Abstract

We investigate threshold current temperature dependence of electrically injected quantum-dot (QD) photonic crystal (PC) surface-emitting lasers (SELs) with respect to wavelength detuning between QD gain peak and PC cavity resonance. The lasing emissions cover wavelengths from 1283 nm to 1318 nm. Almost infinite characteristic temperature is realized at certain temperature range for PCSEL with large negative gain-cavity detuning. Moreover, band-edge lasing mode is identified in our “PC slab-on-substrate” structure, and its far-field distribution is characterized as doughnut-shaped beam with azimuthal polarization.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Electrically injected 1.3-μm quantum-dot photonic-crystal surface-emitting lasers

Ming-Yang Hsu, Gray Lin, and Chien-Hung Pan
Opt. Express 25(26) 32697-32704 (2017)

Influence of external reflection on the TE mode of photonic crystal surface-emitting lasers

John Gelleta, Yong Liang, Hitoshi Kitagawa, and Susumu Noda
J. Opt. Soc. Am. B 32(7) 1435-1441 (2015)

Lateral cavity photonic crystal surface emitting laser based on commercial epitaxial wafer

Yufei Wang, Hongwei Qu, Wenjun Zhou, Aiyi Qi, Jianxin Zhang, Lei Liu, and Wanhua Zheng
Opt. Express 21(7) 8844-8855 (2013)

References

  • View by:
  • |
  • |
  • |

  1. K. Iga, “Surface-emitting laser–its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1201–1215 (2000).
    [Crossref]
  2. K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
    [Crossref]
  3. M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 165306 (2002).
    [Crossref]
  4. Y. H. Chang, P. C. Peng, W. K. Tsai, G. Lin, F. I. Lai, R. S. Hsiao, H. P. Yang, H. C. Yu, K. F. Lin, J. Y. Chi, S. C. Wang, and H. C. Kuo, “Single-mode monolithic quantum-dot VCSEL in 1.3 μm with sidemode suppression ratio over 30 dB,” IEEE Photonics Technol. Lett. 18(7), 847–849 (2006).
    [Crossref]
  5. M. Y. Hsu, G. Lin, and C. H. Pan, “Electrically injected 1.3-μm quantum-dot photonic-crystal surface-emitting lasers,” Opt. Express 25(26), 32697–32704 (2017).
    [Crossref]
  6. S. Mogg, N. Chitica, U. Christiansson, R. Schatz, P. Sundgren, C. Asplund, and M. Hammar, “Temperature sensitivity of the threshold current of long-wavelength InGaAs–GaAs VCSELs with large gain-cavity detuning,” IEEE J. Quantum Electron. 40(5), 453–462 (2004).
    [Crossref]
  7. T. S. Chen, Z. L. Li, M. Y. Hsu, G. Lin, and S. D. Lin, “Photonic crystal surface emitting lasers with quantum dot active region,” J. Lightwave Technol. 35(20), 4547–4552 (2017).
    [Crossref]
  8. T. Y. Chang, C. H. Pan, K. B. Hong, C. H. Lin, G. Lin, C. P. Lee, and T. C. Lu, “Quantum-dot surface emitting distributed feedback lasers using indium–tin–oxide as top claddings,” IEEE Photonics Technol. Lett. 28(15), 1633–1636 (2016).
    [Crossref]
  9. K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Comm. 23(7), 1335–1340 (2005).
    [Crossref]
  10. M. Yokoyama and S. Noda, “Finite-difference time-domain simulation of two-dimensional photonic crystal surface-emitting laser,” Opt. Express 13(8), 2869–2880 (2005).
    [Crossref] [PubMed]
  11. K. Sakai, E. Miyai, and S. Noda, “Coupled-wave model for square-lattice two-dimensional photonic crystal with transverse-electric-like mode,” Appl. Phys. Lett. 89(2), 021101 (2006).
    [Crossref]
  12. Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave analysis for square-lattice photonic crystal surface emitting lasers with transverse-electric polarization: finite-size effects,” Opt. Express 20(14), 15945–15961 (2012).
    [Crossref] [PubMed]
  13. E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Lasers producing tailored beams,” Nature 441(7096), 946 (2006).
    [Crossref] [PubMed]

2017 (2)

2016 (1)

T. Y. Chang, C. H. Pan, K. B. Hong, C. H. Lin, G. Lin, C. P. Lee, and T. C. Lu, “Quantum-dot surface emitting distributed feedback lasers using indium–tin–oxide as top claddings,” IEEE Photonics Technol. Lett. 28(15), 1633–1636 (2016).
[Crossref]

2014 (1)

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

2012 (1)

2006 (3)

Y. H. Chang, P. C. Peng, W. K. Tsai, G. Lin, F. I. Lai, R. S. Hsiao, H. P. Yang, H. C. Yu, K. F. Lin, J. Y. Chi, S. C. Wang, and H. C. Kuo, “Single-mode monolithic quantum-dot VCSEL in 1.3 μm with sidemode suppression ratio over 30 dB,” IEEE Photonics Technol. Lett. 18(7), 847–849 (2006).
[Crossref]

K. Sakai, E. Miyai, and S. Noda, “Coupled-wave model for square-lattice two-dimensional photonic crystal with transverse-electric-like mode,” Appl. Phys. Lett. 89(2), 021101 (2006).
[Crossref]

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Lasers producing tailored beams,” Nature 441(7096), 946 (2006).
[Crossref] [PubMed]

2005 (2)

M. Yokoyama and S. Noda, “Finite-difference time-domain simulation of two-dimensional photonic crystal surface-emitting laser,” Opt. Express 13(8), 2869–2880 (2005).
[Crossref] [PubMed]

K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Comm. 23(7), 1335–1340 (2005).
[Crossref]

2004 (1)

S. Mogg, N. Chitica, U. Christiansson, R. Schatz, P. Sundgren, C. Asplund, and M. Hammar, “Temperature sensitivity of the threshold current of long-wavelength InGaAs–GaAs VCSELs with large gain-cavity detuning,” IEEE J. Quantum Electron. 40(5), 453–462 (2004).
[Crossref]

2002 (1)

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 165306 (2002).
[Crossref]

2000 (1)

K. Iga, “Surface-emitting laser–its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1201–1215 (2000).
[Crossref]

Asplund, C.

S. Mogg, N. Chitica, U. Christiansson, R. Schatz, P. Sundgren, C. Asplund, and M. Hammar, “Temperature sensitivity of the threshold current of long-wavelength InGaAs–GaAs VCSELs with large gain-cavity detuning,” IEEE J. Quantum Electron. 40(5), 453–462 (2004).
[Crossref]

Chang, T. Y.

T. Y. Chang, C. H. Pan, K. B. Hong, C. H. Lin, G. Lin, C. P. Lee, and T. C. Lu, “Quantum-dot surface emitting distributed feedback lasers using indium–tin–oxide as top claddings,” IEEE Photonics Technol. Lett. 28(15), 1633–1636 (2016).
[Crossref]

Chang, Y. H.

Y. H. Chang, P. C. Peng, W. K. Tsai, G. Lin, F. I. Lai, R. S. Hsiao, H. P. Yang, H. C. Yu, K. F. Lin, J. Y. Chi, S. C. Wang, and H. C. Kuo, “Single-mode monolithic quantum-dot VCSEL in 1.3 μm with sidemode suppression ratio over 30 dB,” IEEE Photonics Technol. Lett. 18(7), 847–849 (2006).
[Crossref]

Chen, T. S.

Chi, J. Y.

Y. H. Chang, P. C. Peng, W. K. Tsai, G. Lin, F. I. Lai, R. S. Hsiao, H. P. Yang, H. C. Yu, K. F. Lin, J. Y. Chi, S. C. Wang, and H. C. Kuo, “Single-mode monolithic quantum-dot VCSEL in 1.3 μm with sidemode suppression ratio over 30 dB,” IEEE Photonics Technol. Lett. 18(7), 847–849 (2006).
[Crossref]

Chitica, N.

S. Mogg, N. Chitica, U. Christiansson, R. Schatz, P. Sundgren, C. Asplund, and M. Hammar, “Temperature sensitivity of the threshold current of long-wavelength InGaAs–GaAs VCSELs with large gain-cavity detuning,” IEEE J. Quantum Electron. 40(5), 453–462 (2004).
[Crossref]

Christiansson, U.

S. Mogg, N. Chitica, U. Christiansson, R. Schatz, P. Sundgren, C. Asplund, and M. Hammar, “Temperature sensitivity of the threshold current of long-wavelength InGaAs–GaAs VCSELs with large gain-cavity detuning,” IEEE J. Quantum Electron. 40(5), 453–462 (2004).
[Crossref]

Chutinan, A.

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 165306 (2002).
[Crossref]

Hammar, M.

S. Mogg, N. Chitica, U. Christiansson, R. Schatz, P. Sundgren, C. Asplund, and M. Hammar, “Temperature sensitivity of the threshold current of long-wavelength InGaAs–GaAs VCSELs with large gain-cavity detuning,” IEEE J. Quantum Electron. 40(5), 453–462 (2004).
[Crossref]

Hirose, K.

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

Hong, K. B.

T. Y. Chang, C. H. Pan, K. B. Hong, C. H. Lin, G. Lin, C. P. Lee, and T. C. Lu, “Quantum-dot surface emitting distributed feedback lasers using indium–tin–oxide as top claddings,” IEEE Photonics Technol. Lett. 28(15), 1633–1636 (2016).
[Crossref]

Hsiao, R. S.

Y. H. Chang, P. C. Peng, W. K. Tsai, G. Lin, F. I. Lai, R. S. Hsiao, H. P. Yang, H. C. Yu, K. F. Lin, J. Y. Chi, S. C. Wang, and H. C. Kuo, “Single-mode monolithic quantum-dot VCSEL in 1.3 μm with sidemode suppression ratio over 30 dB,” IEEE Photonics Technol. Lett. 18(7), 847–849 (2006).
[Crossref]

Hsu, M. Y.

Iga, K.

K. Iga, “Surface-emitting laser–its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1201–1215 (2000).
[Crossref]

Imada, M.

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 165306 (2002).
[Crossref]

Iwahashi, S.

Kunishi, W.

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Lasers producing tailored beams,” Nature 441(7096), 946 (2006).
[Crossref] [PubMed]

Kuo, H. C.

Y. H. Chang, P. C. Peng, W. K. Tsai, G. Lin, F. I. Lai, R. S. Hsiao, H. P. Yang, H. C. Yu, K. F. Lin, J. Y. Chi, S. C. Wang, and H. C. Kuo, “Single-mode monolithic quantum-dot VCSEL in 1.3 μm with sidemode suppression ratio over 30 dB,” IEEE Photonics Technol. Lett. 18(7), 847–849 (2006).
[Crossref]

Kurosaka, Y.

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

Lai, F. I.

Y. H. Chang, P. C. Peng, W. K. Tsai, G. Lin, F. I. Lai, R. S. Hsiao, H. P. Yang, H. C. Yu, K. F. Lin, J. Y. Chi, S. C. Wang, and H. C. Kuo, “Single-mode monolithic quantum-dot VCSEL in 1.3 μm with sidemode suppression ratio over 30 dB,” IEEE Photonics Technol. Lett. 18(7), 847–849 (2006).
[Crossref]

Lee, C. P.

T. Y. Chang, C. H. Pan, K. B. Hong, C. H. Lin, G. Lin, C. P. Lee, and T. C. Lu, “Quantum-dot surface emitting distributed feedback lasers using indium–tin–oxide as top claddings,” IEEE Photonics Technol. Lett. 28(15), 1633–1636 (2016).
[Crossref]

Li, Z. L.

Liang, Y.

Lin, C. H.

T. Y. Chang, C. H. Pan, K. B. Hong, C. H. Lin, G. Lin, C. P. Lee, and T. C. Lu, “Quantum-dot surface emitting distributed feedback lasers using indium–tin–oxide as top claddings,” IEEE Photonics Technol. Lett. 28(15), 1633–1636 (2016).
[Crossref]

Lin, G.

T. S. Chen, Z. L. Li, M. Y. Hsu, G. Lin, and S. D. Lin, “Photonic crystal surface emitting lasers with quantum dot active region,” J. Lightwave Technol. 35(20), 4547–4552 (2017).
[Crossref]

M. Y. Hsu, G. Lin, and C. H. Pan, “Electrically injected 1.3-μm quantum-dot photonic-crystal surface-emitting lasers,” Opt. Express 25(26), 32697–32704 (2017).
[Crossref]

T. Y. Chang, C. H. Pan, K. B. Hong, C. H. Lin, G. Lin, C. P. Lee, and T. C. Lu, “Quantum-dot surface emitting distributed feedback lasers using indium–tin–oxide as top claddings,” IEEE Photonics Technol. Lett. 28(15), 1633–1636 (2016).
[Crossref]

Y. H. Chang, P. C. Peng, W. K. Tsai, G. Lin, F. I. Lai, R. S. Hsiao, H. P. Yang, H. C. Yu, K. F. Lin, J. Y. Chi, S. C. Wang, and H. C. Kuo, “Single-mode monolithic quantum-dot VCSEL in 1.3 μm with sidemode suppression ratio over 30 dB,” IEEE Photonics Technol. Lett. 18(7), 847–849 (2006).
[Crossref]

Lin, K. F.

Y. H. Chang, P. C. Peng, W. K. Tsai, G. Lin, F. I. Lai, R. S. Hsiao, H. P. Yang, H. C. Yu, K. F. Lin, J. Y. Chi, S. C. Wang, and H. C. Kuo, “Single-mode monolithic quantum-dot VCSEL in 1.3 μm with sidemode suppression ratio over 30 dB,” IEEE Photonics Technol. Lett. 18(7), 847–849 (2006).
[Crossref]

Lin, S. D.

Lu, T. C.

T. Y. Chang, C. H. Pan, K. B. Hong, C. H. Lin, G. Lin, C. P. Lee, and T. C. Lu, “Quantum-dot surface emitting distributed feedback lasers using indium–tin–oxide as top claddings,” IEEE Photonics Technol. Lett. 28(15), 1633–1636 (2016).
[Crossref]

Miyai, E.

K. Sakai, E. Miyai, and S. Noda, “Coupled-wave model for square-lattice two-dimensional photonic crystal with transverse-electric-like mode,” Appl. Phys. Lett. 89(2), 021101 (2006).
[Crossref]

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Lasers producing tailored beams,” Nature 441(7096), 946 (2006).
[Crossref] [PubMed]

K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Comm. 23(7), 1335–1340 (2005).
[Crossref]

Mochizuki, M.

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 165306 (2002).
[Crossref]

Mogg, S.

S. Mogg, N. Chitica, U. Christiansson, R. Schatz, P. Sundgren, C. Asplund, and M. Hammar, “Temperature sensitivity of the threshold current of long-wavelength InGaAs–GaAs VCSELs with large gain-cavity detuning,” IEEE J. Quantum Electron. 40(5), 453–462 (2004).
[Crossref]

Noda, S.

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave analysis for square-lattice photonic crystal surface emitting lasers with transverse-electric polarization: finite-size effects,” Opt. Express 20(14), 15945–15961 (2012).
[Crossref] [PubMed]

K. Sakai, E. Miyai, and S. Noda, “Coupled-wave model for square-lattice two-dimensional photonic crystal with transverse-electric-like mode,” Appl. Phys. Lett. 89(2), 021101 (2006).
[Crossref]

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Lasers producing tailored beams,” Nature 441(7096), 946 (2006).
[Crossref] [PubMed]

K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Comm. 23(7), 1335–1340 (2005).
[Crossref]

M. Yokoyama and S. Noda, “Finite-difference time-domain simulation of two-dimensional photonic crystal surface-emitting laser,” Opt. Express 13(8), 2869–2880 (2005).
[Crossref] [PubMed]

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 165306 (2002).
[Crossref]

Ohnishi, D.

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Lasers producing tailored beams,” Nature 441(7096), 946 (2006).
[Crossref] [PubMed]

K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Comm. 23(7), 1335–1340 (2005).
[Crossref]

Okano, T.

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Lasers producing tailored beams,” Nature 441(7096), 946 (2006).
[Crossref] [PubMed]

K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Comm. 23(7), 1335–1340 (2005).
[Crossref]

Pan, C. H.

M. Y. Hsu, G. Lin, and C. H. Pan, “Electrically injected 1.3-μm quantum-dot photonic-crystal surface-emitting lasers,” Opt. Express 25(26), 32697–32704 (2017).
[Crossref]

T. Y. Chang, C. H. Pan, K. B. Hong, C. H. Lin, G. Lin, C. P. Lee, and T. C. Lu, “Quantum-dot surface emitting distributed feedback lasers using indium–tin–oxide as top claddings,” IEEE Photonics Technol. Lett. 28(15), 1633–1636 (2016).
[Crossref]

Peng, C.

Peng, P. C.

Y. H. Chang, P. C. Peng, W. K. Tsai, G. Lin, F. I. Lai, R. S. Hsiao, H. P. Yang, H. C. Yu, K. F. Lin, J. Y. Chi, S. C. Wang, and H. C. Kuo, “Single-mode monolithic quantum-dot VCSEL in 1.3 μm with sidemode suppression ratio over 30 dB,” IEEE Photonics Technol. Lett. 18(7), 847–849 (2006).
[Crossref]

Sakaguchi, T.

K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Comm. 23(7), 1335–1340 (2005).
[Crossref]

Sakai, K.

Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave analysis for square-lattice photonic crystal surface emitting lasers with transverse-electric polarization: finite-size effects,” Opt. Express 20(14), 15945–15961 (2012).
[Crossref] [PubMed]

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Lasers producing tailored beams,” Nature 441(7096), 946 (2006).
[Crossref] [PubMed]

K. Sakai, E. Miyai, and S. Noda, “Coupled-wave model for square-lattice two-dimensional photonic crystal with transverse-electric-like mode,” Appl. Phys. Lett. 89(2), 021101 (2006).
[Crossref]

K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Comm. 23(7), 1335–1340 (2005).
[Crossref]

Schatz, R.

S. Mogg, N. Chitica, U. Christiansson, R. Schatz, P. Sundgren, C. Asplund, and M. Hammar, “Temperature sensitivity of the threshold current of long-wavelength InGaAs–GaAs VCSELs with large gain-cavity detuning,” IEEE J. Quantum Electron. 40(5), 453–462 (2004).
[Crossref]

Sugiyama, T.

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

Sundgren, P.

S. Mogg, N. Chitica, U. Christiansson, R. Schatz, P. Sundgren, C. Asplund, and M. Hammar, “Temperature sensitivity of the threshold current of long-wavelength InGaAs–GaAs VCSELs with large gain-cavity detuning,” IEEE J. Quantum Electron. 40(5), 453–462 (2004).
[Crossref]

Tsai, W. K.

Y. H. Chang, P. C. Peng, W. K. Tsai, G. Lin, F. I. Lai, R. S. Hsiao, H. P. Yang, H. C. Yu, K. F. Lin, J. Y. Chi, S. C. Wang, and H. C. Kuo, “Single-mode monolithic quantum-dot VCSEL in 1.3 μm with sidemode suppression ratio over 30 dB,” IEEE Photonics Technol. Lett. 18(7), 847–849 (2006).
[Crossref]

Wang, S. C.

Y. H. Chang, P. C. Peng, W. K. Tsai, G. Lin, F. I. Lai, R. S. Hsiao, H. P. Yang, H. C. Yu, K. F. Lin, J. Y. Chi, S. C. Wang, and H. C. Kuo, “Single-mode monolithic quantum-dot VCSEL in 1.3 μm with sidemode suppression ratio over 30 dB,” IEEE Photonics Technol. Lett. 18(7), 847–849 (2006).
[Crossref]

Watanabe, A.

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

Yang, H. P.

Y. H. Chang, P. C. Peng, W. K. Tsai, G. Lin, F. I. Lai, R. S. Hsiao, H. P. Yang, H. C. Yu, K. F. Lin, J. Y. Chi, S. C. Wang, and H. C. Kuo, “Single-mode monolithic quantum-dot VCSEL in 1.3 μm with sidemode suppression ratio over 30 dB,” IEEE Photonics Technol. Lett. 18(7), 847–849 (2006).
[Crossref]

Yokoyama, M.

Yu, H. C.

Y. H. Chang, P. C. Peng, W. K. Tsai, G. Lin, F. I. Lai, R. S. Hsiao, H. P. Yang, H. C. Yu, K. F. Lin, J. Y. Chi, S. C. Wang, and H. C. Kuo, “Single-mode monolithic quantum-dot VCSEL in 1.3 μm with sidemode suppression ratio over 30 dB,” IEEE Photonics Technol. Lett. 18(7), 847–849 (2006).
[Crossref]

Appl. Phys. Lett. (1)

K. Sakai, E. Miyai, and S. Noda, “Coupled-wave model for square-lattice two-dimensional photonic crystal with transverse-electric-like mode,” Appl. Phys. Lett. 89(2), 021101 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

S. Mogg, N. Chitica, U. Christiansson, R. Schatz, P. Sundgren, C. Asplund, and M. Hammar, “Temperature sensitivity of the threshold current of long-wavelength InGaAs–GaAs VCSELs with large gain-cavity detuning,” IEEE J. Quantum Electron. 40(5), 453–462 (2004).
[Crossref]

IEEE J. Sel. Areas Comm. (1)

K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Comm. 23(7), 1335–1340 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Iga, “Surface-emitting laser–its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1201–1215 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (2)

Y. H. Chang, P. C. Peng, W. K. Tsai, G. Lin, F. I. Lai, R. S. Hsiao, H. P. Yang, H. C. Yu, K. F. Lin, J. Y. Chi, S. C. Wang, and H. C. Kuo, “Single-mode monolithic quantum-dot VCSEL in 1.3 μm with sidemode suppression ratio over 30 dB,” IEEE Photonics Technol. Lett. 18(7), 847–849 (2006).
[Crossref]

T. Y. Chang, C. H. Pan, K. B. Hong, C. H. Lin, G. Lin, C. P. Lee, and T. C. Lu, “Quantum-dot surface emitting distributed feedback lasers using indium–tin–oxide as top claddings,” IEEE Photonics Technol. Lett. 28(15), 1633–1636 (2016).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (1)

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

Nature (1)

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Lasers producing tailored beams,” Nature 441(7096), 946 (2006).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. B (1)

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 165306 (2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 QD PCSEL (a) schematic structure and (b) cross-sectional SEM image.
Fig. 2
Fig. 2 Emission spectrum of QD sample under pulsed optical pumping at RT of 25 °C.
Fig. 3
Fig. 3 (a) L-I characteristics and (b) lasing spectra of QD PCSELs @ RT of 25 °C.
Fig. 4
Fig. 4 (a) Temperature dependent L-I cures and (b) threshold current versus temperature for QD PCSEL with 395-nm period.
Fig. 5
Fig. 5 Threshold current temperature dependence of QD PCSELs with lattice periods of (a) 385 nm, 388 nm, 390 nm, and (b) 393 nm.
Fig. 6
Fig. 6 Angle-dependent spectra along Γ-X and Γ-M with angular step of 2° for (a) 385-nm and (b) 395-nm QD PCSELs.
Fig. 7
Fig. 7 Polarized FFP (a) without and (b) with pseudocolor. The rightmost images are FFP without polarizing filter.

Tables (1)

Tables Icon

Table 1 Performance Characteristics of QD PCSELs

Metrics