Abstract

Surface plasmon holographic microscopy (SPHM), which combines surface plasmon microscopy with digital holographic microscopy, can be applied for amplitude- and phase-contrast surface plasmon resonance (SPR) imaging. In this paper, we propose an improved SPHM with the wavelength multiplexing technique based on two laser sources and a common-path hologram recording configuration. Through recording and reconstructing the SPR images at two wavelengths simultaneously employing the improved SPHM, tiny variation of dielectric refractive index in near field is quantitatively monitored with an extended measurement range while maintaining the high sensitivity. Moreover, imaging onion tissues is performed to demonstrate that the detection sensitivities of two wavelengths can compensate for each other in SPR imaging. The proposed wavelength-multiplexing SPHM presents simple structure, high temporal stability and inherent capability of phase curvature compensation, as well as shows great potentials for further applications in monitoring diverse dynamic processes related with refractive index variations and imaging biological tissues with low-contrast refractive index distributions in the near field.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Common-path digital holographic microscopy for near-field phase imaging based on surface plasmon resonance

Jiwei Zhang, Siqing Dai, Chaojie Ma, Jianglei Di, and Jianlin Zhao
Appl. Opt. 56(11) 3223-3228 (2017)

Integrated digital holographic microscopy based on surface plasmon resonance

Siqing Dai, Jiwei Zhang, Hua Lu, Teli Xi, Chaojie Ma, Ying Li, Jianglei Di, and Jianlin Zhao
Opt. Express 26(19) 25437-25445 (2018)

Compact surface plasmon holographic microscopy for near-field film mapping

Jiwei Zhang, Siqing Dai, Chaojie Ma, Jianglei Di, and Jianlin Zhao
Opt. Lett. 42(17) 3462-3465 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89(1), 141–145 (1981).
    [Crossref] [PubMed]
  2. D. Axelrod, N. L. Thompson, and T. P. Burghardt, “Total internal inflection fluorescent microscopy,” J. Microsc. 129(1), 19–28 (1983).
    [Crossref] [PubMed]
  3. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008).
    [Crossref] [PubMed]
  4. B. Rappaz, I. Moon, F. Yi, B. Javidi, P. Marquet, and G. Turcatti, “Automated multi-parameter measurement of cardiomyocytes dynamics with digital holographic microscopy,” Opt. Express 23(10), 13333–13347 (2015).
    [Crossref] [PubMed]
  5. J. Di, J. Zhang, T. Xi, C. Ma, and J. Zhao, “Improvement of measurement accuracy in digital holographic microscopy by using dual-wavelength technique,” J. Micro/Nanolith. Microfabr. Microsyst. 14(4), 041313 (2015).
  6. C. Minetti, V. Vitkova, F. Dubois, and I. Bivas, “Digital holographic microscopy as a tool to study the thermal shape fluctuations of lipid vesicles,” Opt. Lett. 41(8), 1833–1836 (2016).
    [Crossref] [PubMed]
  7. T. Xi, J. Di, X. Guan, Y. Li, C. Ma, J. Zhang, and J. Zhao, “Phase-shifting infrared digital holographic microscopy based on an all-fiber variable phase shifter,” Appl. Opt. 56(10), 2686–2690 (2017).
    [Crossref] [PubMed]
  8. W. M. Ash and M. K. Kim, “Digital holography of total internal reflection,” Opt. Express 16(13), 9811–9820 (2008).
    [Crossref] [PubMed]
  9. A. Calabuig, M. Matrecano, M. Paturzo, and P. Ferraro, “Common-path configuration in total internal reflection digital holography microscopy,” Opt. Lett. 39(8), 2471–2474 (2014).
    [Crossref] [PubMed]
  10. J. Zhang, J. Di, Y. Li, T. Xi, and J. Zhao, “Dynamical measurement of refractive index distribution using digital holographic interferometry based on total internal reflection,” Opt. Express 23(21), 27328–27334 (2015).
    [Crossref] [PubMed]
  11. J. Zhang, C. Ma, S. Dai, J. Di, Y. Li, T. Xi, and J. Zhao, “Transmission and total internal reflection integrated digital holographic microscopy,” Opt. Lett. 41(16), 3844–3847 (2016).
    [Crossref] [PubMed]
  12. C. L. Wong, H. P. Ho, Y. K. Suen, S. K. Kong, Q. L. Chen, W. Yuan, and S. Y. Wu, “Real-time protein biosensor arrays based on surface plasmon resonance differential phase imaging,” Biosens. Bioelectron. 24(4), 606–612 (2008).
    [Crossref] [PubMed]
  13. C. L. Wong, H. P. Ho, T. T. Yu, Y. K. Suen, W. W. Chow, S. Y. Wu, W. C. Law, W. Yuan, W. J. Li, S. K. Kong, and C. Lin, “Two-dimensional biosensor arrays based on surface plasmon resonance phase imaging,” Appl. Opt. 46(12), 2325–2332 (2007).
    [Crossref] [PubMed]
  14. C. L. Wong, H. P. Ho, K. S. Chan, and S. Y. Wu, “Application of surface plasmon resonance sensing to studying elastohydrodynamic lubricant films,” Appl. Opt. 44(23), 4830–4837 (2005).
    [Crossref] [PubMed]
  15. C. L. Wong, H. P. Ho, K. S. Chan, P. L. Wong, S. Y. Wu, and C. Lin, “Optical characterization of elastohydrodynamic lubricated (EHL) contacts using surface plasmon resonance (SPR) effect,” Tribol. Int. 41(5), 356–366 (2008).
    [Crossref]
  16. B. Rothenhäusler and W. Knoll, “Surface plasmon microscopy,” Nature 332(6165), 615–617 (1988).
    [Crossref]
  17. J. S. Shumaker-Parry, M. H. Zareie, R. Aebersold, and C. T. Campbell, “Microspotting streptavidin and double-stranded DNA arrays on gold for high-throughput studies of protein-DNA interactions by surface plasmon resonance microscopy,” Anal. Chem. 76(4), 918–929 (2004).
    [Crossref] [PubMed]
  18. G. Steiner, “Surface plasmon resonance imaging,” Anal. Bioanal. Chem. 379(3), 328–331 (2004).
    [Crossref] [PubMed]
  19. P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, and T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B Chem. 54(1-2), 43–50 (1999).
    [Crossref]
  20. C. Hu, J. Zhong, and J. Weng, “Digital holographic microscopy by use of surface plasmon resonance for imaging of cell membranes,” J. Biomed. Opt. 15(5), 056015 (2010).
    [Crossref] [PubMed]
  21. S. Li and J. Zhong, “Simultaneous amplitude-contrast and phase-contrast surface plasmon resonance imaging by use of digital holography,” Biomed. Opt. Express 3(12), 3190–3202 (2012).
    [Crossref] [PubMed]
  22. B. Mandracchia, V. Pagliarulo, M. Paturzo, and P. Ferraro, “Surface plasmon resonance imaging by holographic enhanced mapping,” Anal. Chem. 87(8), 4124–4128 (2015).
    [Crossref] [PubMed]
  23. J. Zhang, S. Dai, C. Ma, J. Di, and J. Zhao, “Common-path digital holographic microscopy for near-field phase imaging based on surface plasmon resonance,” Appl. Opt. 56(11), 3223–3228 (2017).
    [Crossref] [PubMed]
  24. J. Zhang, S. Dai, C. Ma, J. Di, and J. Zhao, “Compact surface plasmon holographic microscopy for near-field film mapping,” Opt. Lett. 42(17), 3462–3465 (2017).
    [Crossref] [PubMed]
  25. J. Zhao, J. Zhang, S. Dai, J. Di, and T. Xi, “Surface plasmon holographic microscopy for near-field refractive index detection and thin film mapping,” Proc. SPIE 10503, 1050316 (2018).
  26. C. Xiao and S. Sui, “Characterization of surface plasmon resonance biosensor,” Sens. Actuators B Chem. 66(1-3), 174–177 (2000).
    [Crossref]
  27. J. Di, Y. Li, M. Xie, J. Zhang, C. Ma, T. Xi, E. Li, and J. Zhao, “Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry,” Appl. Opt. 55(26), 7287–7293 (2016).
    [Crossref] [PubMed]
  28. C. Ma, J. Di, J. Zhang, Y. Li, T. Xi, E. Li, and J. Zhao, “Simultaneous measurement of refractive index distribution and topography by integrated transmission and reflection digital holographic microscopy,” Appl. Opt. 55(33), 9435–9439 (2016).
    [Crossref] [PubMed]
  29. C. Ma, Y. Li, J. Zhang, P. Li, T. Xi, J. Di, and J. Zhao, “Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer,” Opt. Express 25(12), 13659–13667 (2017).
    [Crossref] [PubMed]
  30. W. Sun, J. Zhao, J. Di, Q. Wang, and L. Wang, “Real-time visualization of Karman vortex street in water flow field by using digital holography,” Opt. Express 17(22), 20342–20348 (2009).
    [Crossref] [PubMed]
  31. Q. Wang, J. Zhao, X. Jiao, J. Di, and H. Jiang, “Visual and quantitative measurement of the temperature distribution of heat conduction process in glass based on digital holographic interferometry,” J. Appl. Phys. 111(9), 093111 (2012).
    [Crossref]
  32. J. Wang, J. Zhao, C. Qin, J. Di, A. Rauf, and H. Jiang, “Digital holographic interferometry based on wavelength and angular multiplexing for measuring the ternary diffusion,” Opt. Lett. 37(7), 1211–1213 (2012).
    [Crossref] [PubMed]
  33. M. Polyanskiy, “Refractiveindex.info database,” https://refractiveindex.info/ .
  34. I. Kim and K. D. Kihm, “Measuring near-field nanoparticle concentration profiles by correlating surface plasmon resonance reflectance with effective refractive index of nanofluids,” Opt. Lett. 35(3), 393–395 (2010).
    [Crossref] [PubMed]

2018 (1)

J. Zhao, J. Zhang, S. Dai, J. Di, and T. Xi, “Surface plasmon holographic microscopy for near-field refractive index detection and thin film mapping,” Proc. SPIE 10503, 1050316 (2018).

2017 (4)

2016 (4)

2015 (4)

B. Mandracchia, V. Pagliarulo, M. Paturzo, and P. Ferraro, “Surface plasmon resonance imaging by holographic enhanced mapping,” Anal. Chem. 87(8), 4124–4128 (2015).
[Crossref] [PubMed]

J. Zhang, J. Di, Y. Li, T. Xi, and J. Zhao, “Dynamical measurement of refractive index distribution using digital holographic interferometry based on total internal reflection,” Opt. Express 23(21), 27328–27334 (2015).
[Crossref] [PubMed]

B. Rappaz, I. Moon, F. Yi, B. Javidi, P. Marquet, and G. Turcatti, “Automated multi-parameter measurement of cardiomyocytes dynamics with digital holographic microscopy,” Opt. Express 23(10), 13333–13347 (2015).
[Crossref] [PubMed]

J. Di, J. Zhang, T. Xi, C. Ma, and J. Zhao, “Improvement of measurement accuracy in digital holographic microscopy by using dual-wavelength technique,” J. Micro/Nanolith. Microfabr. Microsyst. 14(4), 041313 (2015).

2014 (1)

2012 (3)

2010 (2)

C. Hu, J. Zhong, and J. Weng, “Digital holographic microscopy by use of surface plasmon resonance for imaging of cell membranes,” J. Biomed. Opt. 15(5), 056015 (2010).
[Crossref] [PubMed]

I. Kim and K. D. Kihm, “Measuring near-field nanoparticle concentration profiles by correlating surface plasmon resonance reflectance with effective refractive index of nanofluids,” Opt. Lett. 35(3), 393–395 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (4)

C. L. Wong, H. P. Ho, K. S. Chan, P. L. Wong, S. Y. Wu, and C. Lin, “Optical characterization of elastohydrodynamic lubricated (EHL) contacts using surface plasmon resonance (SPR) effect,” Tribol. Int. 41(5), 356–366 (2008).
[Crossref]

C. L. Wong, H. P. Ho, Y. K. Suen, S. K. Kong, Q. L. Chen, W. Yuan, and S. Y. Wu, “Real-time protein biosensor arrays based on surface plasmon resonance differential phase imaging,” Biosens. Bioelectron. 24(4), 606–612 (2008).
[Crossref] [PubMed]

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008).
[Crossref] [PubMed]

W. M. Ash and M. K. Kim, “Digital holography of total internal reflection,” Opt. Express 16(13), 9811–9820 (2008).
[Crossref] [PubMed]

2007 (1)

2005 (1)

2004 (2)

J. S. Shumaker-Parry, M. H. Zareie, R. Aebersold, and C. T. Campbell, “Microspotting streptavidin and double-stranded DNA arrays on gold for high-throughput studies of protein-DNA interactions by surface plasmon resonance microscopy,” Anal. Chem. 76(4), 918–929 (2004).
[Crossref] [PubMed]

G. Steiner, “Surface plasmon resonance imaging,” Anal. Bioanal. Chem. 379(3), 328–331 (2004).
[Crossref] [PubMed]

2000 (1)

C. Xiao and S. Sui, “Characterization of surface plasmon resonance biosensor,” Sens. Actuators B Chem. 66(1-3), 174–177 (2000).
[Crossref]

1999 (1)

P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, and T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B Chem. 54(1-2), 43–50 (1999).
[Crossref]

1988 (1)

B. Rothenhäusler and W. Knoll, “Surface plasmon microscopy,” Nature 332(6165), 615–617 (1988).
[Crossref]

1983 (1)

D. Axelrod, N. L. Thompson, and T. P. Burghardt, “Total internal inflection fluorescent microscopy,” J. Microsc. 129(1), 19–28 (1983).
[Crossref] [PubMed]

1981 (1)

D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89(1), 141–145 (1981).
[Crossref] [PubMed]

Aebersold, R.

J. S. Shumaker-Parry, M. H. Zareie, R. Aebersold, and C. T. Campbell, “Microspotting streptavidin and double-stranded DNA arrays on gold for high-throughput studies of protein-DNA interactions by surface plasmon resonance microscopy,” Anal. Chem. 76(4), 918–929 (2004).
[Crossref] [PubMed]

Ash, W. M.

Axelrod, D.

D. Axelrod, N. L. Thompson, and T. P. Burghardt, “Total internal inflection fluorescent microscopy,” J. Microsc. 129(1), 19–28 (1983).
[Crossref] [PubMed]

D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89(1), 141–145 (1981).
[Crossref] [PubMed]

Beloglazov, A. A.

P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, and T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B Chem. 54(1-2), 43–50 (1999).
[Crossref]

Bivas, I.

Burghardt, T. P.

D. Axelrod, N. L. Thompson, and T. P. Burghardt, “Total internal inflection fluorescent microscopy,” J. Microsc. 129(1), 19–28 (1983).
[Crossref] [PubMed]

Calabuig, A.

Campbell, C. T.

J. S. Shumaker-Parry, M. H. Zareie, R. Aebersold, and C. T. Campbell, “Microspotting streptavidin and double-stranded DNA arrays on gold for high-throughput studies of protein-DNA interactions by surface plasmon resonance microscopy,” Anal. Chem. 76(4), 918–929 (2004).
[Crossref] [PubMed]

Chan, K. S.

C. L. Wong, H. P. Ho, K. S. Chan, P. L. Wong, S. Y. Wu, and C. Lin, “Optical characterization of elastohydrodynamic lubricated (EHL) contacts using surface plasmon resonance (SPR) effect,” Tribol. Int. 41(5), 356–366 (2008).
[Crossref]

C. L. Wong, H. P. Ho, K. S. Chan, and S. Y. Wu, “Application of surface plasmon resonance sensing to studying elastohydrodynamic lubricant films,” Appl. Opt. 44(23), 4830–4837 (2005).
[Crossref] [PubMed]

Chen, Q. L.

C. L. Wong, H. P. Ho, Y. K. Suen, S. K. Kong, Q. L. Chen, W. Yuan, and S. Y. Wu, “Real-time protein biosensor arrays based on surface plasmon resonance differential phase imaging,” Biosens. Bioelectron. 24(4), 606–612 (2008).
[Crossref] [PubMed]

Chow, W. W.

Dai, S.

Di, J.

J. Zhao, J. Zhang, S. Dai, J. Di, and T. Xi, “Surface plasmon holographic microscopy for near-field refractive index detection and thin film mapping,” Proc. SPIE 10503, 1050316 (2018).

J. Zhang, S. Dai, C. Ma, J. Di, and J. Zhao, “Common-path digital holographic microscopy for near-field phase imaging based on surface plasmon resonance,” Appl. Opt. 56(11), 3223–3228 (2017).
[Crossref] [PubMed]

T. Xi, J. Di, X. Guan, Y. Li, C. Ma, J. Zhang, and J. Zhao, “Phase-shifting infrared digital holographic microscopy based on an all-fiber variable phase shifter,” Appl. Opt. 56(10), 2686–2690 (2017).
[Crossref] [PubMed]

J. Zhang, S. Dai, C. Ma, J. Di, and J. Zhao, “Compact surface plasmon holographic microscopy for near-field film mapping,” Opt. Lett. 42(17), 3462–3465 (2017).
[Crossref] [PubMed]

C. Ma, Y. Li, J. Zhang, P. Li, T. Xi, J. Di, and J. Zhao, “Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer,” Opt. Express 25(12), 13659–13667 (2017).
[Crossref] [PubMed]

C. Ma, J. Di, J. Zhang, Y. Li, T. Xi, E. Li, and J. Zhao, “Simultaneous measurement of refractive index distribution and topography by integrated transmission and reflection digital holographic microscopy,” Appl. Opt. 55(33), 9435–9439 (2016).
[Crossref] [PubMed]

J. Zhang, C. Ma, S. Dai, J. Di, Y. Li, T. Xi, and J. Zhao, “Transmission and total internal reflection integrated digital holographic microscopy,” Opt. Lett. 41(16), 3844–3847 (2016).
[Crossref] [PubMed]

J. Di, Y. Li, M. Xie, J. Zhang, C. Ma, T. Xi, E. Li, and J. Zhao, “Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry,” Appl. Opt. 55(26), 7287–7293 (2016).
[Crossref] [PubMed]

J. Zhang, J. Di, Y. Li, T. Xi, and J. Zhao, “Dynamical measurement of refractive index distribution using digital holographic interferometry based on total internal reflection,” Opt. Express 23(21), 27328–27334 (2015).
[Crossref] [PubMed]

J. Di, J. Zhang, T. Xi, C. Ma, and J. Zhao, “Improvement of measurement accuracy in digital holographic microscopy by using dual-wavelength technique,” J. Micro/Nanolith. Microfabr. Microsyst. 14(4), 041313 (2015).

Q. Wang, J. Zhao, X. Jiao, J. Di, and H. Jiang, “Visual and quantitative measurement of the temperature distribution of heat conduction process in glass based on digital holographic interferometry,” J. Appl. Phys. 111(9), 093111 (2012).
[Crossref]

J. Wang, J. Zhao, C. Qin, J. Di, A. Rauf, and H. Jiang, “Digital holographic interferometry based on wavelength and angular multiplexing for measuring the ternary diffusion,” Opt. Lett. 37(7), 1211–1213 (2012).
[Crossref] [PubMed]

W. Sun, J. Zhao, J. Di, Q. Wang, and L. Wang, “Real-time visualization of Karman vortex street in water flow field by using digital holography,” Opt. Express 17(22), 20342–20348 (2009).
[Crossref] [PubMed]

Dubois, F.

Ferraro, P.

B. Mandracchia, V. Pagliarulo, M. Paturzo, and P. Ferraro, “Surface plasmon resonance imaging by holographic enhanced mapping,” Anal. Chem. 87(8), 4124–4128 (2015).
[Crossref] [PubMed]

A. Calabuig, M. Matrecano, M. Paturzo, and P. Ferraro, “Common-path configuration in total internal reflection digital holography microscopy,” Opt. Lett. 39(8), 2471–2474 (2014).
[Crossref] [PubMed]

Guan, X.

Ho, H. P.

C. L. Wong, H. P. Ho, Y. K. Suen, S. K. Kong, Q. L. Chen, W. Yuan, and S. Y. Wu, “Real-time protein biosensor arrays based on surface plasmon resonance differential phase imaging,” Biosens. Bioelectron. 24(4), 606–612 (2008).
[Crossref] [PubMed]

C. L. Wong, H. P. Ho, K. S. Chan, P. L. Wong, S. Y. Wu, and C. Lin, “Optical characterization of elastohydrodynamic lubricated (EHL) contacts using surface plasmon resonance (SPR) effect,” Tribol. Int. 41(5), 356–366 (2008).
[Crossref]

C. L. Wong, H. P. Ho, T. T. Yu, Y. K. Suen, W. W. Chow, S. Y. Wu, W. C. Law, W. Yuan, W. J. Li, S. K. Kong, and C. Lin, “Two-dimensional biosensor arrays based on surface plasmon resonance phase imaging,” Appl. Opt. 46(12), 2325–2332 (2007).
[Crossref] [PubMed]

C. L. Wong, H. P. Ho, K. S. Chan, and S. Y. Wu, “Application of surface plasmon resonance sensing to studying elastohydrodynamic lubricant films,” Appl. Opt. 44(23), 4830–4837 (2005).
[Crossref] [PubMed]

Hu, C.

C. Hu, J. Zhong, and J. Weng, “Digital holographic microscopy by use of surface plasmon resonance for imaging of cell membranes,” J. Biomed. Opt. 15(5), 056015 (2010).
[Crossref] [PubMed]

Javidi, B.

Jiang, H.

J. Wang, J. Zhao, C. Qin, J. Di, A. Rauf, and H. Jiang, “Digital holographic interferometry based on wavelength and angular multiplexing for measuring the ternary diffusion,” Opt. Lett. 37(7), 1211–1213 (2012).
[Crossref] [PubMed]

Q. Wang, J. Zhao, X. Jiao, J. Di, and H. Jiang, “Visual and quantitative measurement of the temperature distribution of heat conduction process in glass based on digital holographic interferometry,” J. Appl. Phys. 111(9), 093111 (2012).
[Crossref]

Jiao, X.

Q. Wang, J. Zhao, X. Jiao, J. Di, and H. Jiang, “Visual and quantitative measurement of the temperature distribution of heat conduction process in glass based on digital holographic interferometry,” J. Appl. Phys. 111(9), 093111 (2012).
[Crossref]

Kemper, B.

Kihm, K. D.

Kim, I.

Kim, M. K.

Knoll, W.

B. Rothenhäusler and W. Knoll, “Surface plasmon microscopy,” Nature 332(6165), 615–617 (1988).
[Crossref]

Kochergin, V. E.

P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, and T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B Chem. 54(1-2), 43–50 (1999).
[Crossref]

Kong, S. K.

C. L. Wong, H. P. Ho, Y. K. Suen, S. K. Kong, Q. L. Chen, W. Yuan, and S. Y. Wu, “Real-time protein biosensor arrays based on surface plasmon resonance differential phase imaging,” Biosens. Bioelectron. 24(4), 606–612 (2008).
[Crossref] [PubMed]

C. L. Wong, H. P. Ho, T. T. Yu, Y. K. Suen, W. W. Chow, S. Y. Wu, W. C. Law, W. Yuan, W. J. Li, S. K. Kong, and C. Lin, “Two-dimensional biosensor arrays based on surface plasmon resonance phase imaging,” Appl. Opt. 46(12), 2325–2332 (2007).
[Crossref] [PubMed]

Ksenevich, T. I.

P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, and T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B Chem. 54(1-2), 43–50 (1999).
[Crossref]

Law, W. C.

Li, E.

Li, P.

Li, S.

Li, W. J.

Li, Y.

Lin, C.

C. L. Wong, H. P. Ho, K. S. Chan, P. L. Wong, S. Y. Wu, and C. Lin, “Optical characterization of elastohydrodynamic lubricated (EHL) contacts using surface plasmon resonance (SPR) effect,” Tribol. Int. 41(5), 356–366 (2008).
[Crossref]

C. L. Wong, H. P. Ho, T. T. Yu, Y. K. Suen, W. W. Chow, S. Y. Wu, W. C. Law, W. Yuan, W. J. Li, S. K. Kong, and C. Lin, “Two-dimensional biosensor arrays based on surface plasmon resonance phase imaging,” Appl. Opt. 46(12), 2325–2332 (2007).
[Crossref] [PubMed]

Ma, C.

T. Xi, J. Di, X. Guan, Y. Li, C. Ma, J. Zhang, and J. Zhao, “Phase-shifting infrared digital holographic microscopy based on an all-fiber variable phase shifter,” Appl. Opt. 56(10), 2686–2690 (2017).
[Crossref] [PubMed]

J. Zhang, S. Dai, C. Ma, J. Di, and J. Zhao, “Common-path digital holographic microscopy for near-field phase imaging based on surface plasmon resonance,” Appl. Opt. 56(11), 3223–3228 (2017).
[Crossref] [PubMed]

C. Ma, Y. Li, J. Zhang, P. Li, T. Xi, J. Di, and J. Zhao, “Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer,” Opt. Express 25(12), 13659–13667 (2017).
[Crossref] [PubMed]

J. Zhang, S. Dai, C. Ma, J. Di, and J. Zhao, “Compact surface plasmon holographic microscopy for near-field film mapping,” Opt. Lett. 42(17), 3462–3465 (2017).
[Crossref] [PubMed]

J. Zhang, C. Ma, S. Dai, J. Di, Y. Li, T. Xi, and J. Zhao, “Transmission and total internal reflection integrated digital holographic microscopy,” Opt. Lett. 41(16), 3844–3847 (2016).
[Crossref] [PubMed]

C. Ma, J. Di, J. Zhang, Y. Li, T. Xi, E. Li, and J. Zhao, “Simultaneous measurement of refractive index distribution and topography by integrated transmission and reflection digital holographic microscopy,” Appl. Opt. 55(33), 9435–9439 (2016).
[Crossref] [PubMed]

J. Di, Y. Li, M. Xie, J. Zhang, C. Ma, T. Xi, E. Li, and J. Zhao, “Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry,” Appl. Opt. 55(26), 7287–7293 (2016).
[Crossref] [PubMed]

J. Di, J. Zhang, T. Xi, C. Ma, and J. Zhao, “Improvement of measurement accuracy in digital holographic microscopy by using dual-wavelength technique,” J. Micro/Nanolith. Microfabr. Microsyst. 14(4), 041313 (2015).

Mandracchia, B.

B. Mandracchia, V. Pagliarulo, M. Paturzo, and P. Ferraro, “Surface plasmon resonance imaging by holographic enhanced mapping,” Anal. Chem. 87(8), 4124–4128 (2015).
[Crossref] [PubMed]

Marquet, P.

Matrecano, M.

Minetti, C.

Moon, I.

Nikitin, P. I.

P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, and T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B Chem. 54(1-2), 43–50 (1999).
[Crossref]

Pagliarulo, V.

B. Mandracchia, V. Pagliarulo, M. Paturzo, and P. Ferraro, “Surface plasmon resonance imaging by holographic enhanced mapping,” Anal. Chem. 87(8), 4124–4128 (2015).
[Crossref] [PubMed]

Paturzo, M.

B. Mandracchia, V. Pagliarulo, M. Paturzo, and P. Ferraro, “Surface plasmon resonance imaging by holographic enhanced mapping,” Anal. Chem. 87(8), 4124–4128 (2015).
[Crossref] [PubMed]

A. Calabuig, M. Matrecano, M. Paturzo, and P. Ferraro, “Common-path configuration in total internal reflection digital holography microscopy,” Opt. Lett. 39(8), 2471–2474 (2014).
[Crossref] [PubMed]

Qin, C.

Rappaz, B.

Rauf, A.

Rothenhäusler, B.

B. Rothenhäusler and W. Knoll, “Surface plasmon microscopy,” Nature 332(6165), 615–617 (1988).
[Crossref]

Shumaker-Parry, J. S.

J. S. Shumaker-Parry, M. H. Zareie, R. Aebersold, and C. T. Campbell, “Microspotting streptavidin and double-stranded DNA arrays on gold for high-throughput studies of protein-DNA interactions by surface plasmon resonance microscopy,” Anal. Chem. 76(4), 918–929 (2004).
[Crossref] [PubMed]

Steiner, G.

G. Steiner, “Surface plasmon resonance imaging,” Anal. Bioanal. Chem. 379(3), 328–331 (2004).
[Crossref] [PubMed]

Suen, Y. K.

C. L. Wong, H. P. Ho, Y. K. Suen, S. K. Kong, Q. L. Chen, W. Yuan, and S. Y. Wu, “Real-time protein biosensor arrays based on surface plasmon resonance differential phase imaging,” Biosens. Bioelectron. 24(4), 606–612 (2008).
[Crossref] [PubMed]

C. L. Wong, H. P. Ho, T. T. Yu, Y. K. Suen, W. W. Chow, S. Y. Wu, W. C. Law, W. Yuan, W. J. Li, S. K. Kong, and C. Lin, “Two-dimensional biosensor arrays based on surface plasmon resonance phase imaging,” Appl. Opt. 46(12), 2325–2332 (2007).
[Crossref] [PubMed]

Sui, S.

C. Xiao and S. Sui, “Characterization of surface plasmon resonance biosensor,” Sens. Actuators B Chem. 66(1-3), 174–177 (2000).
[Crossref]

Sun, W.

Thompson, N. L.

D. Axelrod, N. L. Thompson, and T. P. Burghardt, “Total internal inflection fluorescent microscopy,” J. Microsc. 129(1), 19–28 (1983).
[Crossref] [PubMed]

Turcatti, G.

Valeiko, M. V.

P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, and T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B Chem. 54(1-2), 43–50 (1999).
[Crossref]

Vitkova, V.

von Bally, G.

Wang, J.

Wang, L.

Wang, Q.

Q. Wang, J. Zhao, X. Jiao, J. Di, and H. Jiang, “Visual and quantitative measurement of the temperature distribution of heat conduction process in glass based on digital holographic interferometry,” J. Appl. Phys. 111(9), 093111 (2012).
[Crossref]

W. Sun, J. Zhao, J. Di, Q. Wang, and L. Wang, “Real-time visualization of Karman vortex street in water flow field by using digital holography,” Opt. Express 17(22), 20342–20348 (2009).
[Crossref] [PubMed]

Weng, J.

C. Hu, J. Zhong, and J. Weng, “Digital holographic microscopy by use of surface plasmon resonance for imaging of cell membranes,” J. Biomed. Opt. 15(5), 056015 (2010).
[Crossref] [PubMed]

Wong, C. L.

C. L. Wong, H. P. Ho, Y. K. Suen, S. K. Kong, Q. L. Chen, W. Yuan, and S. Y. Wu, “Real-time protein biosensor arrays based on surface plasmon resonance differential phase imaging,” Biosens. Bioelectron. 24(4), 606–612 (2008).
[Crossref] [PubMed]

C. L. Wong, H. P. Ho, K. S. Chan, P. L. Wong, S. Y. Wu, and C. Lin, “Optical characterization of elastohydrodynamic lubricated (EHL) contacts using surface plasmon resonance (SPR) effect,” Tribol. Int. 41(5), 356–366 (2008).
[Crossref]

C. L. Wong, H. P. Ho, T. T. Yu, Y. K. Suen, W. W. Chow, S. Y. Wu, W. C. Law, W. Yuan, W. J. Li, S. K. Kong, and C. Lin, “Two-dimensional biosensor arrays based on surface plasmon resonance phase imaging,” Appl. Opt. 46(12), 2325–2332 (2007).
[Crossref] [PubMed]

C. L. Wong, H. P. Ho, K. S. Chan, and S. Y. Wu, “Application of surface plasmon resonance sensing to studying elastohydrodynamic lubricant films,” Appl. Opt. 44(23), 4830–4837 (2005).
[Crossref] [PubMed]

Wong, P. L.

C. L. Wong, H. P. Ho, K. S. Chan, P. L. Wong, S. Y. Wu, and C. Lin, “Optical characterization of elastohydrodynamic lubricated (EHL) contacts using surface plasmon resonance (SPR) effect,” Tribol. Int. 41(5), 356–366 (2008).
[Crossref]

Wu, S. Y.

C. L. Wong, H. P. Ho, K. S. Chan, P. L. Wong, S. Y. Wu, and C. Lin, “Optical characterization of elastohydrodynamic lubricated (EHL) contacts using surface plasmon resonance (SPR) effect,” Tribol. Int. 41(5), 356–366 (2008).
[Crossref]

C. L. Wong, H. P. Ho, Y. K. Suen, S. K. Kong, Q. L. Chen, W. Yuan, and S. Y. Wu, “Real-time protein biosensor arrays based on surface plasmon resonance differential phase imaging,” Biosens. Bioelectron. 24(4), 606–612 (2008).
[Crossref] [PubMed]

C. L. Wong, H. P. Ho, T. T. Yu, Y. K. Suen, W. W. Chow, S. Y. Wu, W. C. Law, W. Yuan, W. J. Li, S. K. Kong, and C. Lin, “Two-dimensional biosensor arrays based on surface plasmon resonance phase imaging,” Appl. Opt. 46(12), 2325–2332 (2007).
[Crossref] [PubMed]

C. L. Wong, H. P. Ho, K. S. Chan, and S. Y. Wu, “Application of surface plasmon resonance sensing to studying elastohydrodynamic lubricant films,” Appl. Opt. 44(23), 4830–4837 (2005).
[Crossref] [PubMed]

Xi, T.

J. Zhao, J. Zhang, S. Dai, J. Di, and T. Xi, “Surface plasmon holographic microscopy for near-field refractive index detection and thin film mapping,” Proc. SPIE 10503, 1050316 (2018).

T. Xi, J. Di, X. Guan, Y. Li, C. Ma, J. Zhang, and J. Zhao, “Phase-shifting infrared digital holographic microscopy based on an all-fiber variable phase shifter,” Appl. Opt. 56(10), 2686–2690 (2017).
[Crossref] [PubMed]

C. Ma, Y. Li, J. Zhang, P. Li, T. Xi, J. Di, and J. Zhao, “Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer,” Opt. Express 25(12), 13659–13667 (2017).
[Crossref] [PubMed]

C. Ma, J. Di, J. Zhang, Y. Li, T. Xi, E. Li, and J. Zhao, “Simultaneous measurement of refractive index distribution and topography by integrated transmission and reflection digital holographic microscopy,” Appl. Opt. 55(33), 9435–9439 (2016).
[Crossref] [PubMed]

J. Di, Y. Li, M. Xie, J. Zhang, C. Ma, T. Xi, E. Li, and J. Zhao, “Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry,” Appl. Opt. 55(26), 7287–7293 (2016).
[Crossref] [PubMed]

J. Zhang, C. Ma, S. Dai, J. Di, Y. Li, T. Xi, and J. Zhao, “Transmission and total internal reflection integrated digital holographic microscopy,” Opt. Lett. 41(16), 3844–3847 (2016).
[Crossref] [PubMed]

J. Zhang, J. Di, Y. Li, T. Xi, and J. Zhao, “Dynamical measurement of refractive index distribution using digital holographic interferometry based on total internal reflection,” Opt. Express 23(21), 27328–27334 (2015).
[Crossref] [PubMed]

J. Di, J. Zhang, T. Xi, C. Ma, and J. Zhao, “Improvement of measurement accuracy in digital holographic microscopy by using dual-wavelength technique,” J. Micro/Nanolith. Microfabr. Microsyst. 14(4), 041313 (2015).

Xiao, C.

C. Xiao and S. Sui, “Characterization of surface plasmon resonance biosensor,” Sens. Actuators B Chem. 66(1-3), 174–177 (2000).
[Crossref]

Xie, M.

Yi, F.

Yu, T. T.

Yuan, W.

C. L. Wong, H. P. Ho, Y. K. Suen, S. K. Kong, Q. L. Chen, W. Yuan, and S. Y. Wu, “Real-time protein biosensor arrays based on surface plasmon resonance differential phase imaging,” Biosens. Bioelectron. 24(4), 606–612 (2008).
[Crossref] [PubMed]

C. L. Wong, H. P. Ho, T. T. Yu, Y. K. Suen, W. W. Chow, S. Y. Wu, W. C. Law, W. Yuan, W. J. Li, S. K. Kong, and C. Lin, “Two-dimensional biosensor arrays based on surface plasmon resonance phase imaging,” Appl. Opt. 46(12), 2325–2332 (2007).
[Crossref] [PubMed]

Zareie, M. H.

J. S. Shumaker-Parry, M. H. Zareie, R. Aebersold, and C. T. Campbell, “Microspotting streptavidin and double-stranded DNA arrays on gold for high-throughput studies of protein-DNA interactions by surface plasmon resonance microscopy,” Anal. Chem. 76(4), 918–929 (2004).
[Crossref] [PubMed]

Zhang, J.

J. Zhao, J. Zhang, S. Dai, J. Di, and T. Xi, “Surface plasmon holographic microscopy for near-field refractive index detection and thin film mapping,” Proc. SPIE 10503, 1050316 (2018).

T. Xi, J. Di, X. Guan, Y. Li, C. Ma, J. Zhang, and J. Zhao, “Phase-shifting infrared digital holographic microscopy based on an all-fiber variable phase shifter,” Appl. Opt. 56(10), 2686–2690 (2017).
[Crossref] [PubMed]

J. Zhang, S. Dai, C. Ma, J. Di, and J. Zhao, “Common-path digital holographic microscopy for near-field phase imaging based on surface plasmon resonance,” Appl. Opt. 56(11), 3223–3228 (2017).
[Crossref] [PubMed]

C. Ma, Y. Li, J. Zhang, P. Li, T. Xi, J. Di, and J. Zhao, “Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer,” Opt. Express 25(12), 13659–13667 (2017).
[Crossref] [PubMed]

J. Zhang, S. Dai, C. Ma, J. Di, and J. Zhao, “Compact surface plasmon holographic microscopy for near-field film mapping,” Opt. Lett. 42(17), 3462–3465 (2017).
[Crossref] [PubMed]

C. Ma, J. Di, J. Zhang, Y. Li, T. Xi, E. Li, and J. Zhao, “Simultaneous measurement of refractive index distribution and topography by integrated transmission and reflection digital holographic microscopy,” Appl. Opt. 55(33), 9435–9439 (2016).
[Crossref] [PubMed]

J. Di, Y. Li, M. Xie, J. Zhang, C. Ma, T. Xi, E. Li, and J. Zhao, “Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry,” Appl. Opt. 55(26), 7287–7293 (2016).
[Crossref] [PubMed]

J. Zhang, C. Ma, S. Dai, J. Di, Y. Li, T. Xi, and J. Zhao, “Transmission and total internal reflection integrated digital holographic microscopy,” Opt. Lett. 41(16), 3844–3847 (2016).
[Crossref] [PubMed]

J. Zhang, J. Di, Y. Li, T. Xi, and J. Zhao, “Dynamical measurement of refractive index distribution using digital holographic interferometry based on total internal reflection,” Opt. Express 23(21), 27328–27334 (2015).
[Crossref] [PubMed]

J. Di, J. Zhang, T. Xi, C. Ma, and J. Zhao, “Improvement of measurement accuracy in digital holographic microscopy by using dual-wavelength technique,” J. Micro/Nanolith. Microfabr. Microsyst. 14(4), 041313 (2015).

Zhao, J.

J. Zhao, J. Zhang, S. Dai, J. Di, and T. Xi, “Surface plasmon holographic microscopy for near-field refractive index detection and thin film mapping,” Proc. SPIE 10503, 1050316 (2018).

T. Xi, J. Di, X. Guan, Y. Li, C. Ma, J. Zhang, and J. Zhao, “Phase-shifting infrared digital holographic microscopy based on an all-fiber variable phase shifter,” Appl. Opt. 56(10), 2686–2690 (2017).
[Crossref] [PubMed]

J. Zhang, S. Dai, C. Ma, J. Di, and J. Zhao, “Common-path digital holographic microscopy for near-field phase imaging based on surface plasmon resonance,” Appl. Opt. 56(11), 3223–3228 (2017).
[Crossref] [PubMed]

C. Ma, Y. Li, J. Zhang, P. Li, T. Xi, J. Di, and J. Zhao, “Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer,” Opt. Express 25(12), 13659–13667 (2017).
[Crossref] [PubMed]

J. Zhang, S. Dai, C. Ma, J. Di, and J. Zhao, “Compact surface plasmon holographic microscopy for near-field film mapping,” Opt. Lett. 42(17), 3462–3465 (2017).
[Crossref] [PubMed]

C. Ma, J. Di, J. Zhang, Y. Li, T. Xi, E. Li, and J. Zhao, “Simultaneous measurement of refractive index distribution and topography by integrated transmission and reflection digital holographic microscopy,” Appl. Opt. 55(33), 9435–9439 (2016).
[Crossref] [PubMed]

J. Di, Y. Li, M. Xie, J. Zhang, C. Ma, T. Xi, E. Li, and J. Zhao, “Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry,” Appl. Opt. 55(26), 7287–7293 (2016).
[Crossref] [PubMed]

J. Zhang, C. Ma, S. Dai, J. Di, Y. Li, T. Xi, and J. Zhao, “Transmission and total internal reflection integrated digital holographic microscopy,” Opt. Lett. 41(16), 3844–3847 (2016).
[Crossref] [PubMed]

J. Zhang, J. Di, Y. Li, T. Xi, and J. Zhao, “Dynamical measurement of refractive index distribution using digital holographic interferometry based on total internal reflection,” Opt. Express 23(21), 27328–27334 (2015).
[Crossref] [PubMed]

J. Di, J. Zhang, T. Xi, C. Ma, and J. Zhao, “Improvement of measurement accuracy in digital holographic microscopy by using dual-wavelength technique,” J. Micro/Nanolith. Microfabr. Microsyst. 14(4), 041313 (2015).

Q. Wang, J. Zhao, X. Jiao, J. Di, and H. Jiang, “Visual and quantitative measurement of the temperature distribution of heat conduction process in glass based on digital holographic interferometry,” J. Appl. Phys. 111(9), 093111 (2012).
[Crossref]

J. Wang, J. Zhao, C. Qin, J. Di, A. Rauf, and H. Jiang, “Digital holographic interferometry based on wavelength and angular multiplexing for measuring the ternary diffusion,” Opt. Lett. 37(7), 1211–1213 (2012).
[Crossref] [PubMed]

W. Sun, J. Zhao, J. Di, Q. Wang, and L. Wang, “Real-time visualization of Karman vortex street in water flow field by using digital holography,” Opt. Express 17(22), 20342–20348 (2009).
[Crossref] [PubMed]

Zhong, J.

S. Li and J. Zhong, “Simultaneous amplitude-contrast and phase-contrast surface plasmon resonance imaging by use of digital holography,” Biomed. Opt. Express 3(12), 3190–3202 (2012).
[Crossref] [PubMed]

C. Hu, J. Zhong, and J. Weng, “Digital holographic microscopy by use of surface plasmon resonance for imaging of cell membranes,” J. Biomed. Opt. 15(5), 056015 (2010).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

G. Steiner, “Surface plasmon resonance imaging,” Anal. Bioanal. Chem. 379(3), 328–331 (2004).
[Crossref] [PubMed]

Anal. Chem. (2)

B. Mandracchia, V. Pagliarulo, M. Paturzo, and P. Ferraro, “Surface plasmon resonance imaging by holographic enhanced mapping,” Anal. Chem. 87(8), 4124–4128 (2015).
[Crossref] [PubMed]

J. S. Shumaker-Parry, M. H. Zareie, R. Aebersold, and C. T. Campbell, “Microspotting streptavidin and double-stranded DNA arrays on gold for high-throughput studies of protein-DNA interactions by surface plasmon resonance microscopy,” Anal. Chem. 76(4), 918–929 (2004).
[Crossref] [PubMed]

Appl. Opt. (7)

J. Zhang, S. Dai, C. Ma, J. Di, and J. Zhao, “Common-path digital holographic microscopy for near-field phase imaging based on surface plasmon resonance,” Appl. Opt. 56(11), 3223–3228 (2017).
[Crossref] [PubMed]

J. Di, Y. Li, M. Xie, J. Zhang, C. Ma, T. Xi, E. Li, and J. Zhao, “Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry,” Appl. Opt. 55(26), 7287–7293 (2016).
[Crossref] [PubMed]

C. Ma, J. Di, J. Zhang, Y. Li, T. Xi, E. Li, and J. Zhao, “Simultaneous measurement of refractive index distribution and topography by integrated transmission and reflection digital holographic microscopy,” Appl. Opt. 55(33), 9435–9439 (2016).
[Crossref] [PubMed]

C. L. Wong, H. P. Ho, T. T. Yu, Y. K. Suen, W. W. Chow, S. Y. Wu, W. C. Law, W. Yuan, W. J. Li, S. K. Kong, and C. Lin, “Two-dimensional biosensor arrays based on surface plasmon resonance phase imaging,” Appl. Opt. 46(12), 2325–2332 (2007).
[Crossref] [PubMed]

C. L. Wong, H. P. Ho, K. S. Chan, and S. Y. Wu, “Application of surface plasmon resonance sensing to studying elastohydrodynamic lubricant films,” Appl. Opt. 44(23), 4830–4837 (2005).
[Crossref] [PubMed]

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008).
[Crossref] [PubMed]

T. Xi, J. Di, X. Guan, Y. Li, C. Ma, J. Zhang, and J. Zhao, “Phase-shifting infrared digital holographic microscopy based on an all-fiber variable phase shifter,” Appl. Opt. 56(10), 2686–2690 (2017).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Biosens. Bioelectron. (1)

C. L. Wong, H. P. Ho, Y. K. Suen, S. K. Kong, Q. L. Chen, W. Yuan, and S. Y. Wu, “Real-time protein biosensor arrays based on surface plasmon resonance differential phase imaging,” Biosens. Bioelectron. 24(4), 606–612 (2008).
[Crossref] [PubMed]

J. Appl. Phys. (1)

Q. Wang, J. Zhao, X. Jiao, J. Di, and H. Jiang, “Visual and quantitative measurement of the temperature distribution of heat conduction process in glass based on digital holographic interferometry,” J. Appl. Phys. 111(9), 093111 (2012).
[Crossref]

J. Biomed. Opt. (1)

C. Hu, J. Zhong, and J. Weng, “Digital holographic microscopy by use of surface plasmon resonance for imaging of cell membranes,” J. Biomed. Opt. 15(5), 056015 (2010).
[Crossref] [PubMed]

J. Cell Biol. (1)

D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89(1), 141–145 (1981).
[Crossref] [PubMed]

J. Micro/Nanolith. Microfabr. Microsyst. (1)

J. Di, J. Zhang, T. Xi, C. Ma, and J. Zhao, “Improvement of measurement accuracy in digital holographic microscopy by using dual-wavelength technique,” J. Micro/Nanolith. Microfabr. Microsyst. 14(4), 041313 (2015).

J. Microsc. (1)

D. Axelrod, N. L. Thompson, and T. P. Burghardt, “Total internal inflection fluorescent microscopy,” J. Microsc. 129(1), 19–28 (1983).
[Crossref] [PubMed]

Nature (1)

B. Rothenhäusler and W. Knoll, “Surface plasmon microscopy,” Nature 332(6165), 615–617 (1988).
[Crossref]

Opt. Express (5)

Opt. Lett. (6)

Proc. SPIE (1)

J. Zhao, J. Zhang, S. Dai, J. Di, and T. Xi, “Surface plasmon holographic microscopy for near-field refractive index detection and thin film mapping,” Proc. SPIE 10503, 1050316 (2018).

Sens. Actuators B Chem. (2)

C. Xiao and S. Sui, “Characterization of surface plasmon resonance biosensor,” Sens. Actuators B Chem. 66(1-3), 174–177 (2000).
[Crossref]

P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, and T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B Chem. 54(1-2), 43–50 (1999).
[Crossref]

Tribol. Int. (1)

C. L. Wong, H. P. Ho, K. S. Chan, P. L. Wong, S. Y. Wu, and C. Lin, “Optical characterization of elastohydrodynamic lubricated (EHL) contacts using surface plasmon resonance (SPR) effect,” Tribol. Int. 41(5), 356–366 (2008).
[Crossref]

Other (1)

M. Polyanskiy, “Refractiveindex.info database,” https://refractiveindex.info/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Experimental setup of wavelength-multiplexing SPHM. C: fiber coupler; BE: beam expander; L: collimating lens; P: polarizer; LWDMO: long working distance microscope objective; IL: imaging lens; BS: beam splitter; F1, 2: optical filters; insert on the left shows the three-layer SPR configuration; insert on the right shows the side view of BS.
Fig. 2
Fig. 2 (a) Reflectivity R and reflection phase shift φ versus dielectric RI n3 at wavelength of 632.8 nm. (b) Reflection phase shift difference Δφ versus dielectric RI n3 at two wavelengths. The parameters for plotting the theoretical relation curves are listed in Table 1.
Fig. 3
Fig. 3 Calculation flowchart to retrieve the RI value. Δφ_Exp, Δφ_Theo: measured and theoretical Δφ; Diff: deviation between Δφ_Exp and Δφ_Theo; Diff_min: minimum deviation; N: number of the theoretical values; RI_Theo, RI_Exp: the theoretical RI and RI to be retrieved.
Fig. 4
Fig. 4 Sensitivities of reflectivity R and reflection phase shift φ with dielectric RI n3. Incident angles are 43.4513°@632.8 nm and 43.4504°@660 nm for the following 2D imaging experiment.
Fig. 5
Fig. 5 Reconstructed 2D phase difference distributions of 0 s, 170 s and 500 s at wavelengths of (a1-c1) 660 nm and (a2-c2) 632.8 nm.
Fig. 6
Fig. 6 Variations of measured Δφ with time at the wavelengths of (a) 660 nm and (b) 632.8 nm.
Fig. 7
Fig. 7 (a) Reflection phase shift difference Δφ@632.8 nm versus thickness of gold film d2 when the dielectric is water and air, respectively. (b) Minimum of the experimental Δφ@632.8 nm versus thickness of gold film d2. (c) Sensitivities of Δφ and Δφ_min with d2 in (a) and (b).
Fig. 8
Fig. 8 Sensitivities of Δφ with n3 at the wavelengths of (a) 660 nm and (b) 632.8 nm.
Fig. 9
Fig. 9 Retrieved tiny variation of mixture RI@660 nm during the volatilization process.
Fig. 10
Fig. 10 Experiment results for imaging onion tissues. (a) Recorded holograms; reconstructed phase-contrast SPR images at the wavelengths of (b) 660 nm and (c) 632.8nm, respectively.

Tables (1)

Tables Icon

Table 1 Parameters for the theoretical calculations [33]

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

r i,N ( θ )= r i,i+1 ( θ )+ r i+1,N ( θ )exp[ 2j d i+1 k zi+1 ( θ ) ] 1+ r i,i+1 ( θ ) r i+1,N ( θ )exp[ 2j d i+1 k zi+1 ( θ ) ] ,( j= 1 ,i=1,2,...N2 ),
r i,i+1 ( θ )= ξ i+1 ( θ ) ξ i ( θ ) ξ i+1 ( θ )+ ξ i ( θ ) ,( i=1,2,...N1 ),
ξ i ( θ )= ε i / k zi ( θ ),( i=1,2,...N ),
k zi ( θ )=2π ε i ε 1 sin 2 ( θ ) λ ,( i=1,2,...N ),

Metrics