Abstract

The complex refractive index of ceria has been determined at ambient temperature using variable angle spectroscopic ellipsometry for two chemical states—fully oxidized and partially reduced. The ellipsometric model is corroborated with complementary measurements of thickness, surface roughness, and chemical composition. Partially reduced ceria is shown to have a larger absorption index over a broad spectral range than fully oxidized ceria, including the visible and near IR regions. We use a simple model of a directly irradiated particle entrained in a gas flow to demonstrate the consequences of accounting for changes in chemical state when modeling ceria-based thermochemical process.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Thermochemical Production of Fuels with Concentrated Solar Energy

Aldo Steinfeld and Alan W. Weimer
Opt. Express 18(S1) A100-A111 (2010)

Epitaxial growth and optical properties of Er-doped CeO2 on Si(111)

Tomohiro Inaba, Takehiko Tawara, Hiroo Omi, Hideki Yamamoto, and Hideki Gotoh
Opt. Mater. Express 8(9) 2843-2849 (2018)

References

  • View by:
  • |
  • |
  • |

  1. W. C. Chueh and S. M. Haile, “A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation,” Philos. Trans. A Math. Phys. Eng. Sci. 368(1923), 3269–3294 (2010).
    [Crossref] [PubMed]
  2. W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile, and A. Steinfeld, “High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria,” Science 330(6012), 1797–1801 (2010).
    [Crossref] [PubMed]
  3. J. R. Scheffe and A. Steinfeld, “Oxygen exchange materials for solar thermochemical splitting of H2O and CO2: A review,” Mater. Today 17(7), 341–348 (2014).
    [Crossref]
  4. D. Marxer, P. Furler, M. Takacs, and A. Steinfeld, “Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency,” Energy Environ. Sci. 10(5), 1142–1149 (2017).
    [Crossref]
  5. P. T. Krenzke and J. H. Davidson, “On the efficiency of solar H2 and CO production via the thermochemical cerium oxide redox cycle: The option of inert-swept reduction,” Energy Fuels 29(2), 1045–1054 (2015).
    [Crossref]
  6. S. Ackermann, J. R. Scheffe, and A. Steinfeld, “Diffusion of oxygen in ceria at elevated temperatures and its application to H2O/CO2 splitting thermochemical redox cycles,” J. Phys. Chem. C 118(10), 5216–5225 (2014).
    [Crossref]
  7. K. Ganesan, L. A. Dombrovsky, T.-S. Oh, and W. Lipiński, “Determination of optical constants of ceria by combined analytical and experimental approaches,” JOM 65(12), 1694–1701 (2013).
    [Crossref]
  8. P. Patsalas, S. Logothetidis, and C. Metaxa, “Optical performance of nanocrystalline transparent ceria films,” Appl. Phys. Lett. 81(3), 466–468 (2002).
    [Crossref]
  9. S. Guo, H. Arwin, S. N. Jacobsen, K. Järrendahl, and U. Helmersson, “A spectroscopic ellipsometry study of cerium dioxide thin films grown on sapphire by RF magnetron sputtering,” J. Appl. Phys. 77(10), 5369–5376 (1995).
    [Crossref]
  10. G. Balakrishnan, S. T. Sundari, P. Kuppusami, P. C. Mohan, M. P. Srinivasan, E. Mohandas, V. Ganesan, and D. Sastikumar, “A study of microstructural and optical properties of nanocrystalline ceria thin films prepared by pulsed laser deposition,” Thin Solid Films 519(8), 2520–2526 (2011).
    [Crossref]
  11. A. S. Oles and G. S. Jackson, “Modeling of a concentrated-solar, falling-particle receiver for ceria reduction,” Sol. Energy 122, 126–147 (2015).
    [Crossref]
  12. A. J. Groehn, A. Lewandowski, R. Yang, and A. W. Weimer, “Hybrid radiation modeling for multi-phase solar-thermal reactor systems operated at high-temperature,” Sol. Energy 140, 130–140 (2016).
    [Crossref]
  13. R. Bala Chandran, R. Bader, and W. Lipiński, “Transient heat and mass transfer analysis in a porous ceria structure of a novel solar redox reactor,” Int. J. Therm. Sci. 92, 138–149 (2015).
    [Crossref]
  14. D. J. Keene, J. H. Davidson, and W. Lipiński, “A model of transient heat and mass transfer in a heterogeneous medium of ceria undergoing nonstoichiometric reduction,” J. Heat Transfer 135(5), 052701 (2013).
    [Crossref]
  15. F. Marabelli and P. Wachter, “Covalent insulator CeO2: Optical reflectivity measurements,” Phys. Rev. B Condens. Matter 36(2), 1238–1243 (1987).
    [Crossref] [PubMed]
  16. R. J. Panlener, R. N. Blumenthal, and J. E. Garnier, “A thermodynamic study of nonstoichiometric cerium dioxide,” Solid State Commun. 17(1), iv–v (1975).
    [Crossref]
  17. D. V. Likhachev, N. Malkova, and L. Poslavsky, “Modified Tauc–Lorentz dispersion model leading to a more accurate representation of absorption features below the bandgap,” Thin Solid Films 589, 844–851 (2015).
    [Crossref]
  18. J. A. Woollam Co., “CompleteEASE Data Analysis Manual, Version 3.65,” (2008).
  19. S. Mohan and M. G. Krishna, “A review of ion beam assisted deposition of optical thin films,” Vacuum 46(7), 645–659 (1995).
    [Crossref]
  20. A. H. Morshed, M. E. Moussa, S. M. Bedair, R. Leonard, S. X. Liu, and N. El-Masry, “Violet/blue emission from epitaxial cerium oxide films on silicon substrates,” Appl. Phys. Lett. 70(13), 1647–1649 (1997).
    [Crossref]
  21. B. Bulfin, A. J. Lowe, K. A. Keogh, B. E. Murphy, O. Lü, S. A. Krasnikov, and I. V. Shvets, “Analytical model of CeO2 oxidation and reduction,” J. Mater. Chem. C Mater. Opt. Electron. Devices 117, 24129–24137 (2013).
  22. M. J. Moran, H. N. Shapiro, D. D. Boettner, and M. B. Bailey, Fundamentals of Engineering Thermodynamics (Wiley, 2010).
  23. K. J. Daun and S. C. Huberman, “Influence of particle curvature on transition regime heat conduction from aerosolized nanoparticles,” Int. J. Heat Mass Transf. 55(25-26), 7668–7676 (2012).
    [Crossref]
  24. I. Riess, M. Ricken, and J. Nölting, “On the specific heat of nonstoichiometric ceria,” J. Solid State Chem. 57(3), 314–322 (1985).
    [Crossref]
  25. E. W. Lemmon and R. T. Jacobsen, “Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air,” Int. J. Thermophys. 25(1), 21–69 (2004).
    [Crossref]
  26. P. Thomas, Simulation of Industrial Processes for Control Engineers (Butterworth-Heinemann, 1999).
  27. ASTM International, References Solar Spectral Irradiance at Air Mass 1.5: Direct Normal and Hemispherical for a 37° Tilted Surface 1 (2004), Vol. 14.
  28. J. Martinek, C. Bingham, and A. W. Weimer, “Computational modeling of a multiple tube solar reactor with specularly reflective cavity walls. Part 2: Steam gasification of carbon,” Chem. Eng. Sci. 81, 285–297 (2012).
    [Crossref]
  29. T. M. Francis, C. Perkins, and A. W. Weimer, “Manganese oxide dissociation kinetics for the Mn2O3 thermochemical water-splitting cycle. Part 2: CFD model,” Chem. Eng. Sci. 65(15), 4397–4410 (2010).
    [Crossref]
  30. S. K. Loyalka, “Mechanics of aerosols in nuclear reactor safety: A review,” Prog. Nucl. Energy 12(1), 1–56 (1983).
    [Crossref]
  31. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2004).
  32. L. Li, J. Coventry, R. Bader, J. Pye, and W. Lipiński, “Optics of solar central receiver systems: A review,” Opt. Express 24(14), A985–A1007 (2016).
    [Crossref] [PubMed]

2017 (1)

D. Marxer, P. Furler, M. Takacs, and A. Steinfeld, “Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency,” Energy Environ. Sci. 10(5), 1142–1149 (2017).
[Crossref]

2016 (2)

A. J. Groehn, A. Lewandowski, R. Yang, and A. W. Weimer, “Hybrid radiation modeling for multi-phase solar-thermal reactor systems operated at high-temperature,” Sol. Energy 140, 130–140 (2016).
[Crossref]

L. Li, J. Coventry, R. Bader, J. Pye, and W. Lipiński, “Optics of solar central receiver systems: A review,” Opt. Express 24(14), A985–A1007 (2016).
[Crossref] [PubMed]

2015 (4)

R. Bala Chandran, R. Bader, and W. Lipiński, “Transient heat and mass transfer analysis in a porous ceria structure of a novel solar redox reactor,” Int. J. Therm. Sci. 92, 138–149 (2015).
[Crossref]

D. V. Likhachev, N. Malkova, and L. Poslavsky, “Modified Tauc–Lorentz dispersion model leading to a more accurate representation of absorption features below the bandgap,” Thin Solid Films 589, 844–851 (2015).
[Crossref]

A. S. Oles and G. S. Jackson, “Modeling of a concentrated-solar, falling-particle receiver for ceria reduction,” Sol. Energy 122, 126–147 (2015).
[Crossref]

P. T. Krenzke and J. H. Davidson, “On the efficiency of solar H2 and CO production via the thermochemical cerium oxide redox cycle: The option of inert-swept reduction,” Energy Fuels 29(2), 1045–1054 (2015).
[Crossref]

2014 (2)

S. Ackermann, J. R. Scheffe, and A. Steinfeld, “Diffusion of oxygen in ceria at elevated temperatures and its application to H2O/CO2 splitting thermochemical redox cycles,” J. Phys. Chem. C 118(10), 5216–5225 (2014).
[Crossref]

J. R. Scheffe and A. Steinfeld, “Oxygen exchange materials for solar thermochemical splitting of H2O and CO2: A review,” Mater. Today 17(7), 341–348 (2014).
[Crossref]

2013 (3)

K. Ganesan, L. A. Dombrovsky, T.-S. Oh, and W. Lipiński, “Determination of optical constants of ceria by combined analytical and experimental approaches,” JOM 65(12), 1694–1701 (2013).
[Crossref]

D. J. Keene, J. H. Davidson, and W. Lipiński, “A model of transient heat and mass transfer in a heterogeneous medium of ceria undergoing nonstoichiometric reduction,” J. Heat Transfer 135(5), 052701 (2013).
[Crossref]

B. Bulfin, A. J. Lowe, K. A. Keogh, B. E. Murphy, O. Lü, S. A. Krasnikov, and I. V. Shvets, “Analytical model of CeO2 oxidation and reduction,” J. Mater. Chem. C Mater. Opt. Electron. Devices 117, 24129–24137 (2013).

2012 (2)

K. J. Daun and S. C. Huberman, “Influence of particle curvature on transition regime heat conduction from aerosolized nanoparticles,” Int. J. Heat Mass Transf. 55(25-26), 7668–7676 (2012).
[Crossref]

J. Martinek, C. Bingham, and A. W. Weimer, “Computational modeling of a multiple tube solar reactor with specularly reflective cavity walls. Part 2: Steam gasification of carbon,” Chem. Eng. Sci. 81, 285–297 (2012).
[Crossref]

2011 (1)

G. Balakrishnan, S. T. Sundari, P. Kuppusami, P. C. Mohan, M. P. Srinivasan, E. Mohandas, V. Ganesan, and D. Sastikumar, “A study of microstructural and optical properties of nanocrystalline ceria thin films prepared by pulsed laser deposition,” Thin Solid Films 519(8), 2520–2526 (2011).
[Crossref]

2010 (3)

W. C. Chueh and S. M. Haile, “A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation,” Philos. Trans. A Math. Phys. Eng. Sci. 368(1923), 3269–3294 (2010).
[Crossref] [PubMed]

W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile, and A. Steinfeld, “High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria,” Science 330(6012), 1797–1801 (2010).
[Crossref] [PubMed]

T. M. Francis, C. Perkins, and A. W. Weimer, “Manganese oxide dissociation kinetics for the Mn2O3 thermochemical water-splitting cycle. Part 2: CFD model,” Chem. Eng. Sci. 65(15), 4397–4410 (2010).
[Crossref]

2004 (1)

E. W. Lemmon and R. T. Jacobsen, “Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air,” Int. J. Thermophys. 25(1), 21–69 (2004).
[Crossref]

2002 (1)

P. Patsalas, S. Logothetidis, and C. Metaxa, “Optical performance of nanocrystalline transparent ceria films,” Appl. Phys. Lett. 81(3), 466–468 (2002).
[Crossref]

1997 (1)

A. H. Morshed, M. E. Moussa, S. M. Bedair, R. Leonard, S. X. Liu, and N. El-Masry, “Violet/blue emission from epitaxial cerium oxide films on silicon substrates,” Appl. Phys. Lett. 70(13), 1647–1649 (1997).
[Crossref]

1995 (2)

S. Mohan and M. G. Krishna, “A review of ion beam assisted deposition of optical thin films,” Vacuum 46(7), 645–659 (1995).
[Crossref]

S. Guo, H. Arwin, S. N. Jacobsen, K. Järrendahl, and U. Helmersson, “A spectroscopic ellipsometry study of cerium dioxide thin films grown on sapphire by RF magnetron sputtering,” J. Appl. Phys. 77(10), 5369–5376 (1995).
[Crossref]

1987 (1)

F. Marabelli and P. Wachter, “Covalent insulator CeO2: Optical reflectivity measurements,” Phys. Rev. B Condens. Matter 36(2), 1238–1243 (1987).
[Crossref] [PubMed]

1985 (1)

I. Riess, M. Ricken, and J. Nölting, “On the specific heat of nonstoichiometric ceria,” J. Solid State Chem. 57(3), 314–322 (1985).
[Crossref]

1983 (1)

S. K. Loyalka, “Mechanics of aerosols in nuclear reactor safety: A review,” Prog. Nucl. Energy 12(1), 1–56 (1983).
[Crossref]

1975 (1)

R. J. Panlener, R. N. Blumenthal, and J. E. Garnier, “A thermodynamic study of nonstoichiometric cerium dioxide,” Solid State Commun. 17(1), iv–v (1975).
[Crossref]

Abbott, M.

W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile, and A. Steinfeld, “High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria,” Science 330(6012), 1797–1801 (2010).
[Crossref] [PubMed]

Ackermann, S.

S. Ackermann, J. R. Scheffe, and A. Steinfeld, “Diffusion of oxygen in ceria at elevated temperatures and its application to H2O/CO2 splitting thermochemical redox cycles,” J. Phys. Chem. C 118(10), 5216–5225 (2014).
[Crossref]

Arwin, H.

S. Guo, H. Arwin, S. N. Jacobsen, K. Järrendahl, and U. Helmersson, “A spectroscopic ellipsometry study of cerium dioxide thin films grown on sapphire by RF magnetron sputtering,” J. Appl. Phys. 77(10), 5369–5376 (1995).
[Crossref]

Bader, R.

L. Li, J. Coventry, R. Bader, J. Pye, and W. Lipiński, “Optics of solar central receiver systems: A review,” Opt. Express 24(14), A985–A1007 (2016).
[Crossref] [PubMed]

R. Bala Chandran, R. Bader, and W. Lipiński, “Transient heat and mass transfer analysis in a porous ceria structure of a novel solar redox reactor,” Int. J. Therm. Sci. 92, 138–149 (2015).
[Crossref]

Bala Chandran, R.

R. Bala Chandran, R. Bader, and W. Lipiński, “Transient heat and mass transfer analysis in a porous ceria structure of a novel solar redox reactor,” Int. J. Therm. Sci. 92, 138–149 (2015).
[Crossref]

Balakrishnan, G.

G. Balakrishnan, S. T. Sundari, P. Kuppusami, P. C. Mohan, M. P. Srinivasan, E. Mohandas, V. Ganesan, and D. Sastikumar, “A study of microstructural and optical properties of nanocrystalline ceria thin films prepared by pulsed laser deposition,” Thin Solid Films 519(8), 2520–2526 (2011).
[Crossref]

Bedair, S. M.

A. H. Morshed, M. E. Moussa, S. M. Bedair, R. Leonard, S. X. Liu, and N. El-Masry, “Violet/blue emission from epitaxial cerium oxide films on silicon substrates,” Appl. Phys. Lett. 70(13), 1647–1649 (1997).
[Crossref]

Bingham, C.

J. Martinek, C. Bingham, and A. W. Weimer, “Computational modeling of a multiple tube solar reactor with specularly reflective cavity walls. Part 2: Steam gasification of carbon,” Chem. Eng. Sci. 81, 285–297 (2012).
[Crossref]

Blumenthal, R. N.

R. J. Panlener, R. N. Blumenthal, and J. E. Garnier, “A thermodynamic study of nonstoichiometric cerium dioxide,” Solid State Commun. 17(1), iv–v (1975).
[Crossref]

Bulfin, B.

B. Bulfin, A. J. Lowe, K. A. Keogh, B. E. Murphy, O. Lü, S. A. Krasnikov, and I. V. Shvets, “Analytical model of CeO2 oxidation and reduction,” J. Mater. Chem. C Mater. Opt. Electron. Devices 117, 24129–24137 (2013).

Chueh, W. C.

W. C. Chueh and S. M. Haile, “A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation,” Philos. Trans. A Math. Phys. Eng. Sci. 368(1923), 3269–3294 (2010).
[Crossref] [PubMed]

W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile, and A. Steinfeld, “High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria,” Science 330(6012), 1797–1801 (2010).
[Crossref] [PubMed]

Coventry, J.

Daun, K. J.

K. J. Daun and S. C. Huberman, “Influence of particle curvature on transition regime heat conduction from aerosolized nanoparticles,” Int. J. Heat Mass Transf. 55(25-26), 7668–7676 (2012).
[Crossref]

Davidson, J. H.

P. T. Krenzke and J. H. Davidson, “On the efficiency of solar H2 and CO production via the thermochemical cerium oxide redox cycle: The option of inert-swept reduction,” Energy Fuels 29(2), 1045–1054 (2015).
[Crossref]

D. J. Keene, J. H. Davidson, and W. Lipiński, “A model of transient heat and mass transfer in a heterogeneous medium of ceria undergoing nonstoichiometric reduction,” J. Heat Transfer 135(5), 052701 (2013).
[Crossref]

Dombrovsky, L. A.

K. Ganesan, L. A. Dombrovsky, T.-S. Oh, and W. Lipiński, “Determination of optical constants of ceria by combined analytical and experimental approaches,” JOM 65(12), 1694–1701 (2013).
[Crossref]

El-Masry, N.

A. H. Morshed, M. E. Moussa, S. M. Bedair, R. Leonard, S. X. Liu, and N. El-Masry, “Violet/blue emission from epitaxial cerium oxide films on silicon substrates,” Appl. Phys. Lett. 70(13), 1647–1649 (1997).
[Crossref]

Falter, C.

W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile, and A. Steinfeld, “High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria,” Science 330(6012), 1797–1801 (2010).
[Crossref] [PubMed]

Francis, T. M.

T. M. Francis, C. Perkins, and A. W. Weimer, “Manganese oxide dissociation kinetics for the Mn2O3 thermochemical water-splitting cycle. Part 2: CFD model,” Chem. Eng. Sci. 65(15), 4397–4410 (2010).
[Crossref]

Furler, P.

D. Marxer, P. Furler, M. Takacs, and A. Steinfeld, “Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency,” Energy Environ. Sci. 10(5), 1142–1149 (2017).
[Crossref]

W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile, and A. Steinfeld, “High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria,” Science 330(6012), 1797–1801 (2010).
[Crossref] [PubMed]

Ganesan, K.

K. Ganesan, L. A. Dombrovsky, T.-S. Oh, and W. Lipiński, “Determination of optical constants of ceria by combined analytical and experimental approaches,” JOM 65(12), 1694–1701 (2013).
[Crossref]

Ganesan, V.

G. Balakrishnan, S. T. Sundari, P. Kuppusami, P. C. Mohan, M. P. Srinivasan, E. Mohandas, V. Ganesan, and D. Sastikumar, “A study of microstructural and optical properties of nanocrystalline ceria thin films prepared by pulsed laser deposition,” Thin Solid Films 519(8), 2520–2526 (2011).
[Crossref]

Garnier, J. E.

R. J. Panlener, R. N. Blumenthal, and J. E. Garnier, “A thermodynamic study of nonstoichiometric cerium dioxide,” Solid State Commun. 17(1), iv–v (1975).
[Crossref]

Groehn, A. J.

A. J. Groehn, A. Lewandowski, R. Yang, and A. W. Weimer, “Hybrid radiation modeling for multi-phase solar-thermal reactor systems operated at high-temperature,” Sol. Energy 140, 130–140 (2016).
[Crossref]

Guo, S.

S. Guo, H. Arwin, S. N. Jacobsen, K. Järrendahl, and U. Helmersson, “A spectroscopic ellipsometry study of cerium dioxide thin films grown on sapphire by RF magnetron sputtering,” J. Appl. Phys. 77(10), 5369–5376 (1995).
[Crossref]

Haile, S. M.

W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile, and A. Steinfeld, “High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria,” Science 330(6012), 1797–1801 (2010).
[Crossref] [PubMed]

W. C. Chueh and S. M. Haile, “A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation,” Philos. Trans. A Math. Phys. Eng. Sci. 368(1923), 3269–3294 (2010).
[Crossref] [PubMed]

Helmersson, U.

S. Guo, H. Arwin, S. N. Jacobsen, K. Järrendahl, and U. Helmersson, “A spectroscopic ellipsometry study of cerium dioxide thin films grown on sapphire by RF magnetron sputtering,” J. Appl. Phys. 77(10), 5369–5376 (1995).
[Crossref]

Huberman, S. C.

K. J. Daun and S. C. Huberman, “Influence of particle curvature on transition regime heat conduction from aerosolized nanoparticles,” Int. J. Heat Mass Transf. 55(25-26), 7668–7676 (2012).
[Crossref]

Jackson, G. S.

A. S. Oles and G. S. Jackson, “Modeling of a concentrated-solar, falling-particle receiver for ceria reduction,” Sol. Energy 122, 126–147 (2015).
[Crossref]

Jacobsen, R. T.

E. W. Lemmon and R. T. Jacobsen, “Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air,” Int. J. Thermophys. 25(1), 21–69 (2004).
[Crossref]

Jacobsen, S. N.

S. Guo, H. Arwin, S. N. Jacobsen, K. Järrendahl, and U. Helmersson, “A spectroscopic ellipsometry study of cerium dioxide thin films grown on sapphire by RF magnetron sputtering,” J. Appl. Phys. 77(10), 5369–5376 (1995).
[Crossref]

Järrendahl, K.

S. Guo, H. Arwin, S. N. Jacobsen, K. Järrendahl, and U. Helmersson, “A spectroscopic ellipsometry study of cerium dioxide thin films grown on sapphire by RF magnetron sputtering,” J. Appl. Phys. 77(10), 5369–5376 (1995).
[Crossref]

Keene, D. J.

D. J. Keene, J. H. Davidson, and W. Lipiński, “A model of transient heat and mass transfer in a heterogeneous medium of ceria undergoing nonstoichiometric reduction,” J. Heat Transfer 135(5), 052701 (2013).
[Crossref]

Keogh, K. A.

B. Bulfin, A. J. Lowe, K. A. Keogh, B. E. Murphy, O. Lü, S. A. Krasnikov, and I. V. Shvets, “Analytical model of CeO2 oxidation and reduction,” J. Mater. Chem. C Mater. Opt. Electron. Devices 117, 24129–24137 (2013).

Krasnikov, S. A.

B. Bulfin, A. J. Lowe, K. A. Keogh, B. E. Murphy, O. Lü, S. A. Krasnikov, and I. V. Shvets, “Analytical model of CeO2 oxidation and reduction,” J. Mater. Chem. C Mater. Opt. Electron. Devices 117, 24129–24137 (2013).

Krenzke, P. T.

P. T. Krenzke and J. H. Davidson, “On the efficiency of solar H2 and CO production via the thermochemical cerium oxide redox cycle: The option of inert-swept reduction,” Energy Fuels 29(2), 1045–1054 (2015).
[Crossref]

Krishna, M. G.

S. Mohan and M. G. Krishna, “A review of ion beam assisted deposition of optical thin films,” Vacuum 46(7), 645–659 (1995).
[Crossref]

Kuppusami, P.

G. Balakrishnan, S. T. Sundari, P. Kuppusami, P. C. Mohan, M. P. Srinivasan, E. Mohandas, V. Ganesan, and D. Sastikumar, “A study of microstructural and optical properties of nanocrystalline ceria thin films prepared by pulsed laser deposition,” Thin Solid Films 519(8), 2520–2526 (2011).
[Crossref]

Lemmon, E. W.

E. W. Lemmon and R. T. Jacobsen, “Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air,” Int. J. Thermophys. 25(1), 21–69 (2004).
[Crossref]

Leonard, R.

A. H. Morshed, M. E. Moussa, S. M. Bedair, R. Leonard, S. X. Liu, and N. El-Masry, “Violet/blue emission from epitaxial cerium oxide films on silicon substrates,” Appl. Phys. Lett. 70(13), 1647–1649 (1997).
[Crossref]

Lewandowski, A.

A. J. Groehn, A. Lewandowski, R. Yang, and A. W. Weimer, “Hybrid radiation modeling for multi-phase solar-thermal reactor systems operated at high-temperature,” Sol. Energy 140, 130–140 (2016).
[Crossref]

Li, L.

Likhachev, D. V.

D. V. Likhachev, N. Malkova, and L. Poslavsky, “Modified Tauc–Lorentz dispersion model leading to a more accurate representation of absorption features below the bandgap,” Thin Solid Films 589, 844–851 (2015).
[Crossref]

Lipinski, W.

L. Li, J. Coventry, R. Bader, J. Pye, and W. Lipiński, “Optics of solar central receiver systems: A review,” Opt. Express 24(14), A985–A1007 (2016).
[Crossref] [PubMed]

R. Bala Chandran, R. Bader, and W. Lipiński, “Transient heat and mass transfer analysis in a porous ceria structure of a novel solar redox reactor,” Int. J. Therm. Sci. 92, 138–149 (2015).
[Crossref]

D. J. Keene, J. H. Davidson, and W. Lipiński, “A model of transient heat and mass transfer in a heterogeneous medium of ceria undergoing nonstoichiometric reduction,” J. Heat Transfer 135(5), 052701 (2013).
[Crossref]

K. Ganesan, L. A. Dombrovsky, T.-S. Oh, and W. Lipiński, “Determination of optical constants of ceria by combined analytical and experimental approaches,” JOM 65(12), 1694–1701 (2013).
[Crossref]

Liu, S. X.

A. H. Morshed, M. E. Moussa, S. M. Bedair, R. Leonard, S. X. Liu, and N. El-Masry, “Violet/blue emission from epitaxial cerium oxide films on silicon substrates,” Appl. Phys. Lett. 70(13), 1647–1649 (1997).
[Crossref]

Logothetidis, S.

P. Patsalas, S. Logothetidis, and C. Metaxa, “Optical performance of nanocrystalline transparent ceria films,” Appl. Phys. Lett. 81(3), 466–468 (2002).
[Crossref]

Lowe, A. J.

B. Bulfin, A. J. Lowe, K. A. Keogh, B. E. Murphy, O. Lü, S. A. Krasnikov, and I. V. Shvets, “Analytical model of CeO2 oxidation and reduction,” J. Mater. Chem. C Mater. Opt. Electron. Devices 117, 24129–24137 (2013).

Loyalka, S. K.

S. K. Loyalka, “Mechanics of aerosols in nuclear reactor safety: A review,” Prog. Nucl. Energy 12(1), 1–56 (1983).
[Crossref]

Lü, O.

B. Bulfin, A. J. Lowe, K. A. Keogh, B. E. Murphy, O. Lü, S. A. Krasnikov, and I. V. Shvets, “Analytical model of CeO2 oxidation and reduction,” J. Mater. Chem. C Mater. Opt. Electron. Devices 117, 24129–24137 (2013).

Malkova, N.

D. V. Likhachev, N. Malkova, and L. Poslavsky, “Modified Tauc–Lorentz dispersion model leading to a more accurate representation of absorption features below the bandgap,” Thin Solid Films 589, 844–851 (2015).
[Crossref]

Marabelli, F.

F. Marabelli and P. Wachter, “Covalent insulator CeO2: Optical reflectivity measurements,” Phys. Rev. B Condens. Matter 36(2), 1238–1243 (1987).
[Crossref] [PubMed]

Martinek, J.

J. Martinek, C. Bingham, and A. W. Weimer, “Computational modeling of a multiple tube solar reactor with specularly reflective cavity walls. Part 2: Steam gasification of carbon,” Chem. Eng. Sci. 81, 285–297 (2012).
[Crossref]

Marxer, D.

D. Marxer, P. Furler, M. Takacs, and A. Steinfeld, “Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency,” Energy Environ. Sci. 10(5), 1142–1149 (2017).
[Crossref]

Metaxa, C.

P. Patsalas, S. Logothetidis, and C. Metaxa, “Optical performance of nanocrystalline transparent ceria films,” Appl. Phys. Lett. 81(3), 466–468 (2002).
[Crossref]

Mohan, P. C.

G. Balakrishnan, S. T. Sundari, P. Kuppusami, P. C. Mohan, M. P. Srinivasan, E. Mohandas, V. Ganesan, and D. Sastikumar, “A study of microstructural and optical properties of nanocrystalline ceria thin films prepared by pulsed laser deposition,” Thin Solid Films 519(8), 2520–2526 (2011).
[Crossref]

Mohan, S.

S. Mohan and M. G. Krishna, “A review of ion beam assisted deposition of optical thin films,” Vacuum 46(7), 645–659 (1995).
[Crossref]

Mohandas, E.

G. Balakrishnan, S. T. Sundari, P. Kuppusami, P. C. Mohan, M. P. Srinivasan, E. Mohandas, V. Ganesan, and D. Sastikumar, “A study of microstructural and optical properties of nanocrystalline ceria thin films prepared by pulsed laser deposition,” Thin Solid Films 519(8), 2520–2526 (2011).
[Crossref]

Morshed, A. H.

A. H. Morshed, M. E. Moussa, S. M. Bedair, R. Leonard, S. X. Liu, and N. El-Masry, “Violet/blue emission from epitaxial cerium oxide films on silicon substrates,” Appl. Phys. Lett. 70(13), 1647–1649 (1997).
[Crossref]

Moussa, M. E.

A. H. Morshed, M. E. Moussa, S. M. Bedair, R. Leonard, S. X. Liu, and N. El-Masry, “Violet/blue emission from epitaxial cerium oxide films on silicon substrates,” Appl. Phys. Lett. 70(13), 1647–1649 (1997).
[Crossref]

Murphy, B. E.

B. Bulfin, A. J. Lowe, K. A. Keogh, B. E. Murphy, O. Lü, S. A. Krasnikov, and I. V. Shvets, “Analytical model of CeO2 oxidation and reduction,” J. Mater. Chem. C Mater. Opt. Electron. Devices 117, 24129–24137 (2013).

Nölting, J.

I. Riess, M. Ricken, and J. Nölting, “On the specific heat of nonstoichiometric ceria,” J. Solid State Chem. 57(3), 314–322 (1985).
[Crossref]

Oh, T.-S.

K. Ganesan, L. A. Dombrovsky, T.-S. Oh, and W. Lipiński, “Determination of optical constants of ceria by combined analytical and experimental approaches,” JOM 65(12), 1694–1701 (2013).
[Crossref]

Oles, A. S.

A. S. Oles and G. S. Jackson, “Modeling of a concentrated-solar, falling-particle receiver for ceria reduction,” Sol. Energy 122, 126–147 (2015).
[Crossref]

Panlener, R. J.

R. J. Panlener, R. N. Blumenthal, and J. E. Garnier, “A thermodynamic study of nonstoichiometric cerium dioxide,” Solid State Commun. 17(1), iv–v (1975).
[Crossref]

Patsalas, P.

P. Patsalas, S. Logothetidis, and C. Metaxa, “Optical performance of nanocrystalline transparent ceria films,” Appl. Phys. Lett. 81(3), 466–468 (2002).
[Crossref]

Perkins, C.

T. M. Francis, C. Perkins, and A. W. Weimer, “Manganese oxide dissociation kinetics for the Mn2O3 thermochemical water-splitting cycle. Part 2: CFD model,” Chem. Eng. Sci. 65(15), 4397–4410 (2010).
[Crossref]

Poslavsky, L.

D. V. Likhachev, N. Malkova, and L. Poslavsky, “Modified Tauc–Lorentz dispersion model leading to a more accurate representation of absorption features below the bandgap,” Thin Solid Films 589, 844–851 (2015).
[Crossref]

Pye, J.

Ricken, M.

I. Riess, M. Ricken, and J. Nölting, “On the specific heat of nonstoichiometric ceria,” J. Solid State Chem. 57(3), 314–322 (1985).
[Crossref]

Riess, I.

I. Riess, M. Ricken, and J. Nölting, “On the specific heat of nonstoichiometric ceria,” J. Solid State Chem. 57(3), 314–322 (1985).
[Crossref]

Sastikumar, D.

G. Balakrishnan, S. T. Sundari, P. Kuppusami, P. C. Mohan, M. P. Srinivasan, E. Mohandas, V. Ganesan, and D. Sastikumar, “A study of microstructural and optical properties of nanocrystalline ceria thin films prepared by pulsed laser deposition,” Thin Solid Films 519(8), 2520–2526 (2011).
[Crossref]

Scheffe, J. R.

S. Ackermann, J. R. Scheffe, and A. Steinfeld, “Diffusion of oxygen in ceria at elevated temperatures and its application to H2O/CO2 splitting thermochemical redox cycles,” J. Phys. Chem. C 118(10), 5216–5225 (2014).
[Crossref]

J. R. Scheffe and A. Steinfeld, “Oxygen exchange materials for solar thermochemical splitting of H2O and CO2: A review,” Mater. Today 17(7), 341–348 (2014).
[Crossref]

Scipio, D.

W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile, and A. Steinfeld, “High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria,” Science 330(6012), 1797–1801 (2010).
[Crossref] [PubMed]

Shvets, I. V.

B. Bulfin, A. J. Lowe, K. A. Keogh, B. E. Murphy, O. Lü, S. A. Krasnikov, and I. V. Shvets, “Analytical model of CeO2 oxidation and reduction,” J. Mater. Chem. C Mater. Opt. Electron. Devices 117, 24129–24137 (2013).

Srinivasan, M. P.

G. Balakrishnan, S. T. Sundari, P. Kuppusami, P. C. Mohan, M. P. Srinivasan, E. Mohandas, V. Ganesan, and D. Sastikumar, “A study of microstructural and optical properties of nanocrystalline ceria thin films prepared by pulsed laser deposition,” Thin Solid Films 519(8), 2520–2526 (2011).
[Crossref]

Steinfeld, A.

D. Marxer, P. Furler, M. Takacs, and A. Steinfeld, “Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency,” Energy Environ. Sci. 10(5), 1142–1149 (2017).
[Crossref]

J. R. Scheffe and A. Steinfeld, “Oxygen exchange materials for solar thermochemical splitting of H2O and CO2: A review,” Mater. Today 17(7), 341–348 (2014).
[Crossref]

S. Ackermann, J. R. Scheffe, and A. Steinfeld, “Diffusion of oxygen in ceria at elevated temperatures and its application to H2O/CO2 splitting thermochemical redox cycles,” J. Phys. Chem. C 118(10), 5216–5225 (2014).
[Crossref]

W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile, and A. Steinfeld, “High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria,” Science 330(6012), 1797–1801 (2010).
[Crossref] [PubMed]

Sundari, S. T.

G. Balakrishnan, S. T. Sundari, P. Kuppusami, P. C. Mohan, M. P. Srinivasan, E. Mohandas, V. Ganesan, and D. Sastikumar, “A study of microstructural and optical properties of nanocrystalline ceria thin films prepared by pulsed laser deposition,” Thin Solid Films 519(8), 2520–2526 (2011).
[Crossref]

Takacs, M.

D. Marxer, P. Furler, M. Takacs, and A. Steinfeld, “Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency,” Energy Environ. Sci. 10(5), 1142–1149 (2017).
[Crossref]

Wachter, P.

F. Marabelli and P. Wachter, “Covalent insulator CeO2: Optical reflectivity measurements,” Phys. Rev. B Condens. Matter 36(2), 1238–1243 (1987).
[Crossref] [PubMed]

Weimer, A. W.

A. J. Groehn, A. Lewandowski, R. Yang, and A. W. Weimer, “Hybrid radiation modeling for multi-phase solar-thermal reactor systems operated at high-temperature,” Sol. Energy 140, 130–140 (2016).
[Crossref]

J. Martinek, C. Bingham, and A. W. Weimer, “Computational modeling of a multiple tube solar reactor with specularly reflective cavity walls. Part 2: Steam gasification of carbon,” Chem. Eng. Sci. 81, 285–297 (2012).
[Crossref]

T. M. Francis, C. Perkins, and A. W. Weimer, “Manganese oxide dissociation kinetics for the Mn2O3 thermochemical water-splitting cycle. Part 2: CFD model,” Chem. Eng. Sci. 65(15), 4397–4410 (2010).
[Crossref]

Yang, R.

A. J. Groehn, A. Lewandowski, R. Yang, and A. W. Weimer, “Hybrid radiation modeling for multi-phase solar-thermal reactor systems operated at high-temperature,” Sol. Energy 140, 130–140 (2016).
[Crossref]

Appl. Phys. Lett. (2)

P. Patsalas, S. Logothetidis, and C. Metaxa, “Optical performance of nanocrystalline transparent ceria films,” Appl. Phys. Lett. 81(3), 466–468 (2002).
[Crossref]

A. H. Morshed, M. E. Moussa, S. M. Bedair, R. Leonard, S. X. Liu, and N. El-Masry, “Violet/blue emission from epitaxial cerium oxide films on silicon substrates,” Appl. Phys. Lett. 70(13), 1647–1649 (1997).
[Crossref]

Chem. Eng. Sci. (2)

J. Martinek, C. Bingham, and A. W. Weimer, “Computational modeling of a multiple tube solar reactor with specularly reflective cavity walls. Part 2: Steam gasification of carbon,” Chem. Eng. Sci. 81, 285–297 (2012).
[Crossref]

T. M. Francis, C. Perkins, and A. W. Weimer, “Manganese oxide dissociation kinetics for the Mn2O3 thermochemical water-splitting cycle. Part 2: CFD model,” Chem. Eng. Sci. 65(15), 4397–4410 (2010).
[Crossref]

Energy Environ. Sci. (1)

D. Marxer, P. Furler, M. Takacs, and A. Steinfeld, “Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency,” Energy Environ. Sci. 10(5), 1142–1149 (2017).
[Crossref]

Energy Fuels (1)

P. T. Krenzke and J. H. Davidson, “On the efficiency of solar H2 and CO production via the thermochemical cerium oxide redox cycle: The option of inert-swept reduction,” Energy Fuels 29(2), 1045–1054 (2015).
[Crossref]

Int. J. Heat Mass Transf. (1)

K. J. Daun and S. C. Huberman, “Influence of particle curvature on transition regime heat conduction from aerosolized nanoparticles,” Int. J. Heat Mass Transf. 55(25-26), 7668–7676 (2012).
[Crossref]

Int. J. Therm. Sci. (1)

R. Bala Chandran, R. Bader, and W. Lipiński, “Transient heat and mass transfer analysis in a porous ceria structure of a novel solar redox reactor,” Int. J. Therm. Sci. 92, 138–149 (2015).
[Crossref]

Int. J. Thermophys. (1)

E. W. Lemmon and R. T. Jacobsen, “Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air,” Int. J. Thermophys. 25(1), 21–69 (2004).
[Crossref]

J. Appl. Phys. (1)

S. Guo, H. Arwin, S. N. Jacobsen, K. Järrendahl, and U. Helmersson, “A spectroscopic ellipsometry study of cerium dioxide thin films grown on sapphire by RF magnetron sputtering,” J. Appl. Phys. 77(10), 5369–5376 (1995).
[Crossref]

J. Heat Transfer (1)

D. J. Keene, J. H. Davidson, and W. Lipiński, “A model of transient heat and mass transfer in a heterogeneous medium of ceria undergoing nonstoichiometric reduction,” J. Heat Transfer 135(5), 052701 (2013).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

B. Bulfin, A. J. Lowe, K. A. Keogh, B. E. Murphy, O. Lü, S. A. Krasnikov, and I. V. Shvets, “Analytical model of CeO2 oxidation and reduction,” J. Mater. Chem. C Mater. Opt. Electron. Devices 117, 24129–24137 (2013).

J. Phys. Chem. C (1)

S. Ackermann, J. R. Scheffe, and A. Steinfeld, “Diffusion of oxygen in ceria at elevated temperatures and its application to H2O/CO2 splitting thermochemical redox cycles,” J. Phys. Chem. C 118(10), 5216–5225 (2014).
[Crossref]

J. Solid State Chem. (1)

I. Riess, M. Ricken, and J. Nölting, “On the specific heat of nonstoichiometric ceria,” J. Solid State Chem. 57(3), 314–322 (1985).
[Crossref]

JOM (1)

K. Ganesan, L. A. Dombrovsky, T.-S. Oh, and W. Lipiński, “Determination of optical constants of ceria by combined analytical and experimental approaches,” JOM 65(12), 1694–1701 (2013).
[Crossref]

Mater. Today (1)

J. R. Scheffe and A. Steinfeld, “Oxygen exchange materials for solar thermochemical splitting of H2O and CO2: A review,” Mater. Today 17(7), 341–348 (2014).
[Crossref]

Opt. Express (1)

Philos. Trans. A Math. Phys. Eng. Sci. (1)

W. C. Chueh and S. M. Haile, “A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation,” Philos. Trans. A Math. Phys. Eng. Sci. 368(1923), 3269–3294 (2010).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter (1)

F. Marabelli and P. Wachter, “Covalent insulator CeO2: Optical reflectivity measurements,” Phys. Rev. B Condens. Matter 36(2), 1238–1243 (1987).
[Crossref] [PubMed]

Prog. Nucl. Energy (1)

S. K. Loyalka, “Mechanics of aerosols in nuclear reactor safety: A review,” Prog. Nucl. Energy 12(1), 1–56 (1983).
[Crossref]

Science (1)

W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile, and A. Steinfeld, “High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria,” Science 330(6012), 1797–1801 (2010).
[Crossref] [PubMed]

Sol. Energy (2)

A. S. Oles and G. S. Jackson, “Modeling of a concentrated-solar, falling-particle receiver for ceria reduction,” Sol. Energy 122, 126–147 (2015).
[Crossref]

A. J. Groehn, A. Lewandowski, R. Yang, and A. W. Weimer, “Hybrid radiation modeling for multi-phase solar-thermal reactor systems operated at high-temperature,” Sol. Energy 140, 130–140 (2016).
[Crossref]

Solid State Commun. (1)

R. J. Panlener, R. N. Blumenthal, and J. E. Garnier, “A thermodynamic study of nonstoichiometric cerium dioxide,” Solid State Commun. 17(1), iv–v (1975).
[Crossref]

Thin Solid Films (2)

D. V. Likhachev, N. Malkova, and L. Poslavsky, “Modified Tauc–Lorentz dispersion model leading to a more accurate representation of absorption features below the bandgap,” Thin Solid Films 589, 844–851 (2015).
[Crossref]

G. Balakrishnan, S. T. Sundari, P. Kuppusami, P. C. Mohan, M. P. Srinivasan, E. Mohandas, V. Ganesan, and D. Sastikumar, “A study of microstructural and optical properties of nanocrystalline ceria thin films prepared by pulsed laser deposition,” Thin Solid Films 519(8), 2520–2526 (2011).
[Crossref]

Vacuum (1)

S. Mohan and M. G. Krishna, “A review of ion beam assisted deposition of optical thin films,” Vacuum 46(7), 645–659 (1995).
[Crossref]

Other (5)

J. A. Woollam Co., “CompleteEASE Data Analysis Manual, Version 3.65,” (2008).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2004).

M. J. Moran, H. N. Shapiro, D. D. Boettner, and M. B. Bailey, Fundamentals of Engineering Thermodynamics (Wiley, 2010).

P. Thomas, Simulation of Industrial Processes for Control Engineers (Butterworth-Heinemann, 1999).

ASTM International, References Solar Spectral Irradiance at Air Mass 1.5: Direct Normal and Hemispherical for a 37° Tilted Surface 1 (2004), Vol. 14.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 CeO2 thin film characterization. (a) Edge-on SEM image of the CeO2 thin film on the Al2O3 substrate. (b) EDS analysis of the Al2O3 substrate in the edge-on SEM image and of the deposited CeO2 film from the top down. (c) XRD pattern of the oxidized sample.
Fig. 2
Fig. 2 Atomic force microscopy images. (a) The alumina substrate (a) As-deposited ceria thin film surface. (c) Ceria film after reduction at 1265°C. (d) Sample surface after oxidation at 600°C and before the reduction step.
Fig. 3
Fig. 3 Determination of refractive index by VASE. (a) Geometric model used to predict the refractive index of oxidized and reduced ceria. (b) Exemplary raw Ψ and Δ data from VASE experiments at an angle of 60° for the oxidized ceria films showing good agreement with model predictions.
Fig. 4
Fig. 4 The real and imaginary part of the refractive index as measured using VASE for an oxidized and a non-stoichiometrically reduced film of ceria. Refractive index data determined for nano-crystalline thin ceria films from Patsalas and associates [8] and for a single crystal of reduced ceria from Marabelli and Wachter [15] are also included.
Fig. 5
Fig. 5 Absorption efficiency factor for a 1 μm radius spherical ceria particle for three different refractive indices: determined from the oxidized and reduced samples in this work, and the reference data from Patsalas [8]. The air mass 1.5 solar spectrum (Gλ,sol) and blackbody emission at 1200 K (Ebλ) are also shown.
Fig. 6
Fig. 6 Difference in steady-state particle temperature from free stream temperature for four different choices of T and C.
Fig. 7
Fig. 7 Transient simulation results for an aerosolized ceria particle undergoing reduction with three different assumed radiative behaviors.
Fig. 8
Fig. 8 Thermal and chemical settling times vs particle radius for a ceria particle undergoing reduction.

Tables (1)

Tables Icon

Table 1 Physical quantities and sources of data used for ceria and argon in the present study.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

CeO 2 CeO 2-δ + δ 2 O 2 ,
d M O 2 dt = 4 3 π r 3 δ 2 r c m ˙ O 2 =0.
dδ dt =(xδ) A red e E ¯ red R ¯ T δ p O 2 ν A ox e E ¯ ox R ¯ T .
M ¯ CeO 2 c ¯ p (δ) dT dt = Q ˙ m ˙ O 2 Δ H ¯ (δ) m ˙ O 2 R ¯ T.
Q ˙ = Q ˙ abs Q ˙ emit Q ˙ cond .
Q ˙ abs =π r 2 0 Q abs C G sol dλ,
Q ˙ emit =(π r 2 ) 0 Q abs E bλ (T)dλ,
Q ˙ cond =4π(r+Δ)k( T Δ T ).
Δ= 4 5 ( Tk(T) p M ¯ 2 k B T ).
4π(r+Δ)k( T Δ T )=απ r 2 p 2 k B N A T π M ¯ γ+1 γ1 ( T T Δ 1 ),

Metrics