Diffraction for Light-Emitting Diodes,” Nano Lett. 16(5), 3301–3308 (2016).
[Crossref] [PubMed]

Song, Y. H.

J. H. Son, J. U. Kim, Y. H. Song, B. J. Kim, C. J. Ryu, and J.-L. Lee, “Design Rule of Nanostructures in Light-Emitting Diodes for Complete Elimination of Total Internal Reflection,” Adv. Mater. 24(17), 2259–2262 (2012).
[Crossref] [PubMed]

Speck, J.

E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, E. Hu, and C. Weisbuch, “High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals,” Appl. Phys. Lett. 96(3), 031108 (2010).
[Crossref]

Spinelli, P.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3(1), 692 (2012).
[Crossref] [PubMed]

Steiner, U.

S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, “Nanophase-Separated Polymer Films as High-Performance Antireflection Coatings,” Science 283(5401), 520–522 (1999).
[Crossref] [PubMed]

Tae, S.

J. Kim, H. Woo, K. Joo, S. Tae, J. Park, D. Moon, S. H. Park, J. Jang, Y. Cho, J. Park, H. Yuh, G.-D. Lee, I.-S. Choi, Y. Nanishi, H. N. Han, K. Char, and E. Yoon, “Less strained and more efficient GaN light-emitting diodes with embedded silica hollow nanospheres,” Sci. Rep. 3(1), 3201 (2013).
[Crossref] [PubMed]

Tark, S. J.

Tsai, C.-C.

N. N. Shi, C.-C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, “Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants,” Science 349(6245), 298–301 (2015).
[Crossref] [PubMed]

Verschuuren, M. A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3(1), 692 (2012).
[Crossref] [PubMed]

Vismara, R.

Walheim, S.

S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, “Nanophase-Separated Polymer Films as High-Performance Antireflection Coatings,” Science 283(5401), 520–522 (1999).
[Crossref] [PubMed]

Wehner, R.

N. N. Shi, C.-C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, “Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants,” Science 349(6245), 298–301 (2015).
[Crossref] [PubMed]

Weisbuch, C.

E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, E. Hu, and C. Weisbuch, “High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals,” Appl. Phys. Lett. 96(3), 031108 (2010).
[Crossref]

A. David, H. Benisty, and C. Weisbuch, “Optimization of Light-Diffracting Photonic-Crystals for High Extraction Efficiency LEDs,” J. Disp. Technol. 3(2), 133–148 (2007).
[Crossref]

A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S. P. DenBaars, E. L. Hu, C. Weisbuch, and H. Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett. 88(6), 061124 (2006).
[Crossref]

A. David, M. R. Sharma, F. S. Diana, S. P. DenBaars, E. Hu, S. Nakamura, and C. Weisbuch, “Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction,” Appl. Phys. Lett. 87(10), 101107 (2005).
[Crossref]

Werner, D. H.

Werner, P. L.

Whitney, H. M.

M. Jacobs, M. Lopez-Garcia, O.-P. Phrathep, T. Lawson, R. Oulton, and H. M. Whitney, “Photonic multilayer structure of Begonia chloroplasts enhances photosynthetic efficiency,” Nat. Plants 2(11), 16162 (2016).
[Crossref] [PubMed]

Wierer, J. J.

J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
[Crossref]

Wiesmann, C.

C. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, “Photonic crystal LEDs-designing light extraction,” Laser Photonics Rev. 3(3), 262–286 (2009).
[Crossref]

Wiesmann, Ch.

Ch. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, “Analysis of the emission characteristics of photonic crystal LEDs,” Proc. SPIE 6989, 69890L (2008).
[Crossref]

Woo, H.

J. Kim, H. Woo, K. Joo, S. Tae, J. Park, D. Moon, S. H. Park, J. Jang, Y. Cho, J. Park, H. Yuh, G.-D. Lee, I.-S. Choi, Y. Nanishi, H. N. Han, K. Char, and E. Yoon, “Less strained and more efficient GaN light-emitting diodes with embedded silica hollow nanospheres,” Sci. Rep. 3(1), 3201 (2013).
[Crossref] [PubMed]

Xi, J.-Q.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Yoon, E.

Y.-J. Moon, D. Moon, J. Jang, J.-Y. Na, J.-H. Song, M.-K. Seo, S. Kim, D. Bae, E. H. Park, Y. Park, S.-K. Kim, and E. Yoon, “Microstructured Air Cavities as High-Index Contrast Substrates with Strong Diffraction for Light-Emitting Diodes,” Nano Lett. 16(5), 3301–3308 (2016).
[Crossref] [PubMed]

J. Jang, D. Moon, H.-J. Lee, D. Lee, D. Choi, D. Bae, H. Yuh, Y. Moon, Y. Park, and E. Yoon, “Incorporation of air-cavity into sapphire substrate and its effect on GaN growth and optical properties,” J. Cryst. Growth 430, 41–45 (2015).
[Crossref]

J. Kim, H. Woo, K. Joo, S. Tae, J. Park, D. Moon, S. H. Park, J. Jang, Y. Cho, J. Park, H. Yuh, G.-D. Lee, I.-S. Choi, Y. Nanishi, H. N. Han, K. Char, and E. Yoon, “Less strained and more efficient GaN light-emitting diodes with embedded silica hollow nanospheres,” Sci. Rep. 3(1), 3201 (2013).
[Crossref] [PubMed]

Yu, N.

N. N. Shi, C.-C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, “Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants,” Science 349(6245), 298–301 (2015).
[Crossref] [PubMed]

Yuh, H.

J. Jang, D. Moon, H.-J. Lee, D. Lee, D. Choi, D. Bae, H. Yuh, Y. Moon, Y. Park, and E. Yoon, “Incorporation of air-cavity into sapphire substrate and its effect on GaN growth and optical properties,” J. Cryst. Growth 430, 41–45 (2015).
[Crossref]

J. Kim, H. Woo, K. Joo, S. Tae, J. Park, D. Moon, S. H. Park, J. Jang, Y. Cho, J. Park, H. Yuh, G.-D. Lee, I.-S. Choi, Y. Nanishi, H. N. Han, K. Char, and E. Yoon, “Less strained and more efficient GaN light-emitting diodes with embedded silica hollow nanospheres,” Sci. Rep. 3(1), 3201 (2013).
[Crossref] [PubMed]

Zayed, A. I.

A. I. Zayed, “A Convolution and Product Theorem for the Fractional Fourier Transform,” IEEE Signal Process. Lett. 5(4), 101–103 (1998).
[Crossref]

Zeman, M.

ACS Nano (1)

P. Kuang, S. Eyderman, M.-L. Hsieh, A. Post, S. John, and S.-Y. Lin, “Achieving an Accurate Surface Profile of a Photonic Crystal for Near-Unity Solar Absorption in a Super Thin-Film Architecture,” ACS Nano 10(6), 6116–6124 (2016).
[Crossref] [PubMed]

Adv. Mater. (1)

J. H. Son, J. U. Kim, Y. H. Song, B. J. Kim, C. J. Ryu, and J.-L. Lee, “Design Rule of Nanostructures in Light-Emitting Diodes for Complete Elimination of Total Internal Reflection,” Adv. Mater. 24(17), 2259–2262 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

A. David, M. R. Sharma, F. S. Diana, S. P. DenBaars, E. Hu, S. Nakamura, and C. Weisbuch, “Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction,” Appl. Phys. Lett. 87(10), 101107 (2005).
[Crossref]

A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S. P. DenBaars, E. L. Hu, C. Weisbuch, and H. Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett. 88(6), 061124 (2006).
[Crossref]

E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, E. Hu, and C. Weisbuch, “High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals,” Appl. Phys. Lett. 96(3), 031108 (2010).
[Crossref]

IEEE Signal Process. Lett. (1)

A. I. Zayed, “A Convolution and Product Theorem for the Fractional Fourier Transform,” IEEE Signal Process. Lett. 5(4), 101–103 (1998).
[Crossref]

J. Cryst. Growth (1)

J. Jang, D. Moon, H.-J. Lee, D. Lee, D. Choi, D. Bae, H. Yuh, Y. Moon, Y. Park, and E. Yoon, “Incorporation of air-cavity into sapphire substrate and its effect on GaN growth and optical properties,” J. Cryst. Growth 430, 41–45 (2015).
[Crossref]

J. Disp. Technol. (1)

A. David, H. Benisty, and C. Weisbuch, “Optimization of Light-Diffracting Photonic-Crystals for High Extraction Efficiency LEDs,” J. Disp. Technol. 3(2), 133–148 (2007).
[Crossref]

Laser Photonics Rev. (1)

C. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, “Photonic crystal LEDs-designing light extraction,” Laser Photonics Rev. 3(3), 262–286 (2009).
[Crossref]

Nano Lett. (1)

Y.-J. Moon, D. Moon, J. Jang, J.-Y. Na, J.-H. Song, M.-K. Seo, S. Kim, D. Bae, E. H. Park, Y. Park, S.-K. Kim, and E. Yoon, “Microstructured Air Cavities as High-Index Contrast Substrates with Strong Diffraction for Light-Emitting Diodes,” Nano Lett. 16(5), 3301–3308 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3(1), 692 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

Nat. Photonics (3)

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
[Crossref]

S. Noda and M. Fujita, “Light-emitting diodes: Photonic crystal efficiency boost,” Nat. Photonics 3(3), 129–130 (2009).
[Crossref]

Nat. Plants (1)

M. Jacobs, M. Lopez-Garcia, O.-P. Phrathep, T. Lawson, R. Oulton, and H. M. Whitney, “Photonic multilayer structure of Begonia chloroplasts enhances photosynthetic efficiency,” Nat. Plants 2(11), 16162 (2016).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (1)

Ch. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, “Analysis of the emission characteristics of photonic crystal LEDs,” Proc. SPIE 6989, 69890L (2008).
[Crossref]

Sci. Am. (1)

L. Bragg, “X-ray crystallography,” Sci. Am. 219(1), 58–70 (1968).
[Crossref] [PubMed]

Sci. Rep. (1)

J. Kim, H. Woo, K. Joo, S. Tae, J. Park, D. Moon, S. H. Park, J. Jang, Y. Cho, J. Park, H. Yuh, G.-D. Lee, I.-S. Choi, Y. Nanishi, H. N. Han, K. Char, and E. Yoon, “Less strained and more efficient GaN light-emitting diodes with embedded silica hollow nanospheres,” Sci. Rep. 3(1), 3201 (2013).
[Crossref] [PubMed]

Science (2)

S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, “Nanophase-Separated Polymer Films as High-Performance Antireflection Coatings,” Science 283(5401), 520–522 (1999).
[Crossref] [PubMed]

N. N. Shi, C.-C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, “Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants,” Science 349(6245), 298–301 (2015).
[Crossref] [PubMed]

Other (2)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2009).

C. Kittel, Introduction to Solid State Physics (Wiley, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic illustrating optical modes trapped within a high refractive-index core medium. A surface pattern is employed to outcouple trapped light into a low-refractive-index ambient medium. (b) Schematics and SEM images showing the array of alumina-shell hollow cavities (left) and the growth of a GaN medium on the hollow cavities (right). Scale bar, 5 μm. (c) Schematics illustrating a homebuilt angle- and wavelength-resolved far-field scanner. A spectrometer is programmed to move along the azimuthal (φ) and the polar (θ) angles while a broadband (λ = 350 – 800 nm) Xe light source impinges normally or obliquely (as shown in the inset) on a specimen. (d) Cross sectional SEM images of a planar GaN/sapphire substrate and GaN/sapphire substrates containing hollow cavities with progressively increasing volume. Scale bar, 1 μm. (e) AFM surface roughness data of the three patterned structures shown in (d). (f) Far-field distributions of the four structures shown in (d) for normally incident light, plotted in an output angle-wavelength coordinate. Insets, images captured by using a charged coupled device images under a broadband (λ = 450 – 800 nm) laser illumination.
Fig. 2
Fig. 2 (a) Schematics illustrating a homebuilt experimental setup for evanescent-field coupled leaky mode dispersion measurements. A broadband (λ = 450 – 800 nm) supercontinuum laser is used as an incident light source. The incident supercontinuum laser is equipped with a step motor programmed to move along the θ-direction with a step of 1°. A hemi-cylindrical prism with a refractive index of 1.72 is bonded to a GaN/sapphire substrate by using an index-matching (a refractive index of 1.72) adhesive gel. (b,c) Measured (b) and simulated (c) leaky mode dispersions (transmittance versus incident angle) of the four structures shown in Fig. 1(d) for broadband (λ = 450 – 800 nm) wavelengths. The lower panels in (b) and (c) display the same dispersion data for the whole range of TIR angles, plotted in a logarithmic scale.
Fig. 3
Fig. 3 (a) Schematics illustrating the fabrication process for submicron hollow cavities with an alumina-shell that are embedded in a GaN/sapphire substrate. Closely packed submicron polystyrene spheres are used as a pattern mold. The remaining process is the same as the microstructured hollow-cavity arrays (see Appendix). (b) SEM images showing submicron hollow cavities on a sapphire substrate (left) and submicron hollow-cavities embedded in a GaN medium (right). Scale bars, 200 nm and 1 μm, respectively. (c) Measured leaky mode dispersion of a fabricated GaN/sapphire substrate containing an array of submicron (a diameter of 400 nm) hollow cavities. The right panel displays the same data only for the whole range of TIR angles, plotted in a logarithmic scale.
Fig. 4
Fig. 4 (a) Cross sectional SEM images of the arrays of alumina shell hollow cavities (upper) and sapphire filled cavities (lower) that are embedded in a GaN medium. Scale bar, 2 μm. (b) Measured leaky mode dispersions of the hollow- (upper) and the filled-cavity (lower) structures shown in (a) for broadband (λ = 450 – 800 nm) wavelengths. (c) Simulated leaky mode dispersions of the hollow- (upper) and the filled-cavity (lower) structures as shown in (a).
Fig. 5
Fig. 5 (a,b) Schematics of GaN-based LED structures containing cylindrical (a) and conical (b) hollow cavities. (c) Measured and simulated angular transmittance of the two structures shown in Fig. 4(a), obtained at λ = 500 nm. The incident angles are defined within a sapphire medium (θprism, the upper x-axis) and a GaN medium (θGaN, the lower x-axis). Note that θGaN > 46° is forbidden in the present measurement system. The inset shows a schematic describing the two different incident angles (θprism and θGaN). (d,e) Simulated angular transmittance (λ = 500 nm) of cylindrical (d) and conical (e) hollow cavities (upper panels) with increasing their diameters (D) at fixed the height. A plane wave with a variation of incident angles (θ) is generated in the GaN medium. For comparison, the data for filled (filled with solid sapphire) cavities are plotted (lower panels).
Fig. 6
Fig. 6 (a) Measured spectrally integrated (λ = 350 – 800 nm) far-field distributions of the hollow-cavity (upper) and the filled-cavity (lower) structures shown in Fig. 4(a). for incident angles (θprism) below (10°) and above (50° and 70°) a critical angle. (b) Simulated forward scattering efficiencies of single alumina-shell hollow cavity and sapphire filled cavity as a function of incident angles. The incident angles are defined within a sapphire medium (θprism, the upper x-axis) and a GaN medium (θGaN, the lower x-axis). Inset, schematic illustrating the definition of scattering efficiency. (c) Cross sectional near-field scattered profiles (λ = 500 nm) of the hollow cavity (upper) and the filled cavity (lower) at specific TIR angles (θprism = 50°, 70°, and 80°). (d) Simulated far-field scattering distributions (λ = 500 nm) of the hollow cavity (upper) and the filled cavity (lower) for the same incident angles (θprism = 10°, 50°, and 70°) used in (a).
Fig. 7
Fig. 7 (a,b) Schematics of GaN-based (a) and organic (b) LED devices containing hollow cavities. (c,d) FDTD-simulated TE, TM, and average extraction efficiencies of GaN-based (c) and organic (d) LED devices with alumina-shell (80 nm for the GaN LED and 40 nm for the organic LED, in thickness) hollow cavities as a function of the diameter (D) of hollow cavities (left panels). For comparison, the data for filled (filled with sapphire for the GaN LED and SiO2 for the organic LED) cavities are plotted (right panels). For the GaN-based and the organic LED devices, (a, h) is (3, 1.5) μm and (0.5, 0.2) μm, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

1 d = 2 π n 2 λ [ ( n 1 n 2 ) 2 sin 2 θ 1 ] 1 / 2 .
2 π n λ cos θ m × 2 d = 2 π m .

Metrics