Abstract

We report on the experimental determination of the complete two coordinate spatial coherence function of light emitted by a quasi-random laser, implemented on recently introduced dye-doped transparent wood. The spatial coherence was measured by means of a double grating interferometer, which has some advantages over the standard Young’s interferometer. Analysis of the spatial coherence reveals that emission from such a material can be considered as a superposition of several spatial modes produced by individual emitters within semi-ordered scattering medium. The overall degree of coherence, γ¯, for this quasi-random laser was found to be 0.16 ± 0.01, having possible applications in speckle free laser imaging and illumination.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Configuration dependent output characteristics with Fabry–Perot and random lasers from dye-doped liquid crystals within glass cells

Ja-Hon Lin, Yi-Han Li, Sheng-Hung Lin, and Bich-Hanh Nguyen
Photon. Res. 6(5) 403-408 (2018)

Ultrafast random laser emission in a dye-doped silica gel powder

Sara García-Revilla, Joaquín Fernández, Maria Asunción Illarramendi, Begoña García-Ramiro, Rolindes Balda, Hongtao Cui, Marcos Zayat, and David Levy
Opt. Express 16(16) 12251-12263 (2008)

Spatial coherence of random laser emission

Brandon Redding, Michael A. Choma, and Hui Cao
Opt. Lett. 36(17) 3404-3406 (2011)

References

  • View by:
  • |
  • |
  • |

  1. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359–367 (2008).
    [Crossref]
  2. D. S. Wiersma, “Disordered photonics,” Nat. Photonics 7, 188–196 (2013).
    [Crossref]
  3. R. C. Polson, M. E. Raikh, and Z. V. Vardeny, “Universal properties of random lasers,” IEEE J. Sel. Top. Quantum Electron. 9, 120–123 (2003).
    [Crossref]
  4. H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86, 4524–4527 (2001).
    [Crossref] [PubMed]
  5. B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
    [Crossref] [PubMed]
  6. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278 (1999).
    [Crossref]
  7. B. Redding, M. A. Choma, and H. Cao, “Spatial coherence of random laser emission,” Opt. Lett. 36, 3404–3406, (2011).
    [Crossref] [PubMed]
  8. C. Gouedard, D. Husson, C. Sauteret, F. Auzel, and A. Migus, “Generation of spatially incoherent short pulses in laser-pumped neodymium stoichiometric crystals and powders,” J. Opt. Soc. Am. B 10, 2358–2363 (1993).
    [Crossref]
  9. M. Koivurova, H. Partanen, J. Turunen, and A. T. Friberg, “Grating interferometer for light-efficient spatial coherence measurement of arbitrary sources,” Appl. Opt. 56, 5216–5227 (2017).
    [Crossref] [PubMed]
  10. E. Vasileva, Y. Li, I. Sychugov, M. Mensied, L. Berglund, and S. Popov, “Lasing from organic dye molecules embedded in transparent wood,” Adv. Opt. Mater. 5, 1700057 (2017).
    [Crossref]
  11. Y. Li, Q. Fu, S. Yu, M. Yan, and L. Berglund, “Optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance,” Biomacromolecules 17, 1358–1364 (2016).
    [Crossref] [PubMed]
  12. I. Burgert, E. Cabane, C. Zollfrank, and L. Berglund, “Bio-inspired functional wood-based materials – hybrids and replicates,” Int. Mater. Rev. 60, 431–450 (2015).
    [Crossref]
  13. M. Zhu, J. Song, T. Li, A. Gong, Y. Wang, J. Dai, Y. Yao, W. Luo, D. Henderson, and L. Hu, “Highly anisotropic, highly transparent wood composites,” Adv. Mater. 28, 7563 (2016).
    [Crossref]
  14. T. Li, M. Zhu, Z. Yang, J. Song, J. Dai, Y. Yao, W. Luo, G. Pastel, B. Yang, and L. Hu, “Wood composite as an energy efficient building material: guided sunlight transmittance and effective thermal insulation,” Adv. Energy Mater. 6, 1601122 (2016).
    [Crossref]
  15. M. Borrega, P. Ahvenainen, R. Serimaa, and L. Gibson, “Composition and structure of balsa (Ochroma pyramidale) wood,” Wood Sci. Technol. 49, 403–420 (2015).
    [Crossref]
  16. S. Fink, “Transparent wood – a new approach in the functional study of wood structure,” Holzforschung 5, 403–408 (1992).
    [Crossref]
  17. Y. Li, Q. Fu, S. Yu, M. Yan, and L. Berglund, “optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance,” Biomacromolecules 4, 1358–1364 (2016).
    [Crossref]
  18. M. Zhu, T. Li, C. Davis, Y. Yao, J. Dai, Y. Wang, F. AlQatari, J. W. Gilman, and L. Hu, “Transparent and haze wood composites for highly efficient broadband light management in solar cells,” Nano Energy 26, 332–340 (2016).
    [Crossref]
  19. A. Maslyukov, S. Sokolov, M. Kaivola, K. Nyholm, and S. Popov, “Solid-state dye laser with modified poly (methyl methacrylate)-doped active elements,” Appl. Opt. 34, 1516–1518 (1995).
    [Crossref] [PubMed]
  20. H. Lajunen, J. Tervo, and P. Vahimaa, “Overall coherence and coherent-mode expansion of spectrally partially coherent plane-wave pulses,” J. Opt. Soc. Am. A 21, 2117–2123 (2004).
    [Crossref]
  21. H. Partanen, J. Turunen, and J. Tervo, “Coherence measurement with digital micromirror device,” Opt. Lett. 39, 1034–1037 (2014).
    [Crossref] [PubMed]
  22. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambrigde University, 1995).
    [Crossref]
  23. O. C. Peterson and B. B. Snavely, “Stimulated emission from flashlamp-excited organic dyes in polymethil methacrylate,” Appl. Phys.Lett. 12, 238–240 (1968).
  24. F. Duarte, L. Hillman, W. Lloyd, P. Liao, and P. Kelley, Dye laser principles: with application, (Academic Press, 1990).
  25. F. Duarte, Tunable Laser Applications, (CRC Press, 2008).
  26. F. P. Schäfer, Dye Lasers, (Springer-Verlag, 1990).
  27. H. Partanen, J. Tervo, and J. Turunen, “Spatial coherence of broad-area laser diodes,” Appl. Opt. 52, 3221–3228 (2013).
    [Crossref] [PubMed]
  28. N. Stelmakh and M. Flowers, “Measurement of spatial modes of broad-area diode Lasers with 1-GHz resolution grating spectrometer,” IEEE Photon. Technol. Lett. 18, 1618–1620 (2006).
    [Crossref]
  29. T. Okamoto and R. Yoshitome, “Random lasing in dye-doped polymer random media with a bubble structure,” J. Opt. Soc. Am. B 34, 1497–1502, (2017).
    [Crossref]

2017 (3)

2016 (5)

Y. Li, Q. Fu, S. Yu, M. Yan, and L. Berglund, “Optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance,” Biomacromolecules 17, 1358–1364 (2016).
[Crossref] [PubMed]

M. Zhu, J. Song, T. Li, A. Gong, Y. Wang, J. Dai, Y. Yao, W. Luo, D. Henderson, and L. Hu, “Highly anisotropic, highly transparent wood composites,” Adv. Mater. 28, 7563 (2016).
[Crossref]

T. Li, M. Zhu, Z. Yang, J. Song, J. Dai, Y. Yao, W. Luo, G. Pastel, B. Yang, and L. Hu, “Wood composite as an energy efficient building material: guided sunlight transmittance and effective thermal insulation,” Adv. Energy Mater. 6, 1601122 (2016).
[Crossref]

Y. Li, Q. Fu, S. Yu, M. Yan, and L. Berglund, “optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance,” Biomacromolecules 4, 1358–1364 (2016).
[Crossref]

M. Zhu, T. Li, C. Davis, Y. Yao, J. Dai, Y. Wang, F. AlQatari, J. W. Gilman, and L. Hu, “Transparent and haze wood composites for highly efficient broadband light management in solar cells,” Nano Energy 26, 332–340 (2016).
[Crossref]

2015 (2)

M. Borrega, P. Ahvenainen, R. Serimaa, and L. Gibson, “Composition and structure of balsa (Ochroma pyramidale) wood,” Wood Sci. Technol. 49, 403–420 (2015).
[Crossref]

I. Burgert, E. Cabane, C. Zollfrank, and L. Berglund, “Bio-inspired functional wood-based materials – hybrids and replicates,” Int. Mater. Rev. 60, 431–450 (2015).
[Crossref]

2014 (1)

2013 (2)

2012 (1)

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[Crossref] [PubMed]

2011 (1)

2008 (1)

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359–367 (2008).
[Crossref]

2006 (1)

N. Stelmakh and M. Flowers, “Measurement of spatial modes of broad-area diode Lasers with 1-GHz resolution grating spectrometer,” IEEE Photon. Technol. Lett. 18, 1618–1620 (2006).
[Crossref]

2004 (1)

2003 (1)

R. C. Polson, M. E. Raikh, and Z. V. Vardeny, “Universal properties of random lasers,” IEEE J. Sel. Top. Quantum Electron. 9, 120–123 (2003).
[Crossref]

2001 (1)

H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86, 4524–4527 (2001).
[Crossref] [PubMed]

1999 (1)

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278 (1999).
[Crossref]

1995 (1)

1993 (1)

1992 (1)

S. Fink, “Transparent wood – a new approach in the functional study of wood structure,” Holzforschung 5, 403–408 (1992).
[Crossref]

1968 (1)

O. C. Peterson and B. B. Snavely, “Stimulated emission from flashlamp-excited organic dyes in polymethil methacrylate,” Appl. Phys.Lett. 12, 238–240 (1968).

Ahvenainen, P.

M. Borrega, P. Ahvenainen, R. Serimaa, and L. Gibson, “Composition and structure of balsa (Ochroma pyramidale) wood,” Wood Sci. Technol. 49, 403–420 (2015).
[Crossref]

AlQatari, F.

M. Zhu, T. Li, C. Davis, Y. Yao, J. Dai, Y. Wang, F. AlQatari, J. W. Gilman, and L. Hu, “Transparent and haze wood composites for highly efficient broadband light management in solar cells,” Nano Energy 26, 332–340 (2016).
[Crossref]

Auzel, F.

Berglund, L.

E. Vasileva, Y. Li, I. Sychugov, M. Mensied, L. Berglund, and S. Popov, “Lasing from organic dye molecules embedded in transparent wood,” Adv. Opt. Mater. 5, 1700057 (2017).
[Crossref]

Y. Li, Q. Fu, S. Yu, M. Yan, and L. Berglund, “Optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance,” Biomacromolecules 17, 1358–1364 (2016).
[Crossref] [PubMed]

Y. Li, Q. Fu, S. Yu, M. Yan, and L. Berglund, “optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance,” Biomacromolecules 4, 1358–1364 (2016).
[Crossref]

I. Burgert, E. Cabane, C. Zollfrank, and L. Berglund, “Bio-inspired functional wood-based materials – hybrids and replicates,” Int. Mater. Rev. 60, 431–450 (2015).
[Crossref]

Borrega, M.

M. Borrega, P. Ahvenainen, R. Serimaa, and L. Gibson, “Composition and structure of balsa (Ochroma pyramidale) wood,” Wood Sci. Technol. 49, 403–420 (2015).
[Crossref]

Burgert, I.

I. Burgert, E. Cabane, C. Zollfrank, and L. Berglund, “Bio-inspired functional wood-based materials – hybrids and replicates,” Int. Mater. Rev. 60, 431–450 (2015).
[Crossref]

Cabane, E.

I. Burgert, E. Cabane, C. Zollfrank, and L. Berglund, “Bio-inspired functional wood-based materials – hybrids and replicates,” Int. Mater. Rev. 60, 431–450 (2015).
[Crossref]

Cao, C. Q.

H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86, 4524–4527 (2001).
[Crossref] [PubMed]

Cao, H.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[Crossref] [PubMed]

B. Redding, M. A. Choma, and H. Cao, “Spatial coherence of random laser emission,” Opt. Lett. 36, 3404–3406, (2011).
[Crossref] [PubMed]

H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86, 4524–4527 (2001).
[Crossref] [PubMed]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278 (1999).
[Crossref]

Chang, R. P. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278 (1999).
[Crossref]

Choma, M. A.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[Crossref] [PubMed]

B. Redding, M. A. Choma, and H. Cao, “Spatial coherence of random laser emission,” Opt. Lett. 36, 3404–3406, (2011).
[Crossref] [PubMed]

Dai, J.

M. Zhu, T. Li, C. Davis, Y. Yao, J. Dai, Y. Wang, F. AlQatari, J. W. Gilman, and L. Hu, “Transparent and haze wood composites for highly efficient broadband light management in solar cells,” Nano Energy 26, 332–340 (2016).
[Crossref]

M. Zhu, J. Song, T. Li, A. Gong, Y. Wang, J. Dai, Y. Yao, W. Luo, D. Henderson, and L. Hu, “Highly anisotropic, highly transparent wood composites,” Adv. Mater. 28, 7563 (2016).
[Crossref]

T. Li, M. Zhu, Z. Yang, J. Song, J. Dai, Y. Yao, W. Luo, G. Pastel, B. Yang, and L. Hu, “Wood composite as an energy efficient building material: guided sunlight transmittance and effective thermal insulation,” Adv. Energy Mater. 6, 1601122 (2016).
[Crossref]

Davis, C.

M. Zhu, T. Li, C. Davis, Y. Yao, J. Dai, Y. Wang, F. AlQatari, J. W. Gilman, and L. Hu, “Transparent and haze wood composites for highly efficient broadband light management in solar cells,” Nano Energy 26, 332–340 (2016).
[Crossref]

Duarte, F.

F. Duarte, L. Hillman, W. Lloyd, P. Liao, and P. Kelley, Dye laser principles: with application, (Academic Press, 1990).

F. Duarte, Tunable Laser Applications, (CRC Press, 2008).

Fink, S.

S. Fink, “Transparent wood – a new approach in the functional study of wood structure,” Holzforschung 5, 403–408 (1992).
[Crossref]

Flowers, M.

N. Stelmakh and M. Flowers, “Measurement of spatial modes of broad-area diode Lasers with 1-GHz resolution grating spectrometer,” IEEE Photon. Technol. Lett. 18, 1618–1620 (2006).
[Crossref]

Friberg, A. T.

Fu, Q.

Y. Li, Q. Fu, S. Yu, M. Yan, and L. Berglund, “optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance,” Biomacromolecules 4, 1358–1364 (2016).
[Crossref]

Y. Li, Q. Fu, S. Yu, M. Yan, and L. Berglund, “Optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance,” Biomacromolecules 17, 1358–1364 (2016).
[Crossref] [PubMed]

Gibson, L.

M. Borrega, P. Ahvenainen, R. Serimaa, and L. Gibson, “Composition and structure of balsa (Ochroma pyramidale) wood,” Wood Sci. Technol. 49, 403–420 (2015).
[Crossref]

Gilman, J. W.

M. Zhu, T. Li, C. Davis, Y. Yao, J. Dai, Y. Wang, F. AlQatari, J. W. Gilman, and L. Hu, “Transparent and haze wood composites for highly efficient broadband light management in solar cells,” Nano Energy 26, 332–340 (2016).
[Crossref]

Gong, A.

M. Zhu, J. Song, T. Li, A. Gong, Y. Wang, J. Dai, Y. Yao, W. Luo, D. Henderson, and L. Hu, “Highly anisotropic, highly transparent wood composites,” Adv. Mater. 28, 7563 (2016).
[Crossref]

Gouedard, C.

Henderson, D.

M. Zhu, J. Song, T. Li, A. Gong, Y. Wang, J. Dai, Y. Yao, W. Luo, D. Henderson, and L. Hu, “Highly anisotropic, highly transparent wood composites,” Adv. Mater. 28, 7563 (2016).
[Crossref]

Hillman, L.

F. Duarte, L. Hillman, W. Lloyd, P. Liao, and P. Kelley, Dye laser principles: with application, (Academic Press, 1990).

Ho, S. T.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278 (1999).
[Crossref]

Hu, L.

M. Zhu, J. Song, T. Li, A. Gong, Y. Wang, J. Dai, Y. Yao, W. Luo, D. Henderson, and L. Hu, “Highly anisotropic, highly transparent wood composites,” Adv. Mater. 28, 7563 (2016).
[Crossref]

M. Zhu, T. Li, C. Davis, Y. Yao, J. Dai, Y. Wang, F. AlQatari, J. W. Gilman, and L. Hu, “Transparent and haze wood composites for highly efficient broadband light management in solar cells,” Nano Energy 26, 332–340 (2016).
[Crossref]

T. Li, M. Zhu, Z. Yang, J. Song, J. Dai, Y. Yao, W. Luo, G. Pastel, B. Yang, and L. Hu, “Wood composite as an energy efficient building material: guided sunlight transmittance and effective thermal insulation,” Adv. Energy Mater. 6, 1601122 (2016).
[Crossref]

Husson, D.

Kaivola, M.

Kelley, P.

F. Duarte, L. Hillman, W. Lloyd, P. Liao, and P. Kelley, Dye laser principles: with application, (Academic Press, 1990).

Koivurova, M.

Kumar, P.

H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86, 4524–4527 (2001).
[Crossref] [PubMed]

Lajunen, H.

Li, T.

M. Zhu, T. Li, C. Davis, Y. Yao, J. Dai, Y. Wang, F. AlQatari, J. W. Gilman, and L. Hu, “Transparent and haze wood composites for highly efficient broadband light management in solar cells,” Nano Energy 26, 332–340 (2016).
[Crossref]

T. Li, M. Zhu, Z. Yang, J. Song, J. Dai, Y. Yao, W. Luo, G. Pastel, B. Yang, and L. Hu, “Wood composite as an energy efficient building material: guided sunlight transmittance and effective thermal insulation,” Adv. Energy Mater. 6, 1601122 (2016).
[Crossref]

M. Zhu, J. Song, T. Li, A. Gong, Y. Wang, J. Dai, Y. Yao, W. Luo, D. Henderson, and L. Hu, “Highly anisotropic, highly transparent wood composites,” Adv. Mater. 28, 7563 (2016).
[Crossref]

Li, Y.

E. Vasileva, Y. Li, I. Sychugov, M. Mensied, L. Berglund, and S. Popov, “Lasing from organic dye molecules embedded in transparent wood,” Adv. Opt. Mater. 5, 1700057 (2017).
[Crossref]

Y. Li, Q. Fu, S. Yu, M. Yan, and L. Berglund, “Optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance,” Biomacromolecules 17, 1358–1364 (2016).
[Crossref] [PubMed]

Y. Li, Q. Fu, S. Yu, M. Yan, and L. Berglund, “optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance,” Biomacromolecules 4, 1358–1364 (2016).
[Crossref]

Liao, P.

F. Duarte, L. Hillman, W. Lloyd, P. Liao, and P. Kelley, Dye laser principles: with application, (Academic Press, 1990).

Ling, Y.

H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86, 4524–4527 (2001).
[Crossref] [PubMed]

Lloyd, W.

F. Duarte, L. Hillman, W. Lloyd, P. Liao, and P. Kelley, Dye laser principles: with application, (Academic Press, 1990).

Luo, W.

T. Li, M. Zhu, Z. Yang, J. Song, J. Dai, Y. Yao, W. Luo, G. Pastel, B. Yang, and L. Hu, “Wood composite as an energy efficient building material: guided sunlight transmittance and effective thermal insulation,” Adv. Energy Mater. 6, 1601122 (2016).
[Crossref]

M. Zhu, J. Song, T. Li, A. Gong, Y. Wang, J. Dai, Y. Yao, W. Luo, D. Henderson, and L. Hu, “Highly anisotropic, highly transparent wood composites,” Adv. Mater. 28, 7563 (2016).
[Crossref]

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambrigde University, 1995).
[Crossref]

Maslyukov, A.

Mensied, M.

E. Vasileva, Y. Li, I. Sychugov, M. Mensied, L. Berglund, and S. Popov, “Lasing from organic dye molecules embedded in transparent wood,” Adv. Opt. Mater. 5, 1700057 (2017).
[Crossref]

Migus, A.

Nyholm, K.

Okamoto, T.

Partanen, H.

Pastel, G.

T. Li, M. Zhu, Z. Yang, J. Song, J. Dai, Y. Yao, W. Luo, G. Pastel, B. Yang, and L. Hu, “Wood composite as an energy efficient building material: guided sunlight transmittance and effective thermal insulation,” Adv. Energy Mater. 6, 1601122 (2016).
[Crossref]

Peterson, O. C.

O. C. Peterson and B. B. Snavely, “Stimulated emission from flashlamp-excited organic dyes in polymethil methacrylate,” Appl. Phys.Lett. 12, 238–240 (1968).

Polson, R. C.

R. C. Polson, M. E. Raikh, and Z. V. Vardeny, “Universal properties of random lasers,” IEEE J. Sel. Top. Quantum Electron. 9, 120–123 (2003).
[Crossref]

Popov, S.

E. Vasileva, Y. Li, I. Sychugov, M. Mensied, L. Berglund, and S. Popov, “Lasing from organic dye molecules embedded in transparent wood,” Adv. Opt. Mater. 5, 1700057 (2017).
[Crossref]

A. Maslyukov, S. Sokolov, M. Kaivola, K. Nyholm, and S. Popov, “Solid-state dye laser with modified poly (methyl methacrylate)-doped active elements,” Appl. Opt. 34, 1516–1518 (1995).
[Crossref] [PubMed]

Raikh, M. E.

R. C. Polson, M. E. Raikh, and Z. V. Vardeny, “Universal properties of random lasers,” IEEE J. Sel. Top. Quantum Electron. 9, 120–123 (2003).
[Crossref]

Redding, B.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[Crossref] [PubMed]

B. Redding, M. A. Choma, and H. Cao, “Spatial coherence of random laser emission,” Opt. Lett. 36, 3404–3406, (2011).
[Crossref] [PubMed]

Sauteret, C.

Schäfer, F. P.

F. P. Schäfer, Dye Lasers, (Springer-Verlag, 1990).

Seelig, E. W.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278 (1999).
[Crossref]

Serimaa, R.

M. Borrega, P. Ahvenainen, R. Serimaa, and L. Gibson, “Composition and structure of balsa (Ochroma pyramidale) wood,” Wood Sci. Technol. 49, 403–420 (2015).
[Crossref]

Snavely, B. B.

O. C. Peterson and B. B. Snavely, “Stimulated emission from flashlamp-excited organic dyes in polymethil methacrylate,” Appl. Phys.Lett. 12, 238–240 (1968).

Sokolov, S.

Song, J.

T. Li, M. Zhu, Z. Yang, J. Song, J. Dai, Y. Yao, W. Luo, G. Pastel, B. Yang, and L. Hu, “Wood composite as an energy efficient building material: guided sunlight transmittance and effective thermal insulation,” Adv. Energy Mater. 6, 1601122 (2016).
[Crossref]

M. Zhu, J. Song, T. Li, A. Gong, Y. Wang, J. Dai, Y. Yao, W. Luo, D. Henderson, and L. Hu, “Highly anisotropic, highly transparent wood composites,” Adv. Mater. 28, 7563 (2016).
[Crossref]

Stelmakh, N.

N. Stelmakh and M. Flowers, “Measurement of spatial modes of broad-area diode Lasers with 1-GHz resolution grating spectrometer,” IEEE Photon. Technol. Lett. 18, 1618–1620 (2006).
[Crossref]

Sychugov, I.

E. Vasileva, Y. Li, I. Sychugov, M. Mensied, L. Berglund, and S. Popov, “Lasing from organic dye molecules embedded in transparent wood,” Adv. Opt. Mater. 5, 1700057 (2017).
[Crossref]

Tervo, J.

Turunen, J.

Vahimaa, P.

Vardeny, Z. V.

R. C. Polson, M. E. Raikh, and Z. V. Vardeny, “Universal properties of random lasers,” IEEE J. Sel. Top. Quantum Electron. 9, 120–123 (2003).
[Crossref]

Vasileva, E.

E. Vasileva, Y. Li, I. Sychugov, M. Mensied, L. Berglund, and S. Popov, “Lasing from organic dye molecules embedded in transparent wood,” Adv. Opt. Mater. 5, 1700057 (2017).
[Crossref]

Wang, Q. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278 (1999).
[Crossref]

Wang, Y.

M. Zhu, J. Song, T. Li, A. Gong, Y. Wang, J. Dai, Y. Yao, W. Luo, D. Henderson, and L. Hu, “Highly anisotropic, highly transparent wood composites,” Adv. Mater. 28, 7563 (2016).
[Crossref]

M. Zhu, T. Li, C. Davis, Y. Yao, J. Dai, Y. Wang, F. AlQatari, J. W. Gilman, and L. Hu, “Transparent and haze wood composites for highly efficient broadband light management in solar cells,” Nano Energy 26, 332–340 (2016).
[Crossref]

Wiersma, D. S.

D. S. Wiersma, “Disordered photonics,” Nat. Photonics 7, 188–196 (2013).
[Crossref]

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359–367 (2008).
[Crossref]

Wolf, E.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambrigde University, 1995).
[Crossref]

Xu, J. Y.

H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86, 4524–4527 (2001).
[Crossref] [PubMed]

Yan, M.

Y. Li, Q. Fu, S. Yu, M. Yan, and L. Berglund, “optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance,” Biomacromolecules 4, 1358–1364 (2016).
[Crossref]

Y. Li, Q. Fu, S. Yu, M. Yan, and L. Berglund, “Optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance,” Biomacromolecules 17, 1358–1364 (2016).
[Crossref] [PubMed]

Yang, B.

T. Li, M. Zhu, Z. Yang, J. Song, J. Dai, Y. Yao, W. Luo, G. Pastel, B. Yang, and L. Hu, “Wood composite as an energy efficient building material: guided sunlight transmittance and effective thermal insulation,” Adv. Energy Mater. 6, 1601122 (2016).
[Crossref]

Yang, Z.

T. Li, M. Zhu, Z. Yang, J. Song, J. Dai, Y. Yao, W. Luo, G. Pastel, B. Yang, and L. Hu, “Wood composite as an energy efficient building material: guided sunlight transmittance and effective thermal insulation,” Adv. Energy Mater. 6, 1601122 (2016).
[Crossref]

Yao, Y.

M. Zhu, J. Song, T. Li, A. Gong, Y. Wang, J. Dai, Y. Yao, W. Luo, D. Henderson, and L. Hu, “Highly anisotropic, highly transparent wood composites,” Adv. Mater. 28, 7563 (2016).
[Crossref]

T. Li, M. Zhu, Z. Yang, J. Song, J. Dai, Y. Yao, W. Luo, G. Pastel, B. Yang, and L. Hu, “Wood composite as an energy efficient building material: guided sunlight transmittance and effective thermal insulation,” Adv. Energy Mater. 6, 1601122 (2016).
[Crossref]

M. Zhu, T. Li, C. Davis, Y. Yao, J. Dai, Y. Wang, F. AlQatari, J. W. Gilman, and L. Hu, “Transparent and haze wood composites for highly efficient broadband light management in solar cells,” Nano Energy 26, 332–340 (2016).
[Crossref]

Yoshitome, R.

Yu, S.

Y. Li, Q. Fu, S. Yu, M. Yan, and L. Berglund, “optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance,” Biomacromolecules 4, 1358–1364 (2016).
[Crossref]

Y. Li, Q. Fu, S. Yu, M. Yan, and L. Berglund, “Optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance,” Biomacromolecules 17, 1358–1364 (2016).
[Crossref] [PubMed]

Zhao, Y. G.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278 (1999).
[Crossref]

Zhu, M.

M. Zhu, T. Li, C. Davis, Y. Yao, J. Dai, Y. Wang, F. AlQatari, J. W. Gilman, and L. Hu, “Transparent and haze wood composites for highly efficient broadband light management in solar cells,” Nano Energy 26, 332–340 (2016).
[Crossref]

M. Zhu, J. Song, T. Li, A. Gong, Y. Wang, J. Dai, Y. Yao, W. Luo, D. Henderson, and L. Hu, “Highly anisotropic, highly transparent wood composites,” Adv. Mater. 28, 7563 (2016).
[Crossref]

T. Li, M. Zhu, Z. Yang, J. Song, J. Dai, Y. Yao, W. Luo, G. Pastel, B. Yang, and L. Hu, “Wood composite as an energy efficient building material: guided sunlight transmittance and effective thermal insulation,” Adv. Energy Mater. 6, 1601122 (2016).
[Crossref]

Zollfrank, C.

I. Burgert, E. Cabane, C. Zollfrank, and L. Berglund, “Bio-inspired functional wood-based materials – hybrids and replicates,” Int. Mater. Rev. 60, 431–450 (2015).
[Crossref]

Adv. Energy Mater. (1)

T. Li, M. Zhu, Z. Yang, J. Song, J. Dai, Y. Yao, W. Luo, G. Pastel, B. Yang, and L. Hu, “Wood composite as an energy efficient building material: guided sunlight transmittance and effective thermal insulation,” Adv. Energy Mater. 6, 1601122 (2016).
[Crossref]

Adv. Mater. (1)

M. Zhu, J. Song, T. Li, A. Gong, Y. Wang, J. Dai, Y. Yao, W. Luo, D. Henderson, and L. Hu, “Highly anisotropic, highly transparent wood composites,” Adv. Mater. 28, 7563 (2016).
[Crossref]

Adv. Opt. Mater. (1)

E. Vasileva, Y. Li, I. Sychugov, M. Mensied, L. Berglund, and S. Popov, “Lasing from organic dye molecules embedded in transparent wood,” Adv. Opt. Mater. 5, 1700057 (2017).
[Crossref]

Appl. Opt. (3)

Appl. Phys.Lett. (1)

O. C. Peterson and B. B. Snavely, “Stimulated emission from flashlamp-excited organic dyes in polymethil methacrylate,” Appl. Phys.Lett. 12, 238–240 (1968).

Biomacromolecules (2)

Y. Li, Q. Fu, S. Yu, M. Yan, and L. Berglund, “Optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance,” Biomacromolecules 17, 1358–1364 (2016).
[Crossref] [PubMed]

Y. Li, Q. Fu, S. Yu, M. Yan, and L. Berglund, “optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance,” Biomacromolecules 4, 1358–1364 (2016).
[Crossref]

Holzforschung (1)

S. Fink, “Transparent wood – a new approach in the functional study of wood structure,” Holzforschung 5, 403–408 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. C. Polson, M. E. Raikh, and Z. V. Vardeny, “Universal properties of random lasers,” IEEE J. Sel. Top. Quantum Electron. 9, 120–123 (2003).
[Crossref]

IEEE Photon. Technol. Lett. (1)

N. Stelmakh and M. Flowers, “Measurement of spatial modes of broad-area diode Lasers with 1-GHz resolution grating spectrometer,” IEEE Photon. Technol. Lett. 18, 1618–1620 (2006).
[Crossref]

Int. Mater. Rev. (1)

I. Burgert, E. Cabane, C. Zollfrank, and L. Berglund, “Bio-inspired functional wood-based materials – hybrids and replicates,” Int. Mater. Rev. 60, 431–450 (2015).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Nano Energy (1)

M. Zhu, T. Li, C. Davis, Y. Yao, J. Dai, Y. Wang, F. AlQatari, J. W. Gilman, and L. Hu, “Transparent and haze wood composites for highly efficient broadband light management in solar cells,” Nano Energy 26, 332–340 (2016).
[Crossref]

Nat. Photonics (2)

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[Crossref] [PubMed]

D. S. Wiersma, “Disordered photonics,” Nat. Photonics 7, 188–196 (2013).
[Crossref]

Nat. Phys. (1)

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359–367 (2008).
[Crossref]

Opt. Lett. (2)

Phys. Rev. Lett. (2)

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278 (1999).
[Crossref]

H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86, 4524–4527 (2001).
[Crossref] [PubMed]

Wood Sci. Technol. (1)

M. Borrega, P. Ahvenainen, R. Serimaa, and L. Gibson, “Composition and structure of balsa (Ochroma pyramidale) wood,” Wood Sci. Technol. 49, 403–420 (2015).
[Crossref]

Other (4)

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambrigde University, 1995).
[Crossref]

F. Duarte, L. Hillman, W. Lloyd, P. Liao, and P. Kelley, Dye laser principles: with application, (Academic Press, 1990).

F. Duarte, Tunable Laser Applications, (CRC Press, 2008).

F. P. Schäfer, Dye Lasers, (Springer-Verlag, 1990).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic representation of the experimental samples, (a) reference sample; (b) reference sample with a gold mirror (Au M) attached to a facet; (c) TW-dye sample; (d) schematics of the pumped area in the sample. The intensity distribution of the pump beam is nonuniform due to absorption and depth of focus.
Fig. 2
Fig. 2 (a) Pumping scheme, lens L1 expands the beam towards a square aperture A, after which the cylindrical lens CL focuses a line on the studied sample. The emission is collected by lens L2 and filter F removes any remaining pump light. (b) Interferometer, grating G1 disperses the beam and G2 recombines ±1 orders at the image plane, W being the zeroth order block. Electronic shutters ES1 and ES2 are used to find the intensity from individual arms, and the microscope objective MO images the interference pattern onto the detector C.
Fig. 3
Fig. 3 PMMA + Rh6G sample below lasing threshold, (a) typical spectrum, (b) the measured spatial coherence, γ ¯ = 0.11 ± 0.01.
Fig. 4
Fig. 4 PMMA + Rh6G sample above lasing threshold, (a) typical spectrum, (b) the measured spatial coherence, γ ¯ = 0.34 ± 0.02.
Fig. 5
Fig. 5 Images of the emission surface, (a) the intensity distribution where some of the individual cells are visible, (b) portion of the image interfered with itself at zero separation, and (c) at a separation of ∼10 µm.
Fig. 6
Fig. 6 TW above lasing threshold, (a) typical spectrum, (b) the measured spatial coherence, γ ¯ = 0.16 ± 0.01, and (c) a comparison of the coherence from all three samples corresponding to the position x = −200 µm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

V ( x , Δ x ) = 2 I 0 ( x Δ x ) I 0 ( x + Δ x ) I 0 ( x Δ x ) + I 0 ( x + Δ x ) | γ 0 ( x Δ x , x + Δ x ) | ,
γ ¯ 2 = I 0 ( x Δ x ) I 0 ( x Δ x ) | γ 0 ( x Δ x , x + Δ x ) | 2 dxd Δ x I 0 ( x Δ x ) I 0 ( x + Δ x ) dxd Δ x ,
Δ x ( ω ) = Δ z tan [ arcsin ( 2 π c ω d ) ] 2 π c Δ z ω d ,

Metrics