Abstract

We examine properties of an ultrashort laser pulse propagating through an artificial Saturable Absorber based on Nonlinear Polarization Evolution device which has been realized with Polarization Maintaining fibers only (PM NPE). We study and compare in-line and Faraday Mirror geometries showing that the latter is immune to errors in the PM NPE construction. Experimental results for the transmission measurements of the PM NPE setup for different input linear polarization angles and various input pulse powers are presented. We show that PM NPE topology is of crucial importance for controlling the properties of the output pulse as it rules the contribution of cross-phase modulation to an overall nonlinear phase change. We also demonstrate an excellent agreement between the numerical model and experimental results.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dissipative-soliton generation with nonlinear-polarization-evolution in a polarization maintaining fiber

Jiaqi Zhou, Weiwei Pan, Xijia Gu, Lei Zhang, and Yan Feng
Opt. Express 26(4) 4166-4171 (2018)

Ultrafast PM fiber ring laser mode-locked by nonlinear polarization evolution with short NPE section segments

Wenchao Zhang, Yang Liu, Chao Wang, Zhiwei Zhu, Daping Luo, Chenlin Gu, and Wenxue Li
Opt. Express 26(7) 7934-7941 (2018)

Ultrafast laser mode-locked using nonlinear polarization evolution in polarization maintaining fibers

Jan Szczepanek, Tomasz M. Kardaś, Czesław Radzewicz, and Yuriy Stepanenko
Opt. Lett. 42(3) 575-578 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
    [Crossref]
  2. B. Nikolaus, D. Grischkowsky, and A. C. Balant, “Optical pulse reshaping based on the nonlinear birefringence of single-mode optical fibers,” Opt. Lett. 8(3), 189–191 (1983).
    [Crossref] [PubMed]
  3. R. H. Stolen, J. Botineau, and A. Ashkin, “Intensity discrimination of optical pulses with birefringent fibers,” Opt. Lett. 7(10), 512–514 (1982).
    [Crossref] [PubMed]
  4. J. P. Koplow and D. B. Soh, “The 4FAD: a high-extinction-ratio, achromatic, temperature-insensitive, high-damage-threshold, all-fiber, power-selective filter,” in CLEO:2011 - Laser Applications to Photonic Applications (2011), OSA Technical Digest (CD) (Optical Society of America, 2011), p. CMZ5.
  5. K. Kitayama, Y. Kimura, and S. Seikai, “Fiber‐optic logic gate,” Appl. Phys. Lett. 46(4), 317–319 (1985).
    [Crossref]
  6. T. Morioka, M. Saruwatari, and A. Takada, “Ultrafast optical multi/demultiplexer utilising optical Kerr effect in polarisation-maintaining single-mode fibres,” Electron. Lett. 23(9), 453–454 (1987).
    [Crossref]
  7. C. Nielsen, B. Ortaç, T. Schreiber, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, “Self-starting self-similar all-polarization maintaining Yb-doped fiber laser,” Opt. Express 13(23), 9346–9351 (2005).
    [Crossref] [PubMed]
  8. G. Soboń, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett. 9(8), 581–586 (2012).
    [Crossref]
  9. K. Kieu and F. W. Wise, “All-fiber normal-dispersion femtosecond laser,” Opt. Express 16(15), 11453–11458 (2008).
    [Crossref] [PubMed]
  10. D. G. Winters, M. S. Kirchner, S. J. Backus, and H. C. Kapteyn, “Electronic initiation and optimization of nonlinear polarization evolution mode-locking in a fiber laser,” Opt. Express 25(26), 33216–33225 (2017).
    [Crossref]
  11. H. Santiago-Hernández, Y. E. Bracamontes-Rodríguez, G. Beltrán-Pérez, I. Armas-Rivera, L. A. Rodríguez-Morales, O. Pottiez, B. Ibarra-Escamilla, M. Durán-Sánchez, M. V. Hernández-Arriaga, and E. A. Kuzin, “Initial conditions for dissipative solitons in a strict polarization-controlled passively mode-locked Er-Fiber laser,” Opt. Express 25(21), 25036–25045 (2017).
    [Crossref] [PubMed]
  12. W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41–46 (2017).
    [Crossref]
  13. D. S. Kharenko, E. V. Podivilov, A. A. Apolonski, and S. A. Babin, “20 nJ 200 fs all-fiber highly chirped dissipative soliton oscillator,” Opt. Lett. 37(19), 4104–4106 (2012).
    [Crossref] [PubMed]
  14. J. Szczepanek, T. M. Kardaś, M. Michalska, C. Radzewicz, and Y. Stepanenko, “Simple all-PM-fiber laser mode-locked with a nonlinear loop mirror,” Opt. Lett. 40(15), 3500–3503 (2015).
    [Crossref] [PubMed]
  15. N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13(1), 56–58 (1988).
    [Crossref] [PubMed]
  16. M. E. Fermann, F. Haberl, M. Hofer, and H. Hochreiter, “Nonlinear amplifying loop mirror,” Opt. Lett. 15(13), 752–754 (1990).
    [Crossref] [PubMed]
  17. C. Aguergaray, R. Hawker, A. F. Runge, M. Erkintalo, and N. G. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
    [Crossref]
  18. M. E. Fermann, M. L. Stock, M. J. Andrejco, and Y. Silberberg, “Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber,” Opt. Lett. 18(11), 894–896 (1993).
    [Crossref] [PubMed]
  19. M. E. Fermann, L.-M. Yang, M. L. Stock, and M. J. Andrejco, “Environmentally stable Kerr-type mode-locked erbium fiber laser producing 360-fs pulses,” Opt. Lett. 19(1), 43–45 (1994).
    [Crossref] [PubMed]
  20. M. E. Fermann, K. Sugden, and I. Bennion, “Environmentally stable high-power soliton fiber lasers that use chirped fiber Bragg gratings,” Opt. Lett. 20(15), 1625–1627 (1995).
    [Crossref] [PubMed]
  21. H. Lim, A. Chong, and F. W. Wise, “Environmentally-stable femtosecond ytterbium fiber laser with birefringent photonic bandgap fiber,” Opt. Express 13(9), 3460–3464 (2005).
    [Crossref] [PubMed]
  22. C. Vinegoni, M. Wegmuller, B. Huttner, and N. Gisin, “Measurement of nonlinear polarization rotation in a highly birefringent optical fibre using a Faraday mirror,” J. Opt. A, Pure Appl. Opt. 2(4), 314–318 (2000).
    [Crossref]
  23. C. K. Nielsen and S. R. Keiding, “All-fiber mode-locked fiber laser,” Opt. Lett. 32(11), 1474–1476 (2007).
    [Crossref] [PubMed]
  24. A. F. J. Runge, C. Aguergaray, N. G. R. Broderick, and M. Erkintalo, “Coherence and shot-to-shot spectral fluctuations in noise-like ultrafast fiber lasers,” Opt. Lett. 38(21), 4327–4330 (2013).
    [Crossref] [PubMed]
  25. S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. Fotiadi, and P. Mégret, “948 kHz repetition rate, picosecond pulse duration, all-PM 1.03 μm mode-locked fiber laser based on nonlinear polarization evolution,” Proc. SPIE 9135, 91351I (2015).
  26. S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. A. Fotiadi, M. Wuilpart, and P. Mégret, “All-Fiber 1-μm PM Mode-Lock Laser Delivering Picosecond Pulses at Sub-MHz Repetition Rate,” IEEE Photonics Technol. Lett. 26, 2256–2259 (2014).
    [Crossref]
  27. S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. Fotiadi, M. Wuilpart, and P. Mégret, “All-fiber laser based on NPE in PM fiber with two active sections,” in 2015 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, (Optical Society of America, 2015), p. CJ_2_2.
  28. W. Renninger, A. Chong, and F. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
    [Crossref]
  29. J. Zhou, W. Pan, X. Gu, L. Zhang, and Y. Feng, “Dissipative-soliton generation with nonlinear-polarization-evolution in a polarization maintaining fiber,” Opt. Express 26(4), 4166–4171 (2018).
    [Crossref] [PubMed]
  30. J. Szczepanek, T. M. Kardaś, C. Radzewicz, and Y. Stepanenko, “Ultrafast laser mode-locked using nonlinear polarization evolution in polarization maintaining fibers,” Opt. Lett. 42(3), 575–578 (2017).
    [Crossref] [PubMed]
  31. Y. Wang, L. Zhang, Z. Zhuo, and S. Guo, “Cross-splicing method for compensating fiber birefringence in polarization-maintaining fiber ring laser mode locked by nonlinear polarization evolution,” Appl. Opt. 55(21), 5766–5770 (2016).
    [Crossref] [PubMed]
  32. M. Martinelli, “A universal compensator for polarization changes induced by birefringence on a retracing beam,” Opt. Commun. 72(6), 341–344 (1989).
    [Crossref]
  33. W. Stępień, J. Szczepanek, T. Kardaś, M. Nejbauer, C. Radzewicz, and Y. Stepanenko, “Study on parameters of fiber loop mirrors as artificial saturable absorbers,” Proc. SPIE 10094, 100941N (2017).
    [Crossref]
  34. T. M. Kardaś, M. Nejbauer, P. Wnuk, B. Resan, C. Radzewicz, and P. Wasylczyk, “Full 3D modelling of pulse propagation enables efficient nonlinear frequency conversion with low energy laser pulses in a single-element tripler,” Sci. Rep. 7, 42889 (2017).
    [Crossref] [PubMed]
  35. C. Menyuk, “Nonlinear pulse propagation in birefringent optical fibers,” IEEE J. Quantum Electron. 23(2), 174–176 (1987).
    [Crossref]
  36. G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Elsevier/Academic Press, 2013).
  37. M. Kolesik, J. V. Moloney, and M. Mlejnek, “Unidirectional Optical Pulse Propagation Equation,” Phys. Rev. Lett. 89(28), 283902 (2002).
    [Crossref] [PubMed]
  38. D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Am. B 19(12), 2886–2892 (2002).
    [Crossref]
  39. Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett. 31(21), 3086–3088 (2006).
    [Crossref] [PubMed]
  40. S. Trillo and S. Wabnitz, “Parametric and Raman amplification in birefringent fibers,” J. Opt. Soc. Am. B 9(7), 1061–1082 (1992).
    [Crossref]
  41. J. Etchepare, G. Grillon, I. Thomazeau, A. Migus, and A. Antonetti, “Third-order electronic susceptibilities of liquids measured by femtosecond kinetics of optical Kerr effect,” J. Opt. Soc. Am. B 2(4), 649–653 (1985).
    [Crossref]
  42. R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22(6), 276–278 (1973).
    [Crossref]
  43. D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt. 37(3), 546–550 (1998).
    [Crossref] [PubMed]

2018 (1)

2017 (6)

J. Szczepanek, T. M. Kardaś, C. Radzewicz, and Y. Stepanenko, “Ultrafast laser mode-locked using nonlinear polarization evolution in polarization maintaining fibers,” Opt. Lett. 42(3), 575–578 (2017).
[Crossref] [PubMed]

H. Santiago-Hernández, Y. E. Bracamontes-Rodríguez, G. Beltrán-Pérez, I. Armas-Rivera, L. A. Rodríguez-Morales, O. Pottiez, B. Ibarra-Escamilla, M. Durán-Sánchez, M. V. Hernández-Arriaga, and E. A. Kuzin, “Initial conditions for dissipative solitons in a strict polarization-controlled passively mode-locked Er-Fiber laser,” Opt. Express 25(21), 25036–25045 (2017).
[Crossref] [PubMed]

D. G. Winters, M. S. Kirchner, S. J. Backus, and H. C. Kapteyn, “Electronic initiation and optimization of nonlinear polarization evolution mode-locking in a fiber laser,” Opt. Express 25(26), 33216–33225 (2017).
[Crossref]

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41–46 (2017).
[Crossref]

W. Stępień, J. Szczepanek, T. Kardaś, M. Nejbauer, C. Radzewicz, and Y. Stepanenko, “Study on parameters of fiber loop mirrors as artificial saturable absorbers,” Proc. SPIE 10094, 100941N (2017).
[Crossref]

T. M. Kardaś, M. Nejbauer, P. Wnuk, B. Resan, C. Radzewicz, and P. Wasylczyk, “Full 3D modelling of pulse propagation enables efficient nonlinear frequency conversion with low energy laser pulses in a single-element tripler,” Sci. Rep. 7, 42889 (2017).
[Crossref] [PubMed]

2016 (1)

2015 (2)

J. Szczepanek, T. M. Kardaś, M. Michalska, C. Radzewicz, and Y. Stepanenko, “Simple all-PM-fiber laser mode-locked with a nonlinear loop mirror,” Opt. Lett. 40(15), 3500–3503 (2015).
[Crossref] [PubMed]

S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. Fotiadi, and P. Mégret, “948 kHz repetition rate, picosecond pulse duration, all-PM 1.03 μm mode-locked fiber laser based on nonlinear polarization evolution,” Proc. SPIE 9135, 91351I (2015).

2014 (1)

S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. A. Fotiadi, M. Wuilpart, and P. Mégret, “All-Fiber 1-μm PM Mode-Lock Laser Delivering Picosecond Pulses at Sub-MHz Repetition Rate,” IEEE Photonics Technol. Lett. 26, 2256–2259 (2014).
[Crossref]

2013 (2)

C. Aguergaray, R. Hawker, A. F. Runge, M. Erkintalo, and N. G. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
[Crossref]

A. F. J. Runge, C. Aguergaray, N. G. R. Broderick, and M. Erkintalo, “Coherence and shot-to-shot spectral fluctuations in noise-like ultrafast fiber lasers,” Opt. Lett. 38(21), 4327–4330 (2013).
[Crossref] [PubMed]

2012 (2)

D. S. Kharenko, E. V. Podivilov, A. A. Apolonski, and S. A. Babin, “20 nJ 200 fs all-fiber highly chirped dissipative soliton oscillator,” Opt. Lett. 37(19), 4104–4106 (2012).
[Crossref] [PubMed]

G. Soboń, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett. 9(8), 581–586 (2012).
[Crossref]

2008 (2)

W. Renninger, A. Chong, and F. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[Crossref]

K. Kieu and F. W. Wise, “All-fiber normal-dispersion femtosecond laser,” Opt. Express 16(15), 11453–11458 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

2005 (2)

2002 (2)

D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Am. B 19(12), 2886–2892 (2002).
[Crossref]

M. Kolesik, J. V. Moloney, and M. Mlejnek, “Unidirectional Optical Pulse Propagation Equation,” Phys. Rev. Lett. 89(28), 283902 (2002).
[Crossref] [PubMed]

2000 (1)

C. Vinegoni, M. Wegmuller, B. Huttner, and N. Gisin, “Measurement of nonlinear polarization rotation in a highly birefringent optical fibre using a Faraday mirror,” J. Opt. A, Pure Appl. Opt. 2(4), 314–318 (2000).
[Crossref]

1998 (1)

1997 (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

1995 (1)

1994 (1)

1993 (1)

1992 (1)

1990 (1)

1989 (1)

M. Martinelli, “A universal compensator for polarization changes induced by birefringence on a retracing beam,” Opt. Commun. 72(6), 341–344 (1989).
[Crossref]

1988 (1)

1987 (2)

T. Morioka, M. Saruwatari, and A. Takada, “Ultrafast optical multi/demultiplexer utilising optical Kerr effect in polarisation-maintaining single-mode fibres,” Electron. Lett. 23(9), 453–454 (1987).
[Crossref]

C. Menyuk, “Nonlinear pulse propagation in birefringent optical fibers,” IEEE J. Quantum Electron. 23(2), 174–176 (1987).
[Crossref]

1985 (2)

1983 (1)

1982 (1)

1973 (1)

R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22(6), 276–278 (1973).
[Crossref]

Abramski, K. M.

G. Soboń, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett. 9(8), 581–586 (2012).
[Crossref]

Agrawal, G. P.

Aguergaray, C.

A. F. J. Runge, C. Aguergaray, N. G. R. Broderick, and M. Erkintalo, “Coherence and shot-to-shot spectral fluctuations in noise-like ultrafast fiber lasers,” Opt. Lett. 38(21), 4327–4330 (2013).
[Crossref] [PubMed]

C. Aguergaray, R. Hawker, A. F. Runge, M. Erkintalo, and N. G. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
[Crossref]

Andrejco, M. J.

Antonetti, A.

Apolonski, A. A.

Armas-Rivera, I.

Ashkin, A.

Babin, S. A.

Backus, S. J.

Balant, A. C.

Beltrán-Pérez, G.

Bennion, I.

Boivinet, S.

S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. Fotiadi, and P. Mégret, “948 kHz repetition rate, picosecond pulse duration, all-PM 1.03 μm mode-locked fiber laser based on nonlinear polarization evolution,” Proc. SPIE 9135, 91351I (2015).

S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. A. Fotiadi, M. Wuilpart, and P. Mégret, “All-Fiber 1-μm PM Mode-Lock Laser Delivering Picosecond Pulses at Sub-MHz Repetition Rate,” IEEE Photonics Technol. Lett. 26, 2256–2259 (2014).
[Crossref]

Botineau, J.

Bracamontes-Rodríguez, Y. E.

Broderick, N. G.

C. Aguergaray, R. Hawker, A. F. Runge, M. Erkintalo, and N. G. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
[Crossref]

Broderick, N. G. R.

Cantrell, C. D.

Chong, A.

Cleff, C.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41–46 (2017).
[Crossref]

Dobner, S.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41–46 (2017).
[Crossref]

Doran, N. J.

Doubek, R.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41–46 (2017).
[Crossref]

Durán-Sánchez, M.

Erkintalo, M.

C. Aguergaray, R. Hawker, A. F. Runge, M. Erkintalo, and N. G. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
[Crossref]

A. F. J. Runge, C. Aguergaray, N. G. R. Broderick, and M. Erkintalo, “Coherence and shot-to-shot spectral fluctuations in noise-like ultrafast fiber lasers,” Opt. Lett. 38(21), 4327–4330 (2013).
[Crossref] [PubMed]

Etchepare, J.

Feng, Y.

Fermann, M. E.

Fischer, M.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41–46 (2017).
[Crossref]

Fotiadi, A.

S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. Fotiadi, and P. Mégret, “948 kHz repetition rate, picosecond pulse duration, all-PM 1.03 μm mode-locked fiber laser based on nonlinear polarization evolution,” Proc. SPIE 9135, 91351I (2015).

Fotiadi, A. A.

S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. A. Fotiadi, M. Wuilpart, and P. Mégret, “All-Fiber 1-μm PM Mode-Lock Laser Delivering Picosecond Pulses at Sub-MHz Repetition Rate,” IEEE Photonics Technol. Lett. 26, 2256–2259 (2014).
[Crossref]

Gisin, N.

C. Vinegoni, M. Wegmuller, B. Huttner, and N. Gisin, “Measurement of nonlinear polarization rotation in a highly birefringent optical fibre using a Faraday mirror,” J. Opt. A, Pure Appl. Opt. 2(4), 314–318 (2000).
[Crossref]

Giunta, M.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41–46 (2017).
[Crossref]

Grillon, G.

Grischkowsky, D.

Gu, X.

Guo, S.

Haberl, F.

Hänsel, W.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41–46 (2017).
[Crossref]

Haus, H. A.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

Hawker, R.

C. Aguergaray, R. Hawker, A. F. Runge, M. Erkintalo, and N. G. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
[Crossref]

Hernandez, Y.

S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. Fotiadi, and P. Mégret, “948 kHz repetition rate, picosecond pulse duration, all-PM 1.03 μm mode-locked fiber laser based on nonlinear polarization evolution,” Proc. SPIE 9135, 91351I (2015).

S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. A. Fotiadi, M. Wuilpart, and P. Mégret, “All-Fiber 1-μm PM Mode-Lock Laser Delivering Picosecond Pulses at Sub-MHz Repetition Rate,” IEEE Photonics Technol. Lett. 26, 2256–2259 (2014).
[Crossref]

Hernández-Arriaga, M. V.

Hochreiter, H.

Hofer, M.

Hohmuth, R.

Hollenbeck, D.

Holzwarth, R.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41–46 (2017).
[Crossref]

Hoogland, H.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41–46 (2017).
[Crossref]

Huttner, B.

C. Vinegoni, M. Wegmuller, B. Huttner, and N. Gisin, “Measurement of nonlinear polarization rotation in a highly birefringent optical fibre using a Faraday mirror,” J. Opt. A, Pure Appl. Opt. 2(4), 314–318 (2000).
[Crossref]

Ibarra-Escamilla, B.

Ippen, E. P.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22(6), 276–278 (1973).
[Crossref]

Jones, D. J.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

Kapteyn, H. C.

Kardas, T.

W. Stępień, J. Szczepanek, T. Kardaś, M. Nejbauer, C. Radzewicz, and Y. Stepanenko, “Study on parameters of fiber loop mirrors as artificial saturable absorbers,” Proc. SPIE 10094, 100941N (2017).
[Crossref]

Kardas, T. M.

Keiding, S. R.

Kharenko, D. S.

Kieu, K.

Kimura, Y.

K. Kitayama, Y. Kimura, and S. Seikai, “Fiber‐optic logic gate,” Appl. Phys. Lett. 46(4), 317–319 (1985).
[Crossref]

Kirchner, M. S.

Kitayama, K.

K. Kitayama, Y. Kimura, and S. Seikai, “Fiber‐optic logic gate,” Appl. Phys. Lett. 46(4), 317–319 (1985).
[Crossref]

Kolesik, M.

M. Kolesik, J. V. Moloney, and M. Mlejnek, “Unidirectional Optical Pulse Propagation Equation,” Phys. Rev. Lett. 89(28), 283902 (2002).
[Crossref] [PubMed]

Kuzin, E. A.

Lecourt, J.-B.

S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. Fotiadi, and P. Mégret, “948 kHz repetition rate, picosecond pulse duration, all-PM 1.03 μm mode-locked fiber laser based on nonlinear polarization evolution,” Proc. SPIE 9135, 91351I (2015).

S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. A. Fotiadi, M. Wuilpart, and P. Mégret, “All-Fiber 1-μm PM Mode-Lock Laser Delivering Picosecond Pulses at Sub-MHz Repetition Rate,” IEEE Photonics Technol. Lett. 26, 2256–2259 (2014).
[Crossref]

Lim, H.

Limpert, J.

Lin, Q.

Martinelli, M.

M. Martinelli, “A universal compensator for polarization changes induced by birefringence on a retracing beam,” Opt. Commun. 72(6), 341–344 (1989).
[Crossref]

Mayer, P.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41–46 (2017).
[Crossref]

Mégret, P.

S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. Fotiadi, and P. Mégret, “948 kHz repetition rate, picosecond pulse duration, all-PM 1.03 μm mode-locked fiber laser based on nonlinear polarization evolution,” Proc. SPIE 9135, 91351I (2015).

S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. A. Fotiadi, M. Wuilpart, and P. Mégret, “All-Fiber 1-μm PM Mode-Lock Laser Delivering Picosecond Pulses at Sub-MHz Repetition Rate,” IEEE Photonics Technol. Lett. 26, 2256–2259 (2014).
[Crossref]

Menyuk, C.

C. Menyuk, “Nonlinear pulse propagation in birefringent optical fibers,” IEEE J. Quantum Electron. 23(2), 174–176 (1987).
[Crossref]

Michalska, M.

Migus, A.

Milam, D.

Mlejnek, M.

M. Kolesik, J. V. Moloney, and M. Mlejnek, “Unidirectional Optical Pulse Propagation Equation,” Phys. Rev. Lett. 89(28), 283902 (2002).
[Crossref] [PubMed]

Moloney, J. V.

M. Kolesik, J. V. Moloney, and M. Mlejnek, “Unidirectional Optical Pulse Propagation Equation,” Phys. Rev. Lett. 89(28), 283902 (2002).
[Crossref] [PubMed]

Morioka, T.

T. Morioka, M. Saruwatari, and A. Takada, “Ultrafast optical multi/demultiplexer utilising optical Kerr effect in polarisation-maintaining single-mode fibres,” Electron. Lett. 23(9), 453–454 (1987).
[Crossref]

Nejbauer, M.

W. Stępień, J. Szczepanek, T. Kardaś, M. Nejbauer, C. Radzewicz, and Y. Stepanenko, “Study on parameters of fiber loop mirrors as artificial saturable absorbers,” Proc. SPIE 10094, 100941N (2017).
[Crossref]

T. M. Kardaś, M. Nejbauer, P. Wnuk, B. Resan, C. Radzewicz, and P. Wasylczyk, “Full 3D modelling of pulse propagation enables efficient nonlinear frequency conversion with low energy laser pulses in a single-element tripler,” Sci. Rep. 7, 42889 (2017).
[Crossref] [PubMed]

Nelson, L. E.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

Nielsen, C.

Nielsen, C. K.

Nikolaus, B.

Ortaç, B.

Pan, W.

Podivilov, E. V.

Pottiez, O.

Radzewicz, C.

T. M. Kardaś, M. Nejbauer, P. Wnuk, B. Resan, C. Radzewicz, and P. Wasylczyk, “Full 3D modelling of pulse propagation enables efficient nonlinear frequency conversion with low energy laser pulses in a single-element tripler,” Sci. Rep. 7, 42889 (2017).
[Crossref] [PubMed]

J. Szczepanek, T. M. Kardaś, C. Radzewicz, and Y. Stepanenko, “Ultrafast laser mode-locked using nonlinear polarization evolution in polarization maintaining fibers,” Opt. Lett. 42(3), 575–578 (2017).
[Crossref] [PubMed]

W. Stępień, J. Szczepanek, T. Kardaś, M. Nejbauer, C. Radzewicz, and Y. Stepanenko, “Study on parameters of fiber loop mirrors as artificial saturable absorbers,” Proc. SPIE 10094, 100941N (2017).
[Crossref]

J. Szczepanek, T. M. Kardaś, M. Michalska, C. Radzewicz, and Y. Stepanenko, “Simple all-PM-fiber laser mode-locked with a nonlinear loop mirror,” Opt. Lett. 40(15), 3500–3503 (2015).
[Crossref] [PubMed]

Renninger, W.

W. Renninger, A. Chong, and F. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[Crossref]

Resan, B.

T. M. Kardaś, M. Nejbauer, P. Wnuk, B. Resan, C. Radzewicz, and P. Wasylczyk, “Full 3D modelling of pulse propagation enables efficient nonlinear frequency conversion with low energy laser pulses in a single-element tripler,” Sci. Rep. 7, 42889 (2017).
[Crossref] [PubMed]

Richter, W.

Rodríguez-Morales, L. A.

Runge, A. F.

C. Aguergaray, R. Hawker, A. F. Runge, M. Erkintalo, and N. G. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
[Crossref]

Runge, A. F. J.

Santiago-Hernández, H.

Saruwatari, M.

T. Morioka, M. Saruwatari, and A. Takada, “Ultrafast optical multi/demultiplexer utilising optical Kerr effect in polarisation-maintaining single-mode fibres,” Electron. Lett. 23(9), 453–454 (1987).
[Crossref]

Schmid, S.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41–46 (2017).
[Crossref]

Schreiber, T.

Seikai, S.

K. Kitayama, Y. Kimura, and S. Seikai, “Fiber‐optic logic gate,” Appl. Phys. Lett. 46(4), 317–319 (1985).
[Crossref]

Silberberg, Y.

Sobon, G.

G. Soboń, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett. 9(8), 581–586 (2012).
[Crossref]

Sotor, J.

G. Soboń, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett. 9(8), 581–586 (2012).
[Crossref]

Steinmetz, T.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41–46 (2017).
[Crossref]

Stepanenko, Y.

Stepien, W.

W. Stępień, J. Szczepanek, T. Kardaś, M. Nejbauer, C. Radzewicz, and Y. Stepanenko, “Study on parameters of fiber loop mirrors as artificial saturable absorbers,” Proc. SPIE 10094, 100941N (2017).
[Crossref]

Stock, M. L.

Stolen, R. H.

Sugden, K.

Szczepanek, J.

Takada, A.

T. Morioka, M. Saruwatari, and A. Takada, “Ultrafast optical multi/demultiplexer utilising optical Kerr effect in polarisation-maintaining single-mode fibres,” Electron. Lett. 23(9), 453–454 (1987).
[Crossref]

Tamura, K.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

Thomazeau, I.

Trillo, S.

Tünnermann, A.

Vinegoni, C.

C. Vinegoni, M. Wegmuller, B. Huttner, and N. Gisin, “Measurement of nonlinear polarization rotation in a highly birefringent optical fibre using a Faraday mirror,” J. Opt. A, Pure Appl. Opt. 2(4), 314–318 (2000).
[Crossref]

Wabnitz, S.

Wang, Y.

Wasylczyk, P.

T. M. Kardaś, M. Nejbauer, P. Wnuk, B. Resan, C. Radzewicz, and P. Wasylczyk, “Full 3D modelling of pulse propagation enables efficient nonlinear frequency conversion with low energy laser pulses in a single-element tripler,” Sci. Rep. 7, 42889 (2017).
[Crossref] [PubMed]

Wegmuller, M.

C. Vinegoni, M. Wegmuller, B. Huttner, and N. Gisin, “Measurement of nonlinear polarization rotation in a highly birefringent optical fibre using a Faraday mirror,” J. Opt. A, Pure Appl. Opt. 2(4), 314–318 (2000).
[Crossref]

Winters, D. G.

Wise, F.

W. Renninger, A. Chong, and F. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[Crossref]

Wise, F. W.

Wnuk, P.

T. M. Kardaś, M. Nejbauer, P. Wnuk, B. Resan, C. Radzewicz, and P. Wasylczyk, “Full 3D modelling of pulse propagation enables efficient nonlinear frequency conversion with low energy laser pulses in a single-element tripler,” Sci. Rep. 7, 42889 (2017).
[Crossref] [PubMed]

Wood, D.

Wuilpart, M.

S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. A. Fotiadi, M. Wuilpart, and P. Mégret, “All-Fiber 1-μm PM Mode-Lock Laser Delivering Picosecond Pulses at Sub-MHz Repetition Rate,” IEEE Photonics Technol. Lett. 26, 2256–2259 (2014).
[Crossref]

Yang, L.-M.

Zhang, L.

Zhou, J.

Zhuo, Z.

Appl. Opt. (2)

Appl. Phys. B (2)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41–46 (2017).
[Crossref]

Appl. Phys. Lett. (3)

C. Aguergaray, R. Hawker, A. F. Runge, M. Erkintalo, and N. G. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
[Crossref]

K. Kitayama, Y. Kimura, and S. Seikai, “Fiber‐optic logic gate,” Appl. Phys. Lett. 46(4), 317–319 (1985).
[Crossref]

R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22(6), 276–278 (1973).
[Crossref]

Electron. Lett. (1)

T. Morioka, M. Saruwatari, and A. Takada, “Ultrafast optical multi/demultiplexer utilising optical Kerr effect in polarisation-maintaining single-mode fibres,” Electron. Lett. 23(9), 453–454 (1987).
[Crossref]

IEEE J. Quantum Electron. (1)

C. Menyuk, “Nonlinear pulse propagation in birefringent optical fibers,” IEEE J. Quantum Electron. 23(2), 174–176 (1987).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. A. Fotiadi, M. Wuilpart, and P. Mégret, “All-Fiber 1-μm PM Mode-Lock Laser Delivering Picosecond Pulses at Sub-MHz Repetition Rate,” IEEE Photonics Technol. Lett. 26, 2256–2259 (2014).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

C. Vinegoni, M. Wegmuller, B. Huttner, and N. Gisin, “Measurement of nonlinear polarization rotation in a highly birefringent optical fibre using a Faraday mirror,” J. Opt. A, Pure Appl. Opt. 2(4), 314–318 (2000).
[Crossref]

J. Opt. Soc. Am. B (3)

Laser Phys. Lett. (1)

G. Soboń, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett. 9(8), 581–586 (2012).
[Crossref]

Opt. Commun. (1)

M. Martinelli, “A universal compensator for polarization changes induced by birefringence on a retracing beam,” Opt. Commun. 72(6), 341–344 (1989).
[Crossref]

Opt. Express (6)

Opt. Lett. (13)

J. Szczepanek, T. M. Kardaś, C. Radzewicz, and Y. Stepanenko, “Ultrafast laser mode-locked using nonlinear polarization evolution in polarization maintaining fibers,” Opt. Lett. 42(3), 575–578 (2017).
[Crossref] [PubMed]

D. S. Kharenko, E. V. Podivilov, A. A. Apolonski, and S. A. Babin, “20 nJ 200 fs all-fiber highly chirped dissipative soliton oscillator,” Opt. Lett. 37(19), 4104–4106 (2012).
[Crossref] [PubMed]

A. F. J. Runge, C. Aguergaray, N. G. R. Broderick, and M. Erkintalo, “Coherence and shot-to-shot spectral fluctuations in noise-like ultrafast fiber lasers,” Opt. Lett. 38(21), 4327–4330 (2013).
[Crossref] [PubMed]

J. Szczepanek, T. M. Kardaś, M. Michalska, C. Radzewicz, and Y. Stepanenko, “Simple all-PM-fiber laser mode-locked with a nonlinear loop mirror,” Opt. Lett. 40(15), 3500–3503 (2015).
[Crossref] [PubMed]

Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett. 31(21), 3086–3088 (2006).
[Crossref] [PubMed]

C. K. Nielsen and S. R. Keiding, “All-fiber mode-locked fiber laser,” Opt. Lett. 32(11), 1474–1476 (2007).
[Crossref] [PubMed]

R. H. Stolen, J. Botineau, and A. Ashkin, “Intensity discrimination of optical pulses with birefringent fibers,” Opt. Lett. 7(10), 512–514 (1982).
[Crossref] [PubMed]

B. Nikolaus, D. Grischkowsky, and A. C. Balant, “Optical pulse reshaping based on the nonlinear birefringence of single-mode optical fibers,” Opt. Lett. 8(3), 189–191 (1983).
[Crossref] [PubMed]

N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13(1), 56–58 (1988).
[Crossref] [PubMed]

M. E. Fermann, F. Haberl, M. Hofer, and H. Hochreiter, “Nonlinear amplifying loop mirror,” Opt. Lett. 15(13), 752–754 (1990).
[Crossref] [PubMed]

M. E. Fermann, M. L. Stock, M. J. Andrejco, and Y. Silberberg, “Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber,” Opt. Lett. 18(11), 894–896 (1993).
[Crossref] [PubMed]

M. E. Fermann, L.-M. Yang, M. L. Stock, and M. J. Andrejco, “Environmentally stable Kerr-type mode-locked erbium fiber laser producing 360-fs pulses,” Opt. Lett. 19(1), 43–45 (1994).
[Crossref] [PubMed]

M. E. Fermann, K. Sugden, and I. Bennion, “Environmentally stable high-power soliton fiber lasers that use chirped fiber Bragg gratings,” Opt. Lett. 20(15), 1625–1627 (1995).
[Crossref] [PubMed]

Phys. Rev. A (1)

W. Renninger, A. Chong, and F. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[Crossref]

Phys. Rev. Lett. (1)

M. Kolesik, J. V. Moloney, and M. Mlejnek, “Unidirectional Optical Pulse Propagation Equation,” Phys. Rev. Lett. 89(28), 283902 (2002).
[Crossref] [PubMed]

Proc. SPIE (2)

W. Stępień, J. Szczepanek, T. Kardaś, M. Nejbauer, C. Radzewicz, and Y. Stepanenko, “Study on parameters of fiber loop mirrors as artificial saturable absorbers,” Proc. SPIE 10094, 100941N (2017).
[Crossref]

S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. Fotiadi, and P. Mégret, “948 kHz repetition rate, picosecond pulse duration, all-PM 1.03 μm mode-locked fiber laser based on nonlinear polarization evolution,” Proc. SPIE 9135, 91351I (2015).

Sci. Rep. (1)

T. M. Kardaś, M. Nejbauer, P. Wnuk, B. Resan, C. Radzewicz, and P. Wasylczyk, “Full 3D modelling of pulse propagation enables efficient nonlinear frequency conversion with low energy laser pulses in a single-element tripler,” Sci. Rep. 7, 42889 (2017).
[Crossref] [PubMed]

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Elsevier/Academic Press, 2013).

J. P. Koplow and D. B. Soh, “The 4FAD: a high-extinction-ratio, achromatic, temperature-insensitive, high-damage-threshold, all-fiber, power-selective filter,” in CLEO:2011 - Laser Applications to Photonic Applications (2011), OSA Technical Digest (CD) (Optical Society of America, 2011), p. CMZ5.

S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. Fotiadi, M. Wuilpart, and P. Mégret, “All-fiber laser based on NPE in PM fiber with two active sections,” in 2015 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, (Optical Society of America, 2015), p. CJ_2_2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Various schemes of fiber segmentation in PM NPE device: (a) two fiber segments with equal lengths, (b) odd or even number of segments (N = 1, 2, 3, …) with the first and the last segments twice shorter than the remaining ones, (c) scheme with a Faraday Mirror (FM) which is used for back reflection; upper section of graphics (c) presents the pulse propagating towards FM, lower part presents the pulse reflected by the FM. In each case the input pulse (green) can be projected on the slow (blue pulse, vertical) and fast axis (red pulse, horizontal).
Fig. 2
Fig. 2 The measurement setup. Positively chirped pulses with variable peak power (VA – Variable Attenuator) and time duration of 4.1 ps are divided at the input beam splitter (BS). 5% of the beam is used for continuous measurement of the input power. The remaining beam is coupled by a collimator (COL1) to a PM pigtail of the polarization sensitive circulator (CIR) and propagates through Polarization Beam Splitter (PBS). After the PBS the pulses propagate through the PM NPE device; the yellow mark represents an angle splice, the two red marks represent 90° splices. The pulses are back-reflected by the silver mirror (M). A double pass through a Faraday Rotator (FR) rotates the polarization state by 90°. The transmitted average power is measured for each polarization axis at the output of the CIR (slow axis) and the PBS (fast axis).
Fig. 3
Fig. 3 The total transmission for a sample chirped Gaussian pulse (see text) and different entrance split ratios. Panel (a) presents simulations for various input splice angles. (b), (c), (d) present measured transmissions together with the simulated data for 10°, 20°, 30° input angle splices respectively. The light grey and light blue area shows the estimated absolute errors for measurements.
Fig. 4
Fig. 4 Simulated nonlinear phase difference between pulses after propagation through a PM NPE device. A polarized chirped pulse propagates through the set of fiber segments than it is reflect with 90° rotation (COL – fiber collimator, FR – faraday Rotator, M – mirror). Graph (a) presents results for the non-segmented design and graph (b) shows the results for the segmented configuration. When only self-acting effects i.e.: SPM and SRS are considered the phase is an even function in time (black curves) and resemble the temporal intensity distribution of the pulse. With XPM and XSRS included, the time overlap of the pulses becomes essential. In the non-segmented design (a) an asymmetrical nonlinear phase difference represented by odd-like function in time – red curve is observed. The symmetrical (described by even-like function in time) nonlinear phase difference without crossing the zero value is achieved only for the segmented device – blue curve, graph (b).
Fig. 5
Fig. 5 Measured transmission for the non-segmented and segmented PM NPE device built accordingly to schemes presented in Fig. 4. (a) 20° - input splice and a single 5m fiber piece, (b) 20° - input splice and three fiber pieces: 1m, 2m, 2m. Red squares marks peak powers for which pulse spectra presented in Fig. 6 were measured. The light grey and light blue area shows the estimated absolute errors for measurements.
Fig. 6
Fig. 6 Measured pulse spectra together with the simulated spectra and pulse temporal envelopes. Each row corresponds to specific pulse peak power marked by red square at the transmission characteristics presented in Fig. 5. Graph (a) presents the results for non-segmented device [Fig. 5(a)], panel (b) presents more symmetrical spectra and pulse temporal envelopes achieved for segmented device [Fig. 5(b)]. S stands for normalized skewness parameter calculated for the spectra of pulses after propagation at the slow axis of PM fiber in PM NPE device.
Fig. 7
Fig. 7 Changes in transmission of the PM NPE device as a function of the output angle diversity and total fiber length inaccuracy in case of using in-line schemes without Faraday Mirror [Figs. 1(a)-1(b)].

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E( ω )= A x ( ω ) x ^ e i( k x R z ω R t ) + A y ( ω ) y ^ e i( k y R z ω R t )
z A j ( ω )=i( k j ( ω ) ω v k j R ) A j ( ω )+i k j ( ω ) n 2 B j NL ( ω )
B ˜ j NL ( t )=( 1 f R )( B ˜ j SPM ( t )+ B ˜ j XPM ( t )+ B ˜ j DFWM ( t ) )+ f R ( B ˜ j SRS ( t )+ B ˜ j XSRS ( t ) ),
B ˜ j SPM ( t )=  | A ˜ j ( t ) | 2 A ˜ j ( t ), B ˜ j XPM ( t )= 2 3 | A ˜ l ( t ) | 2 A ˜ j ( t ), B ˜ j DFWM ( t )= 1 3 A ˜ l 2 ( t ) A ˜ j * ( t ) e 2iΔ k j z , B ˜ j SRS ( t )= A ˜ j ( t )( ( a ˜ ( t )+ b ˜ ( t ) )* | A ˜ j ( t ) | 2 ), B ˜ j XSRS ( t )= A ˜ j ( t )( a ˜ ( t )* | A ˜ l ( t ) | 2 )+ 1 2 A ˜ l ( t )( b ˜ ( t )*( A ˜ j ( t ) A ˜ l * ( t )+ A ˜ l ( t ) A ˜ j * ( t ) e 2iΔ k j z ) )
( A x ' A y ' )=( cos( θ ) sin( θ ) sin( θ ) cos( θ ) )( A x e i k x R L A y e i k y R L ),
T j T = E j Out E In ,
T j P = P j Out P x Out + P y Out ,