Abstract

A stationary catadioptric concentrating photovoltaic module with aperture area over 100 cm2, geometric concentration of 180×, and collection within 60° of polar incidence was designed, prototyped, and characterized. The module performance followed modeling closely with a peak power conversion efficiency of 26% for direct irradiance. Tracking of the sun is accomplished via translational micro-tracking completely internal to the module, avoiding the cost and complexity of mechanical two-axis trackers that point towards the sun. This demonstrates the potential for concentrating photovoltaic modules with significantly higher efficiency than industry standard silicon photovoltaic modules that could be installed in stationary configurations on rooftops.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tailored free-form optics with movement to integrate tracking in concentrating photovoltaics

Fabian Duerr, Youri Meuret, and Hugo Thienpont
Opt. Express 21(S3) A401-A411 (2013)

Stationary nonimaging lenses for solar concentration

Panagiotis Kotsidas, Eleni Chatzi, and Vijay Modi
Appl. Opt. 49(27) 5183-5191 (2010)

References

  • View by:
  • |
  • |
  • |

  1. A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mat. 11, 174–177 (2012).
    [Crossref]
  2. M. A. Green, Y. Hishikawa, W. Warta, E. Dunlop, D. Levi, J. Hohl-Ebinger, and A. Ho-Baille, “Solar cell efficiency tables (version 50),” Prog. in Photovoltaics,  57(7), 668–676 (2017).
    [Crossref]
  3. K. Shanks, S. Senthilarasu, and T. K. Mallick, “Optics for concentrating photovoltaics: Trends, limits, and opportunities for materials and design,” Renewable and Sustainable Energy Reviews,  60, 349–407 (2016).
    [Crossref]
  4. J. Hallas, K. A. Baker, J. H Karp, E. J. Tremblay, and J. E. Ford, “Two-axis solar tracking accomplished through small lateral translations,” Appl. Opt. 516117–6124 (2012).
    [Crossref] [PubMed]
  5. P. Kozodoy, C. Gladden, M. Pavilonis, C. Rhodes, T. Wheeler, and C. Casper, “Self-Tracking Concentrator for Photovoltaics,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper ATu2J.1.
  6. J. Price, X. Sheng, B. Meulblok, J. A. Rogers, and N. C. Giebink, “Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics,” Nat. Comm.,  66223 (2015).
    [Crossref]
  7. G. N. Nielson, M. Okandan, J. L. Cruz-Campa, A. L. Lentine, W. Sweatt, V. P. Gupta, and J. S. Nelson, “Leveraging scale effects to create next-generation photovoltaic systems through micro- and nanotechnologies,” Proc. SPIE 8373, 837317 (2012).
    [Crossref]
  8. P. Espinet-González, I. Rey-Stolle, M. Ochoa, C. Algora, I. Garcia, and E. Barrigon, “Analysis of perimeter recombination in the subcells of GaInP/GaAs/Ge triple-junction solar cells,” Prog. in Photovoltaics,  23(7) 874–882 (2015).
    [Crossref]
  9. J. S. Price, A. Grede, B. Wang, M. V. Lipski, K. Lee, J. He, G. S. Brulo, X. Ma, S. Burroughs, C. D. Rahn, R. G. Nuzzo, J. A. Rogers, and N. C. Giebink, “High-concentration planar microtracking photovoltaic system exceeding 30% efficiency,” Nat. Energy,  217113 (2017).
    [Crossref]

2017 (2)

M. A. Green, Y. Hishikawa, W. Warta, E. Dunlop, D. Levi, J. Hohl-Ebinger, and A. Ho-Baille, “Solar cell efficiency tables (version 50),” Prog. in Photovoltaics,  57(7), 668–676 (2017).
[Crossref]

J. S. Price, A. Grede, B. Wang, M. V. Lipski, K. Lee, J. He, G. S. Brulo, X. Ma, S. Burroughs, C. D. Rahn, R. G. Nuzzo, J. A. Rogers, and N. C. Giebink, “High-concentration planar microtracking photovoltaic system exceeding 30% efficiency,” Nat. Energy,  217113 (2017).
[Crossref]

2016 (1)

K. Shanks, S. Senthilarasu, and T. K. Mallick, “Optics for concentrating photovoltaics: Trends, limits, and opportunities for materials and design,” Renewable and Sustainable Energy Reviews,  60, 349–407 (2016).
[Crossref]

2015 (2)

J. Price, X. Sheng, B. Meulblok, J. A. Rogers, and N. C. Giebink, “Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics,” Nat. Comm.,  66223 (2015).
[Crossref]

P. Espinet-González, I. Rey-Stolle, M. Ochoa, C. Algora, I. Garcia, and E. Barrigon, “Analysis of perimeter recombination in the subcells of GaInP/GaAs/Ge triple-junction solar cells,” Prog. in Photovoltaics,  23(7) 874–882 (2015).
[Crossref]

2012 (3)

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mat. 11, 174–177 (2012).
[Crossref]

G. N. Nielson, M. Okandan, J. L. Cruz-Campa, A. L. Lentine, W. Sweatt, V. P. Gupta, and J. S. Nelson, “Leveraging scale effects to create next-generation photovoltaic systems through micro- and nanotechnologies,” Proc. SPIE 8373, 837317 (2012).
[Crossref]

J. Hallas, K. A. Baker, J. H Karp, E. J. Tremblay, and J. E. Ford, “Two-axis solar tracking accomplished through small lateral translations,” Appl. Opt. 516117–6124 (2012).
[Crossref] [PubMed]

Algora, C.

P. Espinet-González, I. Rey-Stolle, M. Ochoa, C. Algora, I. Garcia, and E. Barrigon, “Analysis of perimeter recombination in the subcells of GaInP/GaAs/Ge triple-junction solar cells,” Prog. in Photovoltaics,  23(7) 874–882 (2015).
[Crossref]

Atwater, H. A.

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mat. 11, 174–177 (2012).
[Crossref]

Baker, K. A.

Barrigon, E.

P. Espinet-González, I. Rey-Stolle, M. Ochoa, C. Algora, I. Garcia, and E. Barrigon, “Analysis of perimeter recombination in the subcells of GaInP/GaAs/Ge triple-junction solar cells,” Prog. in Photovoltaics,  23(7) 874–882 (2015).
[Crossref]

Brulo, G. S.

J. S. Price, A. Grede, B. Wang, M. V. Lipski, K. Lee, J. He, G. S. Brulo, X. Ma, S. Burroughs, C. D. Rahn, R. G. Nuzzo, J. A. Rogers, and N. C. Giebink, “High-concentration planar microtracking photovoltaic system exceeding 30% efficiency,” Nat. Energy,  217113 (2017).
[Crossref]

Burroughs, S.

J. S. Price, A. Grede, B. Wang, M. V. Lipski, K. Lee, J. He, G. S. Brulo, X. Ma, S. Burroughs, C. D. Rahn, R. G. Nuzzo, J. A. Rogers, and N. C. Giebink, “High-concentration planar microtracking photovoltaic system exceeding 30% efficiency,” Nat. Energy,  217113 (2017).
[Crossref]

Casper, C.

P. Kozodoy, C. Gladden, M. Pavilonis, C. Rhodes, T. Wheeler, and C. Casper, “Self-Tracking Concentrator for Photovoltaics,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper ATu2J.1.

Cruz-Campa, J. L.

G. N. Nielson, M. Okandan, J. L. Cruz-Campa, A. L. Lentine, W. Sweatt, V. P. Gupta, and J. S. Nelson, “Leveraging scale effects to create next-generation photovoltaic systems through micro- and nanotechnologies,” Proc. SPIE 8373, 837317 (2012).
[Crossref]

Dunlop, E.

M. A. Green, Y. Hishikawa, W. Warta, E. Dunlop, D. Levi, J. Hohl-Ebinger, and A. Ho-Baille, “Solar cell efficiency tables (version 50),” Prog. in Photovoltaics,  57(7), 668–676 (2017).
[Crossref]

Espinet-González, P.

P. Espinet-González, I. Rey-Stolle, M. Ochoa, C. Algora, I. Garcia, and E. Barrigon, “Analysis of perimeter recombination in the subcells of GaInP/GaAs/Ge triple-junction solar cells,” Prog. in Photovoltaics,  23(7) 874–882 (2015).
[Crossref]

Ford, J. E.

Garcia, I.

P. Espinet-González, I. Rey-Stolle, M. Ochoa, C. Algora, I. Garcia, and E. Barrigon, “Analysis of perimeter recombination in the subcells of GaInP/GaAs/Ge triple-junction solar cells,” Prog. in Photovoltaics,  23(7) 874–882 (2015).
[Crossref]

Giebink, N. C.

J. S. Price, A. Grede, B. Wang, M. V. Lipski, K. Lee, J. He, G. S. Brulo, X. Ma, S. Burroughs, C. D. Rahn, R. G. Nuzzo, J. A. Rogers, and N. C. Giebink, “High-concentration planar microtracking photovoltaic system exceeding 30% efficiency,” Nat. Energy,  217113 (2017).
[Crossref]

J. Price, X. Sheng, B. Meulblok, J. A. Rogers, and N. C. Giebink, “Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics,” Nat. Comm.,  66223 (2015).
[Crossref]

Gladden, C.

P. Kozodoy, C. Gladden, M. Pavilonis, C. Rhodes, T. Wheeler, and C. Casper, “Self-Tracking Concentrator for Photovoltaics,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper ATu2J.1.

Grede, A.

J. S. Price, A. Grede, B. Wang, M. V. Lipski, K. Lee, J. He, G. S. Brulo, X. Ma, S. Burroughs, C. D. Rahn, R. G. Nuzzo, J. A. Rogers, and N. C. Giebink, “High-concentration planar microtracking photovoltaic system exceeding 30% efficiency,” Nat. Energy,  217113 (2017).
[Crossref]

Green, M. A.

M. A. Green, Y. Hishikawa, W. Warta, E. Dunlop, D. Levi, J. Hohl-Ebinger, and A. Ho-Baille, “Solar cell efficiency tables (version 50),” Prog. in Photovoltaics,  57(7), 668–676 (2017).
[Crossref]

Gupta, V. P.

G. N. Nielson, M. Okandan, J. L. Cruz-Campa, A. L. Lentine, W. Sweatt, V. P. Gupta, and J. S. Nelson, “Leveraging scale effects to create next-generation photovoltaic systems through micro- and nanotechnologies,” Proc. SPIE 8373, 837317 (2012).
[Crossref]

Hallas, J.

He, J.

J. S. Price, A. Grede, B. Wang, M. V. Lipski, K. Lee, J. He, G. S. Brulo, X. Ma, S. Burroughs, C. D. Rahn, R. G. Nuzzo, J. A. Rogers, and N. C. Giebink, “High-concentration planar microtracking photovoltaic system exceeding 30% efficiency,” Nat. Energy,  217113 (2017).
[Crossref]

Hishikawa, Y.

M. A. Green, Y. Hishikawa, W. Warta, E. Dunlop, D. Levi, J. Hohl-Ebinger, and A. Ho-Baille, “Solar cell efficiency tables (version 50),” Prog. in Photovoltaics,  57(7), 668–676 (2017).
[Crossref]

Ho-Baille, A.

M. A. Green, Y. Hishikawa, W. Warta, E. Dunlop, D. Levi, J. Hohl-Ebinger, and A. Ho-Baille, “Solar cell efficiency tables (version 50),” Prog. in Photovoltaics,  57(7), 668–676 (2017).
[Crossref]

Hohl-Ebinger, J.

M. A. Green, Y. Hishikawa, W. Warta, E. Dunlop, D. Levi, J. Hohl-Ebinger, and A. Ho-Baille, “Solar cell efficiency tables (version 50),” Prog. in Photovoltaics,  57(7), 668–676 (2017).
[Crossref]

Karp, J. H

Kozodoy, P.

P. Kozodoy, C. Gladden, M. Pavilonis, C. Rhodes, T. Wheeler, and C. Casper, “Self-Tracking Concentrator for Photovoltaics,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper ATu2J.1.

Lee, K.

J. S. Price, A. Grede, B. Wang, M. V. Lipski, K. Lee, J. He, G. S. Brulo, X. Ma, S. Burroughs, C. D. Rahn, R. G. Nuzzo, J. A. Rogers, and N. C. Giebink, “High-concentration planar microtracking photovoltaic system exceeding 30% efficiency,” Nat. Energy,  217113 (2017).
[Crossref]

Lentine, A. L.

G. N. Nielson, M. Okandan, J. L. Cruz-Campa, A. L. Lentine, W. Sweatt, V. P. Gupta, and J. S. Nelson, “Leveraging scale effects to create next-generation photovoltaic systems through micro- and nanotechnologies,” Proc. SPIE 8373, 837317 (2012).
[Crossref]

Levi, D.

M. A. Green, Y. Hishikawa, W. Warta, E. Dunlop, D. Levi, J. Hohl-Ebinger, and A. Ho-Baille, “Solar cell efficiency tables (version 50),” Prog. in Photovoltaics,  57(7), 668–676 (2017).
[Crossref]

Lipski, M. V.

J. S. Price, A. Grede, B. Wang, M. V. Lipski, K. Lee, J. He, G. S. Brulo, X. Ma, S. Burroughs, C. D. Rahn, R. G. Nuzzo, J. A. Rogers, and N. C. Giebink, “High-concentration planar microtracking photovoltaic system exceeding 30% efficiency,” Nat. Energy,  217113 (2017).
[Crossref]

Ma, X.

J. S. Price, A. Grede, B. Wang, M. V. Lipski, K. Lee, J. He, G. S. Brulo, X. Ma, S. Burroughs, C. D. Rahn, R. G. Nuzzo, J. A. Rogers, and N. C. Giebink, “High-concentration planar microtracking photovoltaic system exceeding 30% efficiency,” Nat. Energy,  217113 (2017).
[Crossref]

Mallick, T. K.

K. Shanks, S. Senthilarasu, and T. K. Mallick, “Optics for concentrating photovoltaics: Trends, limits, and opportunities for materials and design,” Renewable and Sustainable Energy Reviews,  60, 349–407 (2016).
[Crossref]

Meulblok, B.

J. Price, X. Sheng, B. Meulblok, J. A. Rogers, and N. C. Giebink, “Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics,” Nat. Comm.,  66223 (2015).
[Crossref]

Nelson, J. S.

G. N. Nielson, M. Okandan, J. L. Cruz-Campa, A. L. Lentine, W. Sweatt, V. P. Gupta, and J. S. Nelson, “Leveraging scale effects to create next-generation photovoltaic systems through micro- and nanotechnologies,” Proc. SPIE 8373, 837317 (2012).
[Crossref]

Nielson, G. N.

G. N. Nielson, M. Okandan, J. L. Cruz-Campa, A. L. Lentine, W. Sweatt, V. P. Gupta, and J. S. Nelson, “Leveraging scale effects to create next-generation photovoltaic systems through micro- and nanotechnologies,” Proc. SPIE 8373, 837317 (2012).
[Crossref]

Nuzzo, R. G.

J. S. Price, A. Grede, B. Wang, M. V. Lipski, K. Lee, J. He, G. S. Brulo, X. Ma, S. Burroughs, C. D. Rahn, R. G. Nuzzo, J. A. Rogers, and N. C. Giebink, “High-concentration planar microtracking photovoltaic system exceeding 30% efficiency,” Nat. Energy,  217113 (2017).
[Crossref]

Ochoa, M.

P. Espinet-González, I. Rey-Stolle, M. Ochoa, C. Algora, I. Garcia, and E. Barrigon, “Analysis of perimeter recombination in the subcells of GaInP/GaAs/Ge triple-junction solar cells,” Prog. in Photovoltaics,  23(7) 874–882 (2015).
[Crossref]

Okandan, M.

G. N. Nielson, M. Okandan, J. L. Cruz-Campa, A. L. Lentine, W. Sweatt, V. P. Gupta, and J. S. Nelson, “Leveraging scale effects to create next-generation photovoltaic systems through micro- and nanotechnologies,” Proc. SPIE 8373, 837317 (2012).
[Crossref]

Pavilonis, M.

P. Kozodoy, C. Gladden, M. Pavilonis, C. Rhodes, T. Wheeler, and C. Casper, “Self-Tracking Concentrator for Photovoltaics,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper ATu2J.1.

Polman, A.

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mat. 11, 174–177 (2012).
[Crossref]

Price, J.

J. Price, X. Sheng, B. Meulblok, J. A. Rogers, and N. C. Giebink, “Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics,” Nat. Comm.,  66223 (2015).
[Crossref]

Price, J. S.

J. S. Price, A. Grede, B. Wang, M. V. Lipski, K. Lee, J. He, G. S. Brulo, X. Ma, S. Burroughs, C. D. Rahn, R. G. Nuzzo, J. A. Rogers, and N. C. Giebink, “High-concentration planar microtracking photovoltaic system exceeding 30% efficiency,” Nat. Energy,  217113 (2017).
[Crossref]

Rahn, C. D.

J. S. Price, A. Grede, B. Wang, M. V. Lipski, K. Lee, J. He, G. S. Brulo, X. Ma, S. Burroughs, C. D. Rahn, R. G. Nuzzo, J. A. Rogers, and N. C. Giebink, “High-concentration planar microtracking photovoltaic system exceeding 30% efficiency,” Nat. Energy,  217113 (2017).
[Crossref]

Rey-Stolle, I.

P. Espinet-González, I. Rey-Stolle, M. Ochoa, C. Algora, I. Garcia, and E. Barrigon, “Analysis of perimeter recombination in the subcells of GaInP/GaAs/Ge triple-junction solar cells,” Prog. in Photovoltaics,  23(7) 874–882 (2015).
[Crossref]

Rhodes, C.

P. Kozodoy, C. Gladden, M. Pavilonis, C. Rhodes, T. Wheeler, and C. Casper, “Self-Tracking Concentrator for Photovoltaics,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper ATu2J.1.

Rogers, J. A.

J. S. Price, A. Grede, B. Wang, M. V. Lipski, K. Lee, J. He, G. S. Brulo, X. Ma, S. Burroughs, C. D. Rahn, R. G. Nuzzo, J. A. Rogers, and N. C. Giebink, “High-concentration planar microtracking photovoltaic system exceeding 30% efficiency,” Nat. Energy,  217113 (2017).
[Crossref]

J. Price, X. Sheng, B. Meulblok, J. A. Rogers, and N. C. Giebink, “Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics,” Nat. Comm.,  66223 (2015).
[Crossref]

Senthilarasu, S.

K. Shanks, S. Senthilarasu, and T. K. Mallick, “Optics for concentrating photovoltaics: Trends, limits, and opportunities for materials and design,” Renewable and Sustainable Energy Reviews,  60, 349–407 (2016).
[Crossref]

Shanks, K.

K. Shanks, S. Senthilarasu, and T. K. Mallick, “Optics for concentrating photovoltaics: Trends, limits, and opportunities for materials and design,” Renewable and Sustainable Energy Reviews,  60, 349–407 (2016).
[Crossref]

Sheng, X.

J. Price, X. Sheng, B. Meulblok, J. A. Rogers, and N. C. Giebink, “Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics,” Nat. Comm.,  66223 (2015).
[Crossref]

Sweatt, W.

G. N. Nielson, M. Okandan, J. L. Cruz-Campa, A. L. Lentine, W. Sweatt, V. P. Gupta, and J. S. Nelson, “Leveraging scale effects to create next-generation photovoltaic systems through micro- and nanotechnologies,” Proc. SPIE 8373, 837317 (2012).
[Crossref]

Tremblay, E. J.

Wang, B.

J. S. Price, A. Grede, B. Wang, M. V. Lipski, K. Lee, J. He, G. S. Brulo, X. Ma, S. Burroughs, C. D. Rahn, R. G. Nuzzo, J. A. Rogers, and N. C. Giebink, “High-concentration planar microtracking photovoltaic system exceeding 30% efficiency,” Nat. Energy,  217113 (2017).
[Crossref]

Warta, W.

M. A. Green, Y. Hishikawa, W. Warta, E. Dunlop, D. Levi, J. Hohl-Ebinger, and A. Ho-Baille, “Solar cell efficiency tables (version 50),” Prog. in Photovoltaics,  57(7), 668–676 (2017).
[Crossref]

Wheeler, T.

P. Kozodoy, C. Gladden, M. Pavilonis, C. Rhodes, T. Wheeler, and C. Casper, “Self-Tracking Concentrator for Photovoltaics,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper ATu2J.1.

Appl. Opt. (1)

Nat. Comm. (1)

J. Price, X. Sheng, B. Meulblok, J. A. Rogers, and N. C. Giebink, “Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics,” Nat. Comm.,  66223 (2015).
[Crossref]

Nat. Energy (1)

J. S. Price, A. Grede, B. Wang, M. V. Lipski, K. Lee, J. He, G. S. Brulo, X. Ma, S. Burroughs, C. D. Rahn, R. G. Nuzzo, J. A. Rogers, and N. C. Giebink, “High-concentration planar microtracking photovoltaic system exceeding 30% efficiency,” Nat. Energy,  217113 (2017).
[Crossref]

Nat. Mat. (1)

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mat. 11, 174–177 (2012).
[Crossref]

Proc. SPIE (1)

G. N. Nielson, M. Okandan, J. L. Cruz-Campa, A. L. Lentine, W. Sweatt, V. P. Gupta, and J. S. Nelson, “Leveraging scale effects to create next-generation photovoltaic systems through micro- and nanotechnologies,” Proc. SPIE 8373, 837317 (2012).
[Crossref]

Prog. in Photovoltaics (2)

P. Espinet-González, I. Rey-Stolle, M. Ochoa, C. Algora, I. Garcia, and E. Barrigon, “Analysis of perimeter recombination in the subcells of GaInP/GaAs/Ge triple-junction solar cells,” Prog. in Photovoltaics,  23(7) 874–882 (2015).
[Crossref]

M. A. Green, Y. Hishikawa, W. Warta, E. Dunlop, D. Levi, J. Hohl-Ebinger, and A. Ho-Baille, “Solar cell efficiency tables (version 50),” Prog. in Photovoltaics,  57(7), 668–676 (2017).
[Crossref]

Renewable and Sustainable Energy Reviews (1)

K. Shanks, S. Senthilarasu, and T. K. Mallick, “Optics for concentrating photovoltaics: Trends, limits, and opportunities for materials and design,” Renewable and Sustainable Energy Reviews,  60, 349–407 (2016).
[Crossref]

Other (1)

P. Kozodoy, C. Gladden, M. Pavilonis, C. Rhodes, T. Wheeler, and C. Casper, “Self-Tracking Concentrator for Photovoltaics,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper ATu2J.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Left: Operating principle of translational micro-tracking catadioptric concentrating photovoltaic module. a) Module components b) Collection of normally incident sunlight c) Collection of sunlight at non-normal incidence via translation of photovoltaic cells Right: Wavelength dependent losses from a series of accumulated mechanisms.
Fig. 2
Fig. 2 Prototype module components: a) Exploded view of lens arrays with carrier tray and receiver tile b) Top view of assembled module with with clamping frame c) Receiver tile with 42 cells in position emitting light under forward bias d) Image of photovoltaic cell soldered onto electrical traces with wire bond connections
Fig. 3
Fig. 3 Measured photocurrent of prototype module exposed to AM1.5D spectrum as a function of polar angle of incidence, along with the simulated (red dashed) and total incident (black dashed) photocurrent/flux.
Fig. 4
Fig. 4 Left: Current-Voltage behavior of prototype module for incident angles from 0° to 60°. Incident photocurrent falls approximately with the cosine of the angle. Right: Power conversion of efficiency of the module and photovoltaic cells with incident angle.

Metrics