Abstract

Concentrating photovoltaics for building integration can be successfully carried out with Holographic Optical Elements (HOEs) because of their behavior analogous to refractive optical elements and their tuning ability to the spectral range that the photovoltaic (PV) cell is sensitive to. That way, concentration of spectral ranges that would cause overheating of the cell is avoided. Volume HOEs are usually chosen because they provide high efficiencies. However, their chromatic selectivity is also very high, and only a small part of the desired spectral range reaches the PV cell. A novel approach is theoretically and experimentally explored to overcome this problem: the use of HOEs operating in the transition regime, which yield lower chromatic selectivity while keeping rather high efficiencies. A model that considers the recording material’s response, by determining the index modulation reached for each spatial frequency and exposure dosage, has been developed. It has been validated with experimental measurements of three cylindrical holographic lenses with different spatial frequency ranges recorded in Bayfol HX photopolymer. Simulations of systems comprising two lenses and a mono-c Si PV cell are carried out with the standard AM 1.5D solar spectrum. Promising results are obtained when using the system with lower spatial frequencies lenses: a total current intensity equal to 3.72 times the one that would be reached without the concentrator.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications

Julia Marín-Sáez, Jesús Atencia, Daniel Chemisana, and María-Victoria Collados
Opt. Express 24(6) A720-A730 (2016)

Using acrylamide-based photopolymers for fabrication of holographic optical elements in solar energy applications

Hoda Akbari, Izabela Naydenova, and Suzanne Martin
Appl. Opt. 53(7) 1343-1353 (2014)

Energy collection efficiency of holographic planar solar concentrators

Jose M. Castro, Deming Zhang, Brian Myer, and Raymond K. Kostuk
Appl. Opt. 49(5) 858-870 (2010)

References

  • View by:
  • |
  • |
  • |

  1. D. Chemisana, “Building integrated concentrating photovoltaics: A review,” Renew. Sustain. Energy Rev. 15(1), 603–611 (2011).
    [Crossref]
  2. H. Baig, N. Sarmah, D. Chemisana, J. Rosell, and T. K. Mallick, “Enhancing performance of a linear dielectric based concentrating photovoltaic system using a reflective film along the edge,” Energy 73, 177–191 (2014).
    [Crossref]
  3. D. Chemisana and M. Ibáñez, “Linear Fresnel concentrators for building integrated applications,” Energy Convers. Manage. 51(7), 1476–1480 (2010).
    [Crossref]
  4. G. Li, G. Pei, M. Yang, J. Ji, and Y. Su, “Optical evaluation of a novel static incorporated compound parabolic concentrator with photovoltaic/thermal system and preliminary experiment,” Energy Convers. Manage. 85, 204–211 (2014).
    [Crossref]
  5. N. Yamada, K. Kanno, K. Hayashi, and T. Tokimitsu, “Performance of see-through prism CPV module for window integrated photovoltaics,” Opt. Express 19(S4Suppl 4), A649–A656 (2011).
    [Crossref] [PubMed]
  6. M. V. Collados, D. Chemisana, and J. Atencia, “Holographic solar energy systems: The role of optical elements,” Renew. Sustain. Energy Rev. 59, 130–140 (2016).
    [Crossref]
  7. American Society for Testing and Materials, “Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface,” in Book of Standards Volume: 14.04 (2004).
  8. R. K. Kostuk and G. Rosenberg, “Analysis and design of holographic solar concentrators,” Proc. SPIE 7043, 70430I (2008).
    [Crossref]
  9. J. M. Castro, D. Zhang, B. Myer, and R. K. Kostuk, “Energy collection efficiency of holographic planar solar concentrators,” Appl. Opt. 49(5), 858–870 (2010).
    [Crossref] [PubMed]
  10. H. Akbari, I. Naydenova, and S. Martin, “Using acrylamide-based photopolymers for fabrication of holographic optical elements in solar energy applications,” Appl. Opt. 53(7), 1343–1353 (2014).
    [Crossref] [PubMed]
  11. J. E. Ludman, J. Riccobono, N. O. Reinhand, I. V. Semenova, J. Martín, W. Tai, X. Li, and G. Syphers, “Holographic solar concentrator for terrestrial photovoltaics,” in Proceedings of the 24th IEEE Photovoltaic Specialists Conference (1994), pp. 1208–1211.
  12. J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
    [Crossref]
  13. K. Froehlich, E. U. Wagemann, H. Schulat, H. Schuette, and C. G. Stojanoff, “Fabrication and test of a holographic concentrator for two-color PV operation,” Proc. SPIE 2255, 812–821 (1994).
    [Crossref]
  14. D. Zhang, M. Gordon, J. M. Russo, S. Vorndran, and R. K. Kostuk, “Spectrum-splitting photovoltaic system using transmission holographic lenses,” J. Photonics Energy 3(1), 34597 (2013).
    [Crossref]
  15. S. Vorndran, J. M. Russo, Y. Wu, M. Gordon, and R. Kostuk, “Holographic diffraction-through-aperture spectrum splitting for increased hybrid solar energy conversion efficiency,” Int. J. Energy Res. 39(3), 326–335 (2015).
    [Crossref]
  16. H. Akbari, I. Naydenova, H. Ahmed, S. McCormack, and S. Martin, “Development and testing of low spatial frequency holographic concentrator elements for collection of solar energy,” Sol. Energy 155, 103–109 (2017).
    [Crossref]
  17. D. Chemisana, M. V. Collados, M. Quintanilla, and J. Atencia, “Holographic lenses for building integrated concentrating photovoltaics,” Appl. Energy 110, 227–235 (2013).
    [Crossref]
  18. P. Bañares-Palacios, S. Álvarez-Álvarez, J. Marín-Sáez, M.-V. Collados, D. Chemisana, and J. Atencia, “Broadband behavior of transmission volume holographic optical elements for solar concentration,” Opt. Express 23(11), A671–A681 (2015).
    [Crossref] [PubMed]
  19. J. Marín-Sáez, D. Chemisana, Á. Moreno, A. Riverola, J. Atencia, and M.-V. Collados, “Energy Simulation of a Holographic PVT Concentrating System for Building Integration Applications,” Energies 9(8), 577 (2016).
    [Crossref]
  20. M. G. Moharam, T. K. Gaylord, and R. Magnusson, “Criteria for Bragg regime diffraction by phase gratings,” Opt. Commun. 32(1), 14–18 (1980).
    [Crossref]
  21. M. G. Moharam, T. K. Gaylord, and R. Magnusson, “Criteria for Raman-Nath regime diffraction by phase gratings,” Opt. Commun. 32(1), 19–23 (1980).
    [Crossref]
  22. W. H. Bloss, M. Griesinger, and E. R. Reinhardt, “Dispersive concentrating systems based on transmission phase holograms for solar applications,” Appl. Opt. 21(20), 3739–3742 (1982).
    [Crossref] [PubMed]
  23. C. Bainier, C. Hernandez, and D. Courjon, “Solar concentrating systems using holographic lenses,” Solar Wind Technol. 5(4), 395–404 (1988).
    [Crossref]
  24. G. B. Ingersoll and J. R. Leger, “Optimization of multi-grating volume holographic spectrum splitters for photovoltaic applications,” Appl. Opt. 55(20), 5399–5407 (2016).
    [Crossref] [PubMed]
  25. A. Villamarín, J. Atencia, M. V. Collados, and M. Quintanilla, “Characterization of transmission volume holographic gratings recorded in Slavich PFG04 dichromated gelatin plates,” Appl. Opt. 48(22), 4348–4353 (2009).
    [Crossref] [PubMed]
  26. R. Syms, Practical Volume Holography (Oxford University Press, 1990).
  27. W. R. Klein and B. D. Cook, “Unified Approach to Ultrasonic Light Diffraction,” IEEE Trans. Sonics Ultrason. 14(3), 123–134 (1967).
    [Crossref]
  28. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
    [Crossref]
  29. F.-K. Bruder, T. Fäcke, and T. Rölle, “The Chemistry and Physics of Bayfol HX Film Holographic Photopolymer,” Polymers (Basel) 9(12), 472 (2017).
    [Crossref]
  30. J. Marín-Sáez, J. Atencia, D. Chemisana, and M.-V. Collados, “Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications,” Opt. Express 24(6), A720–A730 (2016).
    [Crossref] [PubMed]
  31. J. Marín-Sáez, M. V. Collados, D. Chemisana, and J. Atencia, “Energy analysis of holographic lenses for solar concentration,” Proc. SPIE 10233, 1023317 (2017).
    [Crossref]
  32. Covestro Deutschland AG, Bayfol HX200 Datasheet (2016).
  33. P. Markovski, N. Koleva, and T. Todorov, “Some characteristics of phase holographic gratings in the intermediate regime of diffraction,” Opt. Quantum Electron. 13(6), 515–518 (1981).
    [Crossref]
  34. J. Marín-Sáez, M. V. Collados, J. Atencia, and D. Chemisana, “Optical and Energetic Performance of Volume Holographic Optical Elements for Solar Energy Applications,” in Advances in Energy Research (NOVA, 2017).
  35. N. Uchida, “Calculation of diffraction efficiency in hologram gratings attenuated along the direction perpendicular to the grating vector,” J. Opt. Soc. Am. 63(3), 280 (1973).
    [Crossref]
  36. M. Prijatelj, J. Klepp, Y. Tomita, and M. Fally, “Far-off-Bragg reconstruction of volume holographic gratings: A comparison of experiment and theories,” Phys. Rev. A 87(6), 63810 (2013).
    [Crossref]
  37. E. Hecht, Optics (Addison Wesley, 1998).
  38. F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M.-S. Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
    [Crossref]

2017 (3)

H. Akbari, I. Naydenova, H. Ahmed, S. McCormack, and S. Martin, “Development and testing of low spatial frequency holographic concentrator elements for collection of solar energy,” Sol. Energy 155, 103–109 (2017).
[Crossref]

F.-K. Bruder, T. Fäcke, and T. Rölle, “The Chemistry and Physics of Bayfol HX Film Holographic Photopolymer,” Polymers (Basel) 9(12), 472 (2017).
[Crossref]

J. Marín-Sáez, M. V. Collados, D. Chemisana, and J. Atencia, “Energy analysis of holographic lenses for solar concentration,” Proc. SPIE 10233, 1023317 (2017).
[Crossref]

2016 (4)

J. Marín-Sáez, J. Atencia, D. Chemisana, and M.-V. Collados, “Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications,” Opt. Express 24(6), A720–A730 (2016).
[Crossref] [PubMed]

G. B. Ingersoll and J. R. Leger, “Optimization of multi-grating volume holographic spectrum splitters for photovoltaic applications,” Appl. Opt. 55(20), 5399–5407 (2016).
[Crossref] [PubMed]

J. Marín-Sáez, D. Chemisana, Á. Moreno, A. Riverola, J. Atencia, and M.-V. Collados, “Energy Simulation of a Holographic PVT Concentrating System for Building Integration Applications,” Energies 9(8), 577 (2016).
[Crossref]

M. V. Collados, D. Chemisana, and J. Atencia, “Holographic solar energy systems: The role of optical elements,” Renew. Sustain. Energy Rev. 59, 130–140 (2016).
[Crossref]

2015 (2)

S. Vorndran, J. M. Russo, Y. Wu, M. Gordon, and R. Kostuk, “Holographic diffraction-through-aperture spectrum splitting for increased hybrid solar energy conversion efficiency,” Int. J. Energy Res. 39(3), 326–335 (2015).
[Crossref]

P. Bañares-Palacios, S. Álvarez-Álvarez, J. Marín-Sáez, M.-V. Collados, D. Chemisana, and J. Atencia, “Broadband behavior of transmission volume holographic optical elements for solar concentration,” Opt. Express 23(11), A671–A681 (2015).
[Crossref] [PubMed]

2014 (3)

H. Akbari, I. Naydenova, and S. Martin, “Using acrylamide-based photopolymers for fabrication of holographic optical elements in solar energy applications,” Appl. Opt. 53(7), 1343–1353 (2014).
[Crossref] [PubMed]

H. Baig, N. Sarmah, D. Chemisana, J. Rosell, and T. K. Mallick, “Enhancing performance of a linear dielectric based concentrating photovoltaic system using a reflective film along the edge,” Energy 73, 177–191 (2014).
[Crossref]

G. Li, G. Pei, M. Yang, J. Ji, and Y. Su, “Optical evaluation of a novel static incorporated compound parabolic concentrator with photovoltaic/thermal system and preliminary experiment,” Energy Convers. Manage. 85, 204–211 (2014).
[Crossref]

2013 (3)

D. Zhang, M. Gordon, J. M. Russo, S. Vorndran, and R. K. Kostuk, “Spectrum-splitting photovoltaic system using transmission holographic lenses,” J. Photonics Energy 3(1), 34597 (2013).
[Crossref]

D. Chemisana, M. V. Collados, M. Quintanilla, and J. Atencia, “Holographic lenses for building integrated concentrating photovoltaics,” Appl. Energy 110, 227–235 (2013).
[Crossref]

M. Prijatelj, J. Klepp, Y. Tomita, and M. Fally, “Far-off-Bragg reconstruction of volume holographic gratings: A comparison of experiment and theories,” Phys. Rev. A 87(6), 63810 (2013).
[Crossref]

2011 (2)

2010 (3)

J. M. Castro, D. Zhang, B. Myer, and R. K. Kostuk, “Energy collection efficiency of holographic planar solar concentrators,” Appl. Opt. 49(5), 858–870 (2010).
[Crossref] [PubMed]

D. Chemisana and M. Ibáñez, “Linear Fresnel concentrators for building integrated applications,” Energy Convers. Manage. 51(7), 1476–1480 (2010).
[Crossref]

F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M.-S. Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

2009 (1)

2008 (1)

R. K. Kostuk and G. Rosenberg, “Analysis and design of holographic solar concentrators,” Proc. SPIE 7043, 70430I (2008).
[Crossref]

1997 (1)

J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
[Crossref]

1994 (1)

K. Froehlich, E. U. Wagemann, H. Schulat, H. Schuette, and C. G. Stojanoff, “Fabrication and test of a holographic concentrator for two-color PV operation,” Proc. SPIE 2255, 812–821 (1994).
[Crossref]

1988 (1)

C. Bainier, C. Hernandez, and D. Courjon, “Solar concentrating systems using holographic lenses,” Solar Wind Technol. 5(4), 395–404 (1988).
[Crossref]

1982 (1)

1981 (1)

P. Markovski, N. Koleva, and T. Todorov, “Some characteristics of phase holographic gratings in the intermediate regime of diffraction,” Opt. Quantum Electron. 13(6), 515–518 (1981).
[Crossref]

1980 (2)

M. G. Moharam, T. K. Gaylord, and R. Magnusson, “Criteria for Bragg regime diffraction by phase gratings,” Opt. Commun. 32(1), 14–18 (1980).
[Crossref]

M. G. Moharam, T. K. Gaylord, and R. Magnusson, “Criteria for Raman-Nath regime diffraction by phase gratings,” Opt. Commun. 32(1), 19–23 (1980).
[Crossref]

1973 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

1967 (1)

W. R. Klein and B. D. Cook, “Unified Approach to Ultrasonic Light Diffraction,” IEEE Trans. Sonics Ultrason. 14(3), 123–134 (1967).
[Crossref]

Ahmed, H.

H. Akbari, I. Naydenova, H. Ahmed, S. McCormack, and S. Martin, “Development and testing of low spatial frequency holographic concentrator elements for collection of solar energy,” Sol. Energy 155, 103–109 (2017).
[Crossref]

Akbari, H.

H. Akbari, I. Naydenova, H. Ahmed, S. McCormack, and S. Martin, “Development and testing of low spatial frequency holographic concentrator elements for collection of solar energy,” Sol. Energy 155, 103–109 (2017).
[Crossref]

H. Akbari, I. Naydenova, and S. Martin, “Using acrylamide-based photopolymers for fabrication of holographic optical elements in solar energy applications,” Appl. Opt. 53(7), 1343–1353 (2014).
[Crossref] [PubMed]

Álvarez-Álvarez, S.

Atencia, J.

J. Marín-Sáez, M. V. Collados, D. Chemisana, and J. Atencia, “Energy analysis of holographic lenses for solar concentration,” Proc. SPIE 10233, 1023317 (2017).
[Crossref]

J. Marín-Sáez, J. Atencia, D. Chemisana, and M.-V. Collados, “Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications,” Opt. Express 24(6), A720–A730 (2016).
[Crossref] [PubMed]

M. V. Collados, D. Chemisana, and J. Atencia, “Holographic solar energy systems: The role of optical elements,” Renew. Sustain. Energy Rev. 59, 130–140 (2016).
[Crossref]

J. Marín-Sáez, D. Chemisana, Á. Moreno, A. Riverola, J. Atencia, and M.-V. Collados, “Energy Simulation of a Holographic PVT Concentrating System for Building Integration Applications,” Energies 9(8), 577 (2016).
[Crossref]

P. Bañares-Palacios, S. Álvarez-Álvarez, J. Marín-Sáez, M.-V. Collados, D. Chemisana, and J. Atencia, “Broadband behavior of transmission volume holographic optical elements for solar concentration,” Opt. Express 23(11), A671–A681 (2015).
[Crossref] [PubMed]

D. Chemisana, M. V. Collados, M. Quintanilla, and J. Atencia, “Holographic lenses for building integrated concentrating photovoltaics,” Appl. Energy 110, 227–235 (2013).
[Crossref]

A. Villamarín, J. Atencia, M. V. Collados, and M. Quintanilla, “Characterization of transmission volume holographic gratings recorded in Slavich PFG04 dichromated gelatin plates,” Appl. Opt. 48(22), 4348–4353 (2009).
[Crossref] [PubMed]

Baig, H.

H. Baig, N. Sarmah, D. Chemisana, J. Rosell, and T. K. Mallick, “Enhancing performance of a linear dielectric based concentrating photovoltaic system using a reflective film along the edge,” Energy 73, 177–191 (2014).
[Crossref]

Bainier, C.

C. Bainier, C. Hernandez, and D. Courjon, “Solar concentrating systems using holographic lenses,” Solar Wind Technol. 5(4), 395–404 (1988).
[Crossref]

Bañares-Palacios, P.

Bloss, W. H.

Bruder, F.-K.

F.-K. Bruder, T. Fäcke, and T. Rölle, “The Chemistry and Physics of Bayfol HX Film Holographic Photopolymer,” Polymers (Basel) 9(12), 472 (2017).
[Crossref]

F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M.-S. Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

Castro, J. M.

Chemisana, D.

J. Marín-Sáez, M. V. Collados, D. Chemisana, and J. Atencia, “Energy analysis of holographic lenses for solar concentration,” Proc. SPIE 10233, 1023317 (2017).
[Crossref]

J. Marín-Sáez, J. Atencia, D. Chemisana, and M.-V. Collados, “Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications,” Opt. Express 24(6), A720–A730 (2016).
[Crossref] [PubMed]

J. Marín-Sáez, D. Chemisana, Á. Moreno, A. Riverola, J. Atencia, and M.-V. Collados, “Energy Simulation of a Holographic PVT Concentrating System for Building Integration Applications,” Energies 9(8), 577 (2016).
[Crossref]

M. V. Collados, D. Chemisana, and J. Atencia, “Holographic solar energy systems: The role of optical elements,” Renew. Sustain. Energy Rev. 59, 130–140 (2016).
[Crossref]

P. Bañares-Palacios, S. Álvarez-Álvarez, J. Marín-Sáez, M.-V. Collados, D. Chemisana, and J. Atencia, “Broadband behavior of transmission volume holographic optical elements for solar concentration,” Opt. Express 23(11), A671–A681 (2015).
[Crossref] [PubMed]

H. Baig, N. Sarmah, D. Chemisana, J. Rosell, and T. K. Mallick, “Enhancing performance of a linear dielectric based concentrating photovoltaic system using a reflective film along the edge,” Energy 73, 177–191 (2014).
[Crossref]

D. Chemisana, M. V. Collados, M. Quintanilla, and J. Atencia, “Holographic lenses for building integrated concentrating photovoltaics,” Appl. Energy 110, 227–235 (2013).
[Crossref]

D. Chemisana, “Building integrated concentrating photovoltaics: A review,” Renew. Sustain. Energy Rev. 15(1), 603–611 (2011).
[Crossref]

D. Chemisana and M. Ibáñez, “Linear Fresnel concentrators for building integrated applications,” Energy Convers. Manage. 51(7), 1476–1480 (2010).
[Crossref]

Collados, M. V.

J. Marín-Sáez, M. V. Collados, D. Chemisana, and J. Atencia, “Energy analysis of holographic lenses for solar concentration,” Proc. SPIE 10233, 1023317 (2017).
[Crossref]

M. V. Collados, D. Chemisana, and J. Atencia, “Holographic solar energy systems: The role of optical elements,” Renew. Sustain. Energy Rev. 59, 130–140 (2016).
[Crossref]

D. Chemisana, M. V. Collados, M. Quintanilla, and J. Atencia, “Holographic lenses for building integrated concentrating photovoltaics,” Appl. Energy 110, 227–235 (2013).
[Crossref]

A. Villamarín, J. Atencia, M. V. Collados, and M. Quintanilla, “Characterization of transmission volume holographic gratings recorded in Slavich PFG04 dichromated gelatin plates,” Appl. Opt. 48(22), 4348–4353 (2009).
[Crossref] [PubMed]

Collados, M.-V.

Cook, B. D.

W. R. Klein and B. D. Cook, “Unified Approach to Ultrasonic Light Diffraction,” IEEE Trans. Sonics Ultrason. 14(3), 123–134 (1967).
[Crossref]

Courjon, D.

C. Bainier, C. Hernandez, and D. Courjon, “Solar concentrating systems using holographic lenses,” Solar Wind Technol. 5(4), 395–404 (1988).
[Crossref]

Deuber, F.

F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M.-S. Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

Fäcke, T.

F.-K. Bruder, T. Fäcke, and T. Rölle, “The Chemistry and Physics of Bayfol HX Film Holographic Photopolymer,” Polymers (Basel) 9(12), 472 (2017).
[Crossref]

F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M.-S. Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

Fally, M.

M. Prijatelj, J. Klepp, Y. Tomita, and M. Fally, “Far-off-Bragg reconstruction of volume holographic gratings: A comparison of experiment and theories,” Phys. Rev. A 87(6), 63810 (2013).
[Crossref]

Froehlich, K.

K. Froehlich, E. U. Wagemann, H. Schulat, H. Schuette, and C. G. Stojanoff, “Fabrication and test of a holographic concentrator for two-color PV operation,” Proc. SPIE 2255, 812–821 (1994).
[Crossref]

Gaylord, T. K.

M. G. Moharam, T. K. Gaylord, and R. Magnusson, “Criteria for Bragg regime diffraction by phase gratings,” Opt. Commun. 32(1), 14–18 (1980).
[Crossref]

M. G. Moharam, T. K. Gaylord, and R. Magnusson, “Criteria for Raman-Nath regime diffraction by phase gratings,” Opt. Commun. 32(1), 19–23 (1980).
[Crossref]

Gordon, M.

S. Vorndran, J. M. Russo, Y. Wu, M. Gordon, and R. Kostuk, “Holographic diffraction-through-aperture spectrum splitting for increased hybrid solar energy conversion efficiency,” Int. J. Energy Res. 39(3), 326–335 (2015).
[Crossref]

D. Zhang, M. Gordon, J. M. Russo, S. Vorndran, and R. K. Kostuk, “Spectrum-splitting photovoltaic system using transmission holographic lenses,” J. Photonics Energy 3(1), 34597 (2013).
[Crossref]

Griesinger, M.

Hagen, R.

F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M.-S. Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

Hayashi, K.

Hernandez, C.

C. Bainier, C. Hernandez, and D. Courjon, “Solar concentrating systems using holographic lenses,” Solar Wind Technol. 5(4), 395–404 (1988).
[Crossref]

Hönel, D.

F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M.-S. Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

Ibáñez, M.

D. Chemisana and M. Ibáñez, “Linear Fresnel concentrators for building integrated applications,” Energy Convers. Manage. 51(7), 1476–1480 (2010).
[Crossref]

Ingersoll, G. B.

Ji, J.

G. Li, G. Pei, M. Yang, J. Ji, and Y. Su, “Optical evaluation of a novel static incorporated compound parabolic concentrator with photovoltaic/thermal system and preliminary experiment,” Energy Convers. Manage. 85, 204–211 (2014).
[Crossref]

Jurbergs, D.

F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M.-S. Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

Kanno, K.

Klein, W. R.

W. R. Klein and B. D. Cook, “Unified Approach to Ultrasonic Light Diffraction,” IEEE Trans. Sonics Ultrason. 14(3), 123–134 (1967).
[Crossref]

Klepp, J.

M. Prijatelj, J. Klepp, Y. Tomita, and M. Fally, “Far-off-Bragg reconstruction of volume holographic gratings: A comparison of experiment and theories,” Phys. Rev. A 87(6), 63810 (2013).
[Crossref]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Koleva, N.

P. Markovski, N. Koleva, and T. Todorov, “Some characteristics of phase holographic gratings in the intermediate regime of diffraction,” Opt. Quantum Electron. 13(6), 515–518 (1981).
[Crossref]

Kostuk, R.

S. Vorndran, J. M. Russo, Y. Wu, M. Gordon, and R. Kostuk, “Holographic diffraction-through-aperture spectrum splitting for increased hybrid solar energy conversion efficiency,” Int. J. Energy Res. 39(3), 326–335 (2015).
[Crossref]

Kostuk, R. K.

D. Zhang, M. Gordon, J. M. Russo, S. Vorndran, and R. K. Kostuk, “Spectrum-splitting photovoltaic system using transmission holographic lenses,” J. Photonics Energy 3(1), 34597 (2013).
[Crossref]

J. M. Castro, D. Zhang, B. Myer, and R. K. Kostuk, “Energy collection efficiency of holographic planar solar concentrators,” Appl. Opt. 49(5), 858–870 (2010).
[Crossref] [PubMed]

R. K. Kostuk and G. Rosenberg, “Analysis and design of holographic solar concentrators,” Proc. SPIE 7043, 70430I (2008).
[Crossref]

Leger, J. R.

Li, G.

G. Li, G. Pei, M. Yang, J. Ji, and Y. Su, “Optical evaluation of a novel static incorporated compound parabolic concentrator with photovoltaic/thermal system and preliminary experiment,” Energy Convers. Manage. 85, 204–211 (2014).
[Crossref]

Li, X.

J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
[Crossref]

J. E. Ludman, J. Riccobono, N. O. Reinhand, I. V. Semenova, J. Martín, W. Tai, X. Li, and G. Syphers, “Holographic solar concentrator for terrestrial photovoltaics,” in Proceedings of the 24th IEEE Photovoltaic Specialists Conference (1994), pp. 1208–1211.

Ludman, J. E.

J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
[Crossref]

J. E. Ludman, J. Riccobono, N. O. Reinhand, I. V. Semenova, J. Martín, W. Tai, X. Li, and G. Syphers, “Holographic solar concentrator for terrestrial photovoltaics,” in Proceedings of the 24th IEEE Photovoltaic Specialists Conference (1994), pp. 1208–1211.

Magnusson, R.

M. G. Moharam, T. K. Gaylord, and R. Magnusson, “Criteria for Raman-Nath regime diffraction by phase gratings,” Opt. Commun. 32(1), 19–23 (1980).
[Crossref]

M. G. Moharam, T. K. Gaylord, and R. Magnusson, “Criteria for Bragg regime diffraction by phase gratings,” Opt. Commun. 32(1), 14–18 (1980).
[Crossref]

Mallick, T. K.

H. Baig, N. Sarmah, D. Chemisana, J. Rosell, and T. K. Mallick, “Enhancing performance of a linear dielectric based concentrating photovoltaic system using a reflective film along the edge,” Energy 73, 177–191 (2014).
[Crossref]

Marín-Sáez, J.

J. Marín-Sáez, M. V. Collados, D. Chemisana, and J. Atencia, “Energy analysis of holographic lenses for solar concentration,” Proc. SPIE 10233, 1023317 (2017).
[Crossref]

J. Marín-Sáez, D. Chemisana, Á. Moreno, A. Riverola, J. Atencia, and M.-V. Collados, “Energy Simulation of a Holographic PVT Concentrating System for Building Integration Applications,” Energies 9(8), 577 (2016).
[Crossref]

J. Marín-Sáez, J. Atencia, D. Chemisana, and M.-V. Collados, “Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications,” Opt. Express 24(6), A720–A730 (2016).
[Crossref] [PubMed]

P. Bañares-Palacios, S. Álvarez-Álvarez, J. Marín-Sáez, M.-V. Collados, D. Chemisana, and J. Atencia, “Broadband behavior of transmission volume holographic optical elements for solar concentration,” Opt. Express 23(11), A671–A681 (2015).
[Crossref] [PubMed]

Markovski, P.

P. Markovski, N. Koleva, and T. Todorov, “Some characteristics of phase holographic gratings in the intermediate regime of diffraction,” Opt. Quantum Electron. 13(6), 515–518 (1981).
[Crossref]

Martin, S.

H. Akbari, I. Naydenova, H. Ahmed, S. McCormack, and S. Martin, “Development and testing of low spatial frequency holographic concentrator elements for collection of solar energy,” Sol. Energy 155, 103–109 (2017).
[Crossref]

H. Akbari, I. Naydenova, and S. Martin, “Using acrylamide-based photopolymers for fabrication of holographic optical elements in solar energy applications,” Appl. Opt. 53(7), 1343–1353 (2014).
[Crossref] [PubMed]

Martín, J.

J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
[Crossref]

J. E. Ludman, J. Riccobono, N. O. Reinhand, I. V. Semenova, J. Martín, W. Tai, X. Li, and G. Syphers, “Holographic solar concentrator for terrestrial photovoltaics,” in Proceedings of the 24th IEEE Photovoltaic Specialists Conference (1994), pp. 1208–1211.

McCormack, S.

H. Akbari, I. Naydenova, H. Ahmed, S. McCormack, and S. Martin, “Development and testing of low spatial frequency holographic concentrator elements for collection of solar energy,” Sol. Energy 155, 103–109 (2017).
[Crossref]

Moharam, M. G.

M. G. Moharam, T. K. Gaylord, and R. Magnusson, “Criteria for Raman-Nath regime diffraction by phase gratings,” Opt. Commun. 32(1), 19–23 (1980).
[Crossref]

M. G. Moharam, T. K. Gaylord, and R. Magnusson, “Criteria for Bragg regime diffraction by phase gratings,” Opt. Commun. 32(1), 14–18 (1980).
[Crossref]

Moreno, Á.

J. Marín-Sáez, D. Chemisana, Á. Moreno, A. Riverola, J. Atencia, and M.-V. Collados, “Energy Simulation of a Holographic PVT Concentrating System for Building Integration Applications,” Energies 9(8), 577 (2016).
[Crossref]

Myer, B.

Naydenova, I.

H. Akbari, I. Naydenova, H. Ahmed, S. McCormack, and S. Martin, “Development and testing of low spatial frequency holographic concentrator elements for collection of solar energy,” Sol. Energy 155, 103–109 (2017).
[Crossref]

H. Akbari, I. Naydenova, and S. Martin, “Using acrylamide-based photopolymers for fabrication of holographic optical elements in solar energy applications,” Appl. Opt. 53(7), 1343–1353 (2014).
[Crossref] [PubMed]

Pei, G.

G. Li, G. Pei, M. Yang, J. Ji, and Y. Su, “Optical evaluation of a novel static incorporated compound parabolic concentrator with photovoltaic/thermal system and preliminary experiment,” Energy Convers. Manage. 85, 204–211 (2014).
[Crossref]

Prijatelj, M.

M. Prijatelj, J. Klepp, Y. Tomita, and M. Fally, “Far-off-Bragg reconstruction of volume holographic gratings: A comparison of experiment and theories,” Phys. Rev. A 87(6), 63810 (2013).
[Crossref]

Quintanilla, M.

D. Chemisana, M. V. Collados, M. Quintanilla, and J. Atencia, “Holographic lenses for building integrated concentrating photovoltaics,” Appl. Energy 110, 227–235 (2013).
[Crossref]

A. Villamarín, J. Atencia, M. V. Collados, and M. Quintanilla, “Characterization of transmission volume holographic gratings recorded in Slavich PFG04 dichromated gelatin plates,” Appl. Opt. 48(22), 4348–4353 (2009).
[Crossref] [PubMed]

Rallis, E.

J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
[Crossref]

Reinhand, N. O.

J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
[Crossref]

J. E. Ludman, J. Riccobono, N. O. Reinhand, I. V. Semenova, J. Martín, W. Tai, X. Li, and G. Syphers, “Holographic solar concentrator for terrestrial photovoltaics,” in Proceedings of the 24th IEEE Photovoltaic Specialists Conference (1994), pp. 1208–1211.

Reinhardt, E. R.

Riccobono, J.

J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
[Crossref]

J. E. Ludman, J. Riccobono, N. O. Reinhand, I. V. Semenova, J. Martín, W. Tai, X. Li, and G. Syphers, “Holographic solar concentrator for terrestrial photovoltaics,” in Proceedings of the 24th IEEE Photovoltaic Specialists Conference (1994), pp. 1208–1211.

Riverola, A.

J. Marín-Sáez, D. Chemisana, Á. Moreno, A. Riverola, J. Atencia, and M.-V. Collados, “Energy Simulation of a Holographic PVT Concentrating System for Building Integration Applications,” Energies 9(8), 577 (2016).
[Crossref]

Rölle, T.

F.-K. Bruder, T. Fäcke, and T. Rölle, “The Chemistry and Physics of Bayfol HX Film Holographic Photopolymer,” Polymers (Basel) 9(12), 472 (2017).
[Crossref]

F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M.-S. Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

Rosell, J.

H. Baig, N. Sarmah, D. Chemisana, J. Rosell, and T. K. Mallick, “Enhancing performance of a linear dielectric based concentrating photovoltaic system using a reflective film along the edge,” Energy 73, 177–191 (2014).
[Crossref]

Rosenberg, G.

R. K. Kostuk and G. Rosenberg, “Analysis and design of holographic solar concentrators,” Proc. SPIE 7043, 70430I (2008).
[Crossref]

Russo, J. M.

S. Vorndran, J. M. Russo, Y. Wu, M. Gordon, and R. Kostuk, “Holographic diffraction-through-aperture spectrum splitting for increased hybrid solar energy conversion efficiency,” Int. J. Energy Res. 39(3), 326–335 (2015).
[Crossref]

D. Zhang, M. Gordon, J. M. Russo, S. Vorndran, and R. K. Kostuk, “Spectrum-splitting photovoltaic system using transmission holographic lenses,” J. Photonics Energy 3(1), 34597 (2013).
[Crossref]

Sarmah, N.

H. Baig, N. Sarmah, D. Chemisana, J. Rosell, and T. K. Mallick, “Enhancing performance of a linear dielectric based concentrating photovoltaic system using a reflective film along the edge,” Energy 73, 177–191 (2014).
[Crossref]

Schuette, H.

K. Froehlich, E. U. Wagemann, H. Schulat, H. Schuette, and C. G. Stojanoff, “Fabrication and test of a holographic concentrator for two-color PV operation,” Proc. SPIE 2255, 812–821 (1994).
[Crossref]

Schulat, H.

K. Froehlich, E. U. Wagemann, H. Schulat, H. Schuette, and C. G. Stojanoff, “Fabrication and test of a holographic concentrator for two-color PV operation,” Proc. SPIE 2255, 812–821 (1994).
[Crossref]

Semenova, I. V.

J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
[Crossref]

J. E. Ludman, J. Riccobono, N. O. Reinhand, I. V. Semenova, J. Martín, W. Tai, X. Li, and G. Syphers, “Holographic solar concentrator for terrestrial photovoltaics,” in Proceedings of the 24th IEEE Photovoltaic Specialists Conference (1994), pp. 1208–1211.

Sliker, G.

J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
[Crossref]

Stojanoff, C. G.

K. Froehlich, E. U. Wagemann, H. Schulat, H. Schuette, and C. G. Stojanoff, “Fabrication and test of a holographic concentrator for two-color PV operation,” Proc. SPIE 2255, 812–821 (1994).
[Crossref]

Su, Y.

G. Li, G. Pei, M. Yang, J. Ji, and Y. Su, “Optical evaluation of a novel static incorporated compound parabolic concentrator with photovoltaic/thermal system and preliminary experiment,” Energy Convers. Manage. 85, 204–211 (2014).
[Crossref]

Syphers, G.

J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
[Crossref]

J. E. Ludman, J. Riccobono, N. O. Reinhand, I. V. Semenova, J. Martín, W. Tai, X. Li, and G. Syphers, “Holographic solar concentrator for terrestrial photovoltaics,” in Proceedings of the 24th IEEE Photovoltaic Specialists Conference (1994), pp. 1208–1211.

Tai, W.

J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
[Crossref]

J. E. Ludman, J. Riccobono, N. O. Reinhand, I. V. Semenova, J. Martín, W. Tai, X. Li, and G. Syphers, “Holographic solar concentrator for terrestrial photovoltaics,” in Proceedings of the 24th IEEE Photovoltaic Specialists Conference (1994), pp. 1208–1211.

Todorov, T.

P. Markovski, N. Koleva, and T. Todorov, “Some characteristics of phase holographic gratings in the intermediate regime of diffraction,” Opt. Quantum Electron. 13(6), 515–518 (1981).
[Crossref]

Tokimitsu, T.

Tomita, Y.

M. Prijatelj, J. Klepp, Y. Tomita, and M. Fally, “Far-off-Bragg reconstruction of volume holographic gratings: A comparison of experiment and theories,” Phys. Rev. A 87(6), 63810 (2013).
[Crossref]

Uchida, N.

Villamarín, A.

Vorndran, S.

S. Vorndran, J. M. Russo, Y. Wu, M. Gordon, and R. Kostuk, “Holographic diffraction-through-aperture spectrum splitting for increased hybrid solar energy conversion efficiency,” Int. J. Energy Res. 39(3), 326–335 (2015).
[Crossref]

D. Zhang, M. Gordon, J. M. Russo, S. Vorndran, and R. K. Kostuk, “Spectrum-splitting photovoltaic system using transmission holographic lenses,” J. Photonics Energy 3(1), 34597 (2013).
[Crossref]

Wagemann, E. U.

K. Froehlich, E. U. Wagemann, H. Schulat, H. Schuette, and C. G. Stojanoff, “Fabrication and test of a holographic concentrator for two-color PV operation,” Proc. SPIE 2255, 812–821 (1994).
[Crossref]

Weiser, M.-S.

F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M.-S. Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

Wu, Y.

S. Vorndran, J. M. Russo, Y. Wu, M. Gordon, and R. Kostuk, “Holographic diffraction-through-aperture spectrum splitting for increased hybrid solar energy conversion efficiency,” Int. J. Energy Res. 39(3), 326–335 (2015).
[Crossref]

Yamada, N.

Yang, M.

G. Li, G. Pei, M. Yang, J. Ji, and Y. Su, “Optical evaluation of a novel static incorporated compound parabolic concentrator with photovoltaic/thermal system and preliminary experiment,” Energy Convers. Manage. 85, 204–211 (2014).
[Crossref]

Zhang, D.

D. Zhang, M. Gordon, J. M. Russo, S. Vorndran, and R. K. Kostuk, “Spectrum-splitting photovoltaic system using transmission holographic lenses,” J. Photonics Energy 3(1), 34597 (2013).
[Crossref]

J. M. Castro, D. Zhang, B. Myer, and R. K. Kostuk, “Energy collection efficiency of holographic planar solar concentrators,” Appl. Opt. 49(5), 858–870 (2010).
[Crossref] [PubMed]

Appl. Energy (1)

D. Chemisana, M. V. Collados, M. Quintanilla, and J. Atencia, “Holographic lenses for building integrated concentrating photovoltaics,” Appl. Energy 110, 227–235 (2013).
[Crossref]

Appl. Opt. (5)

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Energies (1)

J. Marín-Sáez, D. Chemisana, Á. Moreno, A. Riverola, J. Atencia, and M.-V. Collados, “Energy Simulation of a Holographic PVT Concentrating System for Building Integration Applications,” Energies 9(8), 577 (2016).
[Crossref]

Energy (1)

H. Baig, N. Sarmah, D. Chemisana, J. Rosell, and T. K. Mallick, “Enhancing performance of a linear dielectric based concentrating photovoltaic system using a reflective film along the edge,” Energy 73, 177–191 (2014).
[Crossref]

Energy Convers. Manage. (2)

D. Chemisana and M. Ibáñez, “Linear Fresnel concentrators for building integrated applications,” Energy Convers. Manage. 51(7), 1476–1480 (2010).
[Crossref]

G. Li, G. Pei, M. Yang, J. Ji, and Y. Su, “Optical evaluation of a novel static incorporated compound parabolic concentrator with photovoltaic/thermal system and preliminary experiment,” Energy Convers. Manage. 85, 204–211 (2014).
[Crossref]

IEEE Trans. Sonics Ultrason. (1)

W. R. Klein and B. D. Cook, “Unified Approach to Ultrasonic Light Diffraction,” IEEE Trans. Sonics Ultrason. 14(3), 123–134 (1967).
[Crossref]

Int. J. Energy Res. (1)

S. Vorndran, J. M. Russo, Y. Wu, M. Gordon, and R. Kostuk, “Holographic diffraction-through-aperture spectrum splitting for increased hybrid solar energy conversion efficiency,” Int. J. Energy Res. 39(3), 326–335 (2015).
[Crossref]

J. Opt. Soc. Am. (1)

J. Photonics Energy (1)

D. Zhang, M. Gordon, J. M. Russo, S. Vorndran, and R. K. Kostuk, “Spectrum-splitting photovoltaic system using transmission holographic lenses,” J. Photonics Energy 3(1), 34597 (2013).
[Crossref]

Opt. Commun. (2)

M. G. Moharam, T. K. Gaylord, and R. Magnusson, “Criteria for Bragg regime diffraction by phase gratings,” Opt. Commun. 32(1), 14–18 (1980).
[Crossref]

M. G. Moharam, T. K. Gaylord, and R. Magnusson, “Criteria for Raman-Nath regime diffraction by phase gratings,” Opt. Commun. 32(1), 19–23 (1980).
[Crossref]

Opt. Express (3)

Opt. Quantum Electron. (1)

P. Markovski, N. Koleva, and T. Todorov, “Some characteristics of phase holographic gratings in the intermediate regime of diffraction,” Opt. Quantum Electron. 13(6), 515–518 (1981).
[Crossref]

Phys. Rev. A (1)

M. Prijatelj, J. Klepp, Y. Tomita, and M. Fally, “Far-off-Bragg reconstruction of volume holographic gratings: A comparison of experiment and theories,” Phys. Rev. A 87(6), 63810 (2013).
[Crossref]

Polymers (Basel) (1)

F.-K. Bruder, T. Fäcke, and T. Rölle, “The Chemistry and Physics of Bayfol HX Film Holographic Photopolymer,” Polymers (Basel) 9(12), 472 (2017).
[Crossref]

Proc. SPIE (4)

F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M.-S. Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
[Crossref]

J. Marín-Sáez, M. V. Collados, D. Chemisana, and J. Atencia, “Energy analysis of holographic lenses for solar concentration,” Proc. SPIE 10233, 1023317 (2017).
[Crossref]

R. K. Kostuk and G. Rosenberg, “Analysis and design of holographic solar concentrators,” Proc. SPIE 7043, 70430I (2008).
[Crossref]

K. Froehlich, E. U. Wagemann, H. Schulat, H. Schuette, and C. G. Stojanoff, “Fabrication and test of a holographic concentrator for two-color PV operation,” Proc. SPIE 2255, 812–821 (1994).
[Crossref]

Renew. Sustain. Energy Rev. (2)

D. Chemisana, “Building integrated concentrating photovoltaics: A review,” Renew. Sustain. Energy Rev. 15(1), 603–611 (2011).
[Crossref]

M. V. Collados, D. Chemisana, and J. Atencia, “Holographic solar energy systems: The role of optical elements,” Renew. Sustain. Energy Rev. 59, 130–140 (2016).
[Crossref]

Sol. Energy (2)

J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
[Crossref]

H. Akbari, I. Naydenova, H. Ahmed, S. McCormack, and S. Martin, “Development and testing of low spatial frequency holographic concentrator elements for collection of solar energy,” Sol. Energy 155, 103–109 (2017).
[Crossref]

Solar Wind Technol. (1)

C. Bainier, C. Hernandez, and D. Courjon, “Solar concentrating systems using holographic lenses,” Solar Wind Technol. 5(4), 395–404 (1988).
[Crossref]

Other (6)

R. Syms, Practical Volume Holography (Oxford University Press, 1990).

Covestro Deutschland AG, Bayfol HX200 Datasheet (2016).

J. Marín-Sáez, M. V. Collados, J. Atencia, and D. Chemisana, “Optical and Energetic Performance of Volume Holographic Optical Elements for Solar Energy Applications,” in Advances in Energy Research (NOVA, 2017).

E. Hecht, Optics (Addison Wesley, 1998).

American Society for Testing and Materials, “Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface,” in Book of Standards Volume: 14.04 (2004).

J. E. Ludman, J. Riccobono, N. O. Reinhand, I. V. Semenova, J. Martín, W. Tai, X. Li, and G. Syphers, “Holographic solar concentrator for terrestrial photovoltaics,” in Proceedings of the 24th IEEE Photovoltaic Specialists Conference (1994), pp. 1208–1211.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Standard AM 1.5D solar spectrum [7] (solid black line, left y-axis). Monocrystalline Si PV cell response curve (dashed red line, right y-axis).
Fig. 2
Fig. 2 Recording setup of a cylindrical holographic lens.
Fig. 3
Fig. 3 Schematic of the system considered: each cylindrical holographic lens redirects sun rays towards a PV cell.
Fig. 4
Fig. 4 Index modulation experimental values as a function of the exposure dosage for several spatial frequencies.
Fig. 5
Fig. 5 Linear fit of the obtained values of the index modulation with a recording exposure dosage of 16 mJ/cm2 versus the spatial frequency.
Fig. 6
Fig. 6 Spatial frequency along y-direction of all three lenses. The white, light grey and dark grey areas denote Bragg, transition and Raman-Nath regime, respectively, when reconstructing with 800 nm.
Fig. 7
Fig. 7 Experimental (filled circles) and theoretical (solid lines) efficiencies of each order of diffraction found at the output of cylindrical holographic lenses A (a), B (b) and C (c).
Fig. 8
Fig. 8 Spectral irradiance received by the PV cell with lens A (a), B (b) and C (c) (colored solid lines, left y-axis). Only orders of diffraction that reach the PV cell are included. Standard AM 1.5D solar spectrum [7] (black solid line, left y-axis), and mono-crystalline Si PV cell spectral response curve (red dashed line, right y-axis) included for comparison.
Fig. 9
Fig. 9 Current intensity concentration throughout the PV cell with one lens (a) and with the whole system (b) A (blue curve), B (orange curve) and C (green curve).

Tables (3)

Tables Icon

Table 1 Characteristics of the recorded holographic gratings.

Tables Icon

Table 2 Recording angles of the three cylindrical holographic lenses considered

Tables Icon

Table 3 Position of the PV cell and current concentration coefficients for each one of the three systems considered.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

η L = I L L I L
η= sin 2 ( πd n 1 λ c 0z c +1z )
c Lz d A L dz +j ϑ L A L +jκ[ A L+1 ( p L+1 · p L )+ A L1 ( p L1 · p L ) ]=0
κ= π n 1 λ
k L · u y =( k 0 L K )· u y

Metrics