Abstract

We report the influence of femtosecond (fs) laser weakly ionized air channel on characteristics of plasma induced from fs-laser ablation of solid Zr metal target. A novel method to create high temperature, low electron density plasma with intense elemental emission and weak bremsstrahlung emission was demonstrated. Weakly ionized air channel was generated as a result of a non-linear phenomenon. Two-dimensional time-resolved optical-emission images of plasma plumes were taken for plume dynamics analysis. Dynamic physical properties of filament channels were simulated. In particular, we investigated the influence of weakly ionized air channel on the evolution of solid plasma plume. Plasma plume splitting was observed whilst longer weakly ionized air channel formed above the ablation spot. The domination mechanism for splitting is attributed to the long-lived underdense channel created by fs-laser induced weakly ionization of air. The evolutions of atomic/molecular emission intensity, peak broadening, and plasma temperature were analyzed, and the results show that the part of plasma entering weakly ionized air channel features higher initial temperature, lower electron density and faster decay.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Evolution of uranium monoxide in femtosecond laser-induced uranium plasmas

Kyle C. Hartig, Sivanandan S. Harilal, Mark C. Phillips, Brian E. Brumfield, and Igor Jovanovic
Opt. Express 25(10) 11477-11490 (2017)

Surface plasma influence on nanosecond laser ablation

V. N. Lednev, P. A. Sdvizhenskii, R. D. Asyutin, M. Ya. Grishin, R. S. Tretyakov, and S. M. Pershin
Appl. Opt. 58(6) 1496-1501 (2019)

Propagation distance-resolved characteristics of filament-induced copper plasma

Isaac Ghebregziabher, Kyle C. Hartig, and Igor Jovanovic
Opt. Express 24(5) 5263-5276 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Kretschmar, C. Brée, T. Nagy, A. Demircan, H. G. Kurz, U. Morgner, and M. Kovačev, “Direct observation of pulse dynamics and self-compression along a femtosecond filament,” Opt. Express 22(19), 22905–22916 (2014).
    [Crossref] [PubMed]
  2. S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
    [Crossref] [PubMed]
  3. O. Lahav, L. Levi, I. Orr, R. Nemirovsky, J. Nemirovsky, I. Kaminer, M. Segev, and O. Cohen, “Long-lived waveguides and sound-wave generation by laser filamentation,” Phys. Rev. A 90(2), 021801 (2014).
    [Crossref]
  4. E. J. Judge, G. Heck, E. B. Cerkez, and R. J. Levis, “Discrimination of composite graphite samples using remote filament-induced breakdown spectroscopy,” Anal. Chem. 81(7), 2658–2663 (2009).
    [Crossref] [PubMed]
  5. W. Liu and S. Chin, “Direct measurement of the critical power of femtosecond Ti:sapphire laser pulse in air,” Opt. Express 13(15), 5750–5755 (2005).
    [Crossref] [PubMed]
  6. S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
    [Crossref]
  7. M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J. P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 69, 1–7 (2004).
  8. M. Durand, A. Houard, B. Prade, A. Mysyrowicz, A. Durécu, B. Moreau, D. Fleury, O. Vasseur, H. Borchert, K. Diener, R. Schmitt, F. Théberge, M. Chateauneuf, J.-F. Daigle, and J. Dubois, “Kilometer range filamentation,” Opt. Express 21(22), 26836–26845 (2013).
    [Crossref] [PubMed]
  9. F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: Strong dependence on external focusing,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036406 (2006).
    [Crossref] [PubMed]
  10. Q. Sun, H. Asahi, Y. Nishijima, N. Murazawa, K. Ueno, and H. Misawa, “Pulse duration dependent nonlinear propagation of a focused femtosecond laser pulse in fused silica,” Opt. Express 18(24), 24495–24503 (2010).
    [Crossref] [PubMed]
  11. Y. H. Chen, S. Varma, T. M. Antonsen, and H. M. Milchberg, “Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments,” Phys. Rev. Lett. 105(21), 215005 (2010).
    [Crossref] [PubMed]
  12. X. Sun, S. Xu, J. Zhao, W. Liu, Y. Cheng, Z. Xu, S. L. Chin, and G. Mu, “Impressive laser intensity increase at the trailing stage of femtosecond laser filamentation in air,” Opt. Express 20(4), 4790–4795 (2012).
    [Crossref] [PubMed]
  13. S. Xu, X. Sun, B. Zeng, W. Chu, J. Zhao, W. Liu, Y. Cheng, Z. Xu, and S. L. Chin, “Simple method of measuring laser peak intensity inside femtosecond laser filament in air,” Opt. Express 20(1), 299–307 (2012).
    [Crossref] [PubMed]
  14. H. L. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. F. Daigle, A. Azarm, P. T. T. Simard, P. Mathieu, G. Roy, J.-R. R. Simard, and S. L. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87(1), 151–156 (2007).
    [Crossref]
  15. P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta Part B At. Spectrosc. 60, 1025–1033 (2005).
  16. K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
    [Crossref]
  17. D. Mirell, O. Chalus, K. Peterson, and J.-C. Diels, “Remote sensing of explosives using infrared and ultraviolet filaments,” J. Opt. Soc. Am. B 25(7), B108–B111 (2008).
    [Crossref]
  18. I. Ghebregziabher, K. C. Hartig, and I. Jovanovic, “Propagation distance-resolved characteristics of filament-induced copper plasma,” Opt. Express 24(5), 5263–5276 (2016).
    [Crossref] [PubMed]
  19. H. Hou, G. C.-Y. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta Part B At. Spectrosc. 113, 113–118 (2015).
  20. S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Quantum Control of Molecular Gas Hydrodynamics,” Phys. Rev. Lett. 112(14), 143601 (2014).
    [Crossref] [PubMed]
  21. N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of Long-Lived High-Power Optical Waveguides in Air,” Phys. Rev. X 4(1), 011027 (2014).
    [Crossref]
  22. G. Point, C. Milián, A. Couairon, A. Mysyrowicz, and A. Houard, “Generation of long-lived underdense channels using femtosecond filamentation in air,” J. Phys. At. Mol. Opt. Phys. 48(9), 094009 (2015).
    [Crossref]
  23. A. Ryabtsev, S. Pouya, M. Koochesfahani, and M. Dantus, “Vortices in the wake of a femtosecond laser filament,” Opt. Express 22(21), 26098–26102 (2014).
    [Crossref] [PubMed]
  24. O. Graydon, “Filament vortices,” Nat. Photonics 8(12), 886 (2014).
    [Crossref]
  25. S. S. Harilal, P. K. Diwakar, M. P. Polek, and M. C. Phillips, “Morphological changes in ultrafast laser ablation plumes with varying spot size,” Opt. Express 23(12), 15608–15615 (2015).
    [Crossref] [PubMed]
  26. K. Oguri, Y. Okano, T. Nishikawa, and H. Nakano, “Dynamics of femtosecond laser ablation studied with time-resolved x-ray absorption fine structure imaging,” Phys. Rev. B 79(14), 144106 (2009).
    [Crossref]
  27. S. S. Harilal, N. Farid, J. R. Freeman, P. K. Diwakar, N. L. LaHaye, and A. Hassanein, “Background gas collisional effects on expanding fs and ns laser ablation plumes,” Appl. Phys. A Mater. Sci. Process. 117, 1–8 (2014).
  28. H. Zhang, F. Zhang, X. Du, G. Dong, and J. Qiu, “Influence of laser-induced air breakdown on femtosecond laser ablation of aluminum,” Opt. Express 23(2), 1370–1376 (2015).
    [Crossref] [PubMed]
  29. E. W. Rosenthal, J. P. Palastro, N. Jhajj, S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Sensitivity of propagation and energy deposition in femtosecond filamentation to the nonlinear refractive index,” J. Phys. At. Mol. Opt. Phys. 48(9), 094011 (2015).
    [Crossref]
  30. J. Siegel, G. Epurescu, A. Perea, F. J. Gordillo-Vázquez, J. Gonzalo, and C. N. Afonso, “High spatial resolution in laser-induced breakdown spectroscopy of expanding plasmas,” Spectrochim. Acta - Part B At. Spectrosc. 60, 915–919 (2005).
  31. J. F. Daigle, A. Jaroń-Becker, S. Hosseini, T. J. Wang, Y. Kamali, G. Roy, A. Becker, and S. L. Chin, “Intensity clamping measurement of laser filaments in air at 400 and 800 nm,” Phys. Rev. A – At. Mol. Opt. Phys. 82, 1–5 (2010).
  32. H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. L. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360(1-3), 171–175 (2009).
    [Crossref]
  33. A. Lofthus and P. Krupenie, “The spectrum of molecular nitrogen,” Phys. Chem. Ref. Data 6(1), 113–307 (1977).
    [Crossref]
  34. A. Talebpour, J. Yang, and S. L. Chin, “Semi-empirical model for the rate of tunnel ionization of N2 and O2 molecule in an intense Ti:sapphire laser pulse,” Opt. Commun. 163(1-3), 29–32 (1999).
    [Crossref]
  35. S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
    [Crossref]
  36. A. Talebpour and M. Abdel-Fattah, “Spectroscopy of the gases interacting with intense femtosecond laser pulses,” Laser Phys. 11, 68–76 (2001).
  37. Q. Luo, S. Hosseini, B. Ferland, and S. L. Chin, “Backward time-resolved spectroscopy from filament induced by ultrafast intense laser pulses,” Opt. Commun. 233(4-6), 411–416 (2004).
    [Crossref]
  38. G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6(1), 6021 (2015).
    [Crossref] [PubMed]
  39. H. Hou, G. C.-Y. Chan, X. Mao, V. Zorba, R. Zheng, and R. E. Russo, “Femtosecond laser ablation molecular isotopic spectrometry for zirconium isotope analysis,” Anal. Chem. 87(9), 4788–4796 (2015).
    [Crossref] [PubMed]
  40. E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics (Springer Berlin Heidelberg, 2009).
  41. Y. H. Cheng, J. K. Wahlstrand, N. Jhajj, and H. M. Milchberg, “The effect of long timescale gas dynamics on femtosecond filamentation,” Opt. Express 21(4), 4740–4751 (2013).
    [Crossref] [PubMed]
  42. S. Tzortzakis, B. Prade, M. Franco, A. Mysyrowicz, S. Hüller, and P. Mora, “Femtosecond laser-guided electric discharge in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 057401 (2001).
    [Crossref] [PubMed]
  43. J. K. Wahlstrand, N. Jhajj, E. W. Rosenthal, S. Zahedpour, and H. M. Milchberg, “Direct imaging of the acoustic waves generated by femtosecond filaments in air,” Opt. Lett. 39(5), 1290–1293 (2014).
    [Crossref] [PubMed]
  44. F. Lowater, “The band spectrum of zirconium oxide,” Proc. Phys. Soc. 44(1), 51–66 (1932).
    [Crossref]
  45. S. P. Davis and P. D. Hammer, “Energy levels of zirconium oxide,” Astrophys. J. 332, 1090–1091 (1988).
    [Crossref]
  46. K. K. Anoop, X. Ni, M. Bianco, D. Paparo, X. Wang, R. Bruzzese, and S. Amoruso, “Two-dimensional imaging of atomic and nanoparticle components in copper plasma plume produced by ultrafast laser ablation,” Appl. Phys., A Mater. Sci. Process. 117, 1–6 (2014).
  47. S. S. Harilal, B. E. Brumfield, B. D. Cannon, and M. C. Phillips, “Shock Wave Mediated Plume Chemistry for Molecular Formation in Laser Ablation Plasmas,” Anal. Chem. 88(4), 2296–2302 (2016).
    [Crossref] [PubMed]
  48. D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64(12), 335–366 (2010).
    [Crossref] [PubMed]
  49. G. C.-Y. Chan, I. Choi, X. Mao, V. Zorba, O. P. Lam, D. K. Shuh, and R. E. Russo, “Isotopic determination of uranium in soil by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B At. Spectrosc. 122, 31–39 (2016).

2016 (3)

S. S. Harilal, B. E. Brumfield, B. D. Cannon, and M. C. Phillips, “Shock Wave Mediated Plume Chemistry for Molecular Formation in Laser Ablation Plasmas,” Anal. Chem. 88(4), 2296–2302 (2016).
[Crossref] [PubMed]

G. C.-Y. Chan, I. Choi, X. Mao, V. Zorba, O. P. Lam, D. K. Shuh, and R. E. Russo, “Isotopic determination of uranium in soil by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B At. Spectrosc. 122, 31–39 (2016).

I. Ghebregziabher, K. C. Hartig, and I. Jovanovic, “Propagation distance-resolved characteristics of filament-induced copper plasma,” Opt. Express 24(5), 5263–5276 (2016).
[Crossref] [PubMed]

2015 (7)

H. Zhang, F. Zhang, X. Du, G. Dong, and J. Qiu, “Influence of laser-induced air breakdown on femtosecond laser ablation of aluminum,” Opt. Express 23(2), 1370–1376 (2015).
[Crossref] [PubMed]

S. S. Harilal, P. K. Diwakar, M. P. Polek, and M. C. Phillips, “Morphological changes in ultrafast laser ablation plumes with varying spot size,” Opt. Express 23(12), 15608–15615 (2015).
[Crossref] [PubMed]

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6(1), 6021 (2015).
[Crossref] [PubMed]

H. Hou, G. C.-Y. Chan, X. Mao, V. Zorba, R. Zheng, and R. E. Russo, “Femtosecond laser ablation molecular isotopic spectrometry for zirconium isotope analysis,” Anal. Chem. 87(9), 4788–4796 (2015).
[Crossref] [PubMed]

H. Hou, G. C.-Y. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta Part B At. Spectrosc. 113, 113–118 (2015).

G. Point, C. Milián, A. Couairon, A. Mysyrowicz, and A. Houard, “Generation of long-lived underdense channels using femtosecond filamentation in air,” J. Phys. At. Mol. Opt. Phys. 48(9), 094009 (2015).
[Crossref]

E. W. Rosenthal, J. P. Palastro, N. Jhajj, S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Sensitivity of propagation and energy deposition in femtosecond filamentation to the nonlinear refractive index,” J. Phys. At. Mol. Opt. Phys. 48(9), 094011 (2015).
[Crossref]

2014 (9)

O. Graydon, “Filament vortices,” Nat. Photonics 8(12), 886 (2014).
[Crossref]

S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Quantum Control of Molecular Gas Hydrodynamics,” Phys. Rev. Lett. 112(14), 143601 (2014).
[Crossref] [PubMed]

N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of Long-Lived High-Power Optical Waveguides in Air,” Phys. Rev. X 4(1), 011027 (2014).
[Crossref]

O. Lahav, L. Levi, I. Orr, R. Nemirovsky, J. Nemirovsky, I. Kaminer, M. Segev, and O. Cohen, “Long-lived waveguides and sound-wave generation by laser filamentation,” Phys. Rev. A 90(2), 021801 (2014).
[Crossref]

S. S. Harilal, N. Farid, J. R. Freeman, P. K. Diwakar, N. L. LaHaye, and A. Hassanein, “Background gas collisional effects on expanding fs and ns laser ablation plumes,” Appl. Phys. A Mater. Sci. Process. 117, 1–8 (2014).

K. K. Anoop, X. Ni, M. Bianco, D. Paparo, X. Wang, R. Bruzzese, and S. Amoruso, “Two-dimensional imaging of atomic and nanoparticle components in copper plasma plume produced by ultrafast laser ablation,” Appl. Phys., A Mater. Sci. Process. 117, 1–6 (2014).

J. K. Wahlstrand, N. Jhajj, E. W. Rosenthal, S. Zahedpour, and H. M. Milchberg, “Direct imaging of the acoustic waves generated by femtosecond filaments in air,” Opt. Lett. 39(5), 1290–1293 (2014).
[Crossref] [PubMed]

M. Kretschmar, C. Brée, T. Nagy, A. Demircan, H. G. Kurz, U. Morgner, and M. Kovačev, “Direct observation of pulse dynamics and self-compression along a femtosecond filament,” Opt. Express 22(19), 22905–22916 (2014).
[Crossref] [PubMed]

A. Ryabtsev, S. Pouya, M. Koochesfahani, and M. Dantus, “Vortices in the wake of a femtosecond laser filament,” Opt. Express 22(21), 26098–26102 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (3)

2010 (4)

Y. H. Chen, S. Varma, T. M. Antonsen, and H. M. Milchberg, “Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments,” Phys. Rev. Lett. 105(21), 215005 (2010).
[Crossref] [PubMed]

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

J. F. Daigle, A. Jaroń-Becker, S. Hosseini, T. J. Wang, Y. Kamali, G. Roy, A. Becker, and S. L. Chin, “Intensity clamping measurement of laser filaments in air at 400 and 800 nm,” Phys. Rev. A – At. Mol. Opt. Phys. 82, 1–5 (2010).

Q. Sun, H. Asahi, Y. Nishijima, N. Murazawa, K. Ueno, and H. Misawa, “Pulse duration dependent nonlinear propagation of a focused femtosecond laser pulse in fused silica,” Opt. Express 18(24), 24495–24503 (2010).
[Crossref] [PubMed]

2009 (3)

H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. L. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360(1-3), 171–175 (2009).
[Crossref]

E. J. Judge, G. Heck, E. B. Cerkez, and R. J. Levis, “Discrimination of composite graphite samples using remote filament-induced breakdown spectroscopy,” Anal. Chem. 81(7), 2658–2663 (2009).
[Crossref] [PubMed]

K. Oguri, Y. Okano, T. Nishikawa, and H. Nakano, “Dynamics of femtosecond laser ablation studied with time-resolved x-ray absorption fine structure imaging,” Phys. Rev. B 79(14), 144106 (2009).
[Crossref]

2008 (1)

2007 (1)

H. L. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. F. Daigle, A. Azarm, P. T. T. Simard, P. Mathieu, G. Roy, J.-R. R. Simard, and S. L. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87(1), 151–156 (2007).
[Crossref]

2006 (1)

F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: Strong dependence on external focusing,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036406 (2006).
[Crossref] [PubMed]

2005 (5)

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[Crossref] [PubMed]

J. Siegel, G. Epurescu, A. Perea, F. J. Gordillo-Vázquez, J. Gonzalo, and C. N. Afonso, “High spatial resolution in laser-induced breakdown spectroscopy of expanding plasmas,” Spectrochim. Acta - Part B At. Spectrosc. 60, 915–919 (2005).

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta Part B At. Spectrosc. 60, 1025–1033 (2005).

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
[Crossref]

W. Liu and S. Chin, “Direct measurement of the critical power of femtosecond Ti:sapphire laser pulse in air,” Opt. Express 13(15), 5750–5755 (2005).
[Crossref] [PubMed]

2004 (3)

Q. Luo, S. Hosseini, B. Ferland, and S. L. Chin, “Backward time-resolved spectroscopy from filament induced by ultrafast intense laser pulses,” Opt. Commun. 233(4-6), 411–416 (2004).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J. P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 69, 1–7 (2004).

2001 (2)

S. Tzortzakis, B. Prade, M. Franco, A. Mysyrowicz, S. Hüller, and P. Mora, “Femtosecond laser-guided electric discharge in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 057401 (2001).
[Crossref] [PubMed]

A. Talebpour and M. Abdel-Fattah, “Spectroscopy of the gases interacting with intense femtosecond laser pulses,” Laser Phys. 11, 68–76 (2001).

1999 (1)

A. Talebpour, J. Yang, and S. L. Chin, “Semi-empirical model for the rate of tunnel ionization of N2 and O2 molecule in an intense Ti:sapphire laser pulse,” Opt. Commun. 163(1-3), 29–32 (1999).
[Crossref]

1988 (1)

S. P. Davis and P. D. Hammer, “Energy levels of zirconium oxide,” Astrophys. J. 332, 1090–1091 (1988).
[Crossref]

1977 (1)

A. Lofthus and P. Krupenie, “The spectrum of molecular nitrogen,” Phys. Chem. Ref. Data 6(1), 113–307 (1977).
[Crossref]

1932 (1)

F. Lowater, “The band spectrum of zirconium oxide,” Proc. Phys. Soc. 44(1), 51–66 (1932).
[Crossref]

Abdel-Fattah, M.

A. Talebpour and M. Abdel-Fattah, “Spectroscopy of the gases interacting with intense femtosecond laser pulses,” Laser Phys. 11, 68–76 (2001).

Ackermann, R.

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta Part B At. Spectrosc. 60, 1025–1033 (2005).

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

Afonso, C. N.

J. Siegel, G. Epurescu, A. Perea, F. J. Gordillo-Vázquez, J. Gonzalo, and C. N. Afonso, “High spatial resolution in laser-induced breakdown spectroscopy of expanding plasmas,” Spectrochim. Acta - Part B At. Spectrosc. 60, 915–919 (2005).

Aközbek, N.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
[Crossref]

Amoruso, S.

K. K. Anoop, X. Ni, M. Bianco, D. Paparo, X. Wang, R. Bruzzese, and S. Amoruso, “Two-dimensional imaging of atomic and nanoparticle components in copper plasma plume produced by ultrafast laser ablation,” Appl. Phys., A Mater. Sci. Process. 117, 1–6 (2014).

Anoop, K. K.

K. K. Anoop, X. Ni, M. Bianco, D. Paparo, X. Wang, R. Bruzzese, and S. Amoruso, “Two-dimensional imaging of atomic and nanoparticle components in copper plasma plume produced by ultrafast laser ablation,” Appl. Phys., A Mater. Sci. Process. 117, 1–6 (2014).

Antonsen, T. M.

Y. H. Chen, S. Varma, T. M. Antonsen, and H. M. Milchberg, “Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments,” Phys. Rev. Lett. 105(21), 215005 (2010).
[Crossref] [PubMed]

Asahi, H.

Azarm, A.

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. L. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360(1-3), 171–175 (2009).
[Crossref]

H. L. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. F. Daigle, A. Azarm, P. T. T. Simard, P. Mathieu, G. Roy, J.-R. R. Simard, and S. L. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87(1), 151–156 (2007).
[Crossref]

Becker, A.

J. F. Daigle, A. Jaroń-Becker, S. Hosseini, T. J. Wang, Y. Kamali, G. Roy, A. Becker, and S. L. Chin, “Intensity clamping measurement of laser filaments in air at 400 and 800 nm,” Phys. Rev. A – At. Mol. Opt. Phys. 82, 1–5 (2010).

F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: Strong dependence on external focusing,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036406 (2006).
[Crossref] [PubMed]

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
[Crossref]

Bernhardt, J.

H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. L. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360(1-3), 171–175 (2009).
[Crossref]

Bianco, M.

K. K. Anoop, X. Ni, M. Bianco, D. Paparo, X. Wang, R. Bruzzese, and S. Amoruso, “Two-dimensional imaging of atomic and nanoparticle components in copper plasma plume produced by ultrafast laser ablation,” Appl. Phys., A Mater. Sci. Process. 117, 1–6 (2014).

Birnbaum, R.

N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of Long-Lived High-Power Optical Waveguides in Air,” Phys. Rev. X 4(1), 011027 (2014).
[Crossref]

Borchert, H.

Bourayou, R.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J. P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 69, 1–7 (2004).

Brée, C.

Brumfield, B. E.

S. S. Harilal, B. E. Brumfield, B. D. Cannon, and M. C. Phillips, “Shock Wave Mediated Plume Chemistry for Molecular Formation in Laser Ablation Plasmas,” Anal. Chem. 88(4), 2296–2302 (2016).
[Crossref] [PubMed]

Bruzzese, R.

K. K. Anoop, X. Ni, M. Bianco, D. Paparo, X. Wang, R. Bruzzese, and S. Amoruso, “Two-dimensional imaging of atomic and nanoparticle components in copper plasma plume produced by ultrafast laser ablation,” Appl. Phys., A Mater. Sci. Process. 117, 1–6 (2014).

Buller, G. S.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6(1), 6021 (2015).
[Crossref] [PubMed]

Cannon, B. D.

S. S. Harilal, B. E. Brumfield, B. D. Cannon, and M. C. Phillips, “Shock Wave Mediated Plume Chemistry for Molecular Formation in Laser Ablation Plasmas,” Anal. Chem. 88(4), 2296–2302 (2016).
[Crossref] [PubMed]

Cerkez, E. B.

E. J. Judge, G. Heck, E. B. Cerkez, and R. J. Levis, “Discrimination of composite graphite samples using remote filament-induced breakdown spectroscopy,” Anal. Chem. 81(7), 2658–2663 (2009).
[Crossref] [PubMed]

Chalus, O.

Chan, G. C.-Y.

G. C.-Y. Chan, I. Choi, X. Mao, V. Zorba, O. P. Lam, D. K. Shuh, and R. E. Russo, “Isotopic determination of uranium in soil by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B At. Spectrosc. 122, 31–39 (2016).

H. Hou, G. C.-Y. Chan, X. Mao, V. Zorba, R. Zheng, and R. E. Russo, “Femtosecond laser ablation molecular isotopic spectrometry for zirconium isotope analysis,” Anal. Chem. 87(9), 4788–4796 (2015).
[Crossref] [PubMed]

H. Hou, G. C.-Y. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta Part B At. Spectrosc. 113, 113–118 (2015).

Chateauneuf, M.

Chen, Y. H.

Y. H. Chen, S. Varma, T. M. Antonsen, and H. M. Milchberg, “Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments,” Phys. Rev. Lett. 105(21), 215005 (2010).
[Crossref] [PubMed]

Chen, Y. P.

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Cheng, Y.

Cheng, Y. H.

Chin, S.

Chin, S. L.

X. Sun, S. Xu, J. Zhao, W. Liu, Y. Cheng, Z. Xu, S. L. Chin, and G. Mu, “Impressive laser intensity increase at the trailing stage of femtosecond laser filamentation in air,” Opt. Express 20(4), 4790–4795 (2012).
[Crossref] [PubMed]

S. Xu, X. Sun, B. Zeng, W. Chu, J. Zhao, W. Liu, Y. Cheng, Z. Xu, and S. L. Chin, “Simple method of measuring laser peak intensity inside femtosecond laser filament in air,” Opt. Express 20(1), 299–307 (2012).
[Crossref] [PubMed]

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

J. F. Daigle, A. Jaroń-Becker, S. Hosseini, T. J. Wang, Y. Kamali, G. Roy, A. Becker, and S. L. Chin, “Intensity clamping measurement of laser filaments in air at 400 and 800 nm,” Phys. Rev. A – At. Mol. Opt. Phys. 82, 1–5 (2010).

H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. L. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360(1-3), 171–175 (2009).
[Crossref]

F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: Strong dependence on external focusing,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036406 (2006).
[Crossref] [PubMed]

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
[Crossref]

Q. Luo, S. Hosseini, B. Ferland, and S. L. Chin, “Backward time-resolved spectroscopy from filament induced by ultrafast intense laser pulses,” Opt. Commun. 233(4-6), 411–416 (2004).
[Crossref]

A. Talebpour, J. Yang, and S. L. Chin, “Semi-empirical model for the rate of tunnel ionization of N2 and O2 molecule in an intense Ti:sapphire laser pulse,” Opt. Commun. 163(1-3), 29–32 (1999).
[Crossref]

Chin, S. L. L.

H. L. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. F. Daigle, A. Azarm, P. T. T. Simard, P. Mathieu, G. Roy, J.-R. R. Simard, and S. L. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87(1), 151–156 (2007).
[Crossref]

Choi, I.

G. C.-Y. Chan, I. Choi, X. Mao, V. Zorba, O. P. Lam, D. K. Shuh, and R. E. Russo, “Isotopic determination of uranium in soil by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B At. Spectrosc. 122, 31–39 (2016).

Chu, W.

Cohen, O.

O. Lahav, L. Levi, I. Orr, R. Nemirovsky, J. Nemirovsky, I. Kaminer, M. Segev, and O. Cohen, “Long-lived waveguides and sound-wave generation by laser filamentation,” Phys. Rev. A 90(2), 021801 (2014).
[Crossref]

Couairon, A.

G. Point, C. Milián, A. Couairon, A. Mysyrowicz, and A. Houard, “Generation of long-lived underdense channels using femtosecond filamentation in air,” J. Phys. At. Mol. Opt. Phys. 48(9), 094009 (2015).
[Crossref]

Daigle, J. F.

J. F. Daigle, A. Jaroń-Becker, S. Hosseini, T. J. Wang, Y. Kamali, G. Roy, A. Becker, and S. L. Chin, “Intensity clamping measurement of laser filaments in air at 400 and 800 nm,” Phys. Rev. A – At. Mol. Opt. Phys. 82, 1–5 (2010).

Daigle, J.-F.

M. Durand, A. Houard, B. Prade, A. Mysyrowicz, A. Durécu, B. Moreau, D. Fleury, O. Vasseur, H. Borchert, K. Diener, R. Schmitt, F. Théberge, M. Chateauneuf, J.-F. Daigle, and J. Dubois, “Kilometer range filamentation,” Opt. Express 21(22), 26836–26845 (2013).
[Crossref] [PubMed]

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Daigle, J.-F. F.

H. L. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. F. Daigle, A. Azarm, P. T. T. Simard, P. Mathieu, G. Roy, J.-R. R. Simard, and S. L. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87(1), 151–156 (2007).
[Crossref]

Dantus, M.

Davis, S. P.

S. P. Davis and P. D. Hammer, “Energy levels of zirconium oxide,” Astrophys. J. 332, 1090–1091 (1988).
[Crossref]

Demircan, A.

Diels, J.-C.

Diener, K.

Diwakar, P. K.

S. S. Harilal, P. K. Diwakar, M. P. Polek, and M. C. Phillips, “Morphological changes in ultrafast laser ablation plumes with varying spot size,” Opt. Express 23(12), 15608–15615 (2015).
[Crossref] [PubMed]

S. S. Harilal, N. Farid, J. R. Freeman, P. K. Diwakar, N. L. LaHaye, and A. Hassanein, “Background gas collisional effects on expanding fs and ns laser ablation plumes,” Appl. Phys. A Mater. Sci. Process. 117, 1–8 (2014).

Dong, G.

Du, X.

Dubois, J.

Durand, M.

Durécu, A.

Eislöffel, J.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J. P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 69, 1–7 (2004).

Epurescu, G.

J. Siegel, G. Epurescu, A. Perea, F. J. Gordillo-Vázquez, J. Gonzalo, and C. N. Afonso, “High spatial resolution in laser-induced breakdown spectroscopy of expanding plasmas,” Spectrochim. Acta - Part B At. Spectrosc. 60, 915–919 (2005).

Faccio, D.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6(1), 6021 (2015).
[Crossref] [PubMed]

Farid, N.

S. S. Harilal, N. Farid, J. R. Freeman, P. K. Diwakar, N. L. LaHaye, and A. Hassanein, “Background gas collisional effects on expanding fs and ns laser ablation plumes,” Appl. Phys. A Mater. Sci. Process. 117, 1–8 (2014).

Ferland, B.

Q. Luo, S. Hosseini, B. Ferland, and S. L. Chin, “Backward time-resolved spectroscopy from filament induced by ultrafast intense laser pulses,” Opt. Commun. 233(4-6), 411–416 (2004).
[Crossref]

Fleury, D.

Franco, M.

S. Tzortzakis, B. Prade, M. Franco, A. Mysyrowicz, S. Hüller, and P. Mora, “Femtosecond laser-guided electric discharge in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 057401 (2001).
[Crossref] [PubMed]

Freeman, J. R.

S. S. Harilal, N. Farid, J. R. Freeman, P. K. Diwakar, N. L. LaHaye, and A. Hassanein, “Background gas collisional effects on expanding fs and ns laser ablation plumes,” Appl. Phys. A Mater. Sci. Process. 117, 1–8 (2014).

Fujita, K.

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[Crossref] [PubMed]

Gariepy, G.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6(1), 6021 (2015).
[Crossref] [PubMed]

Ghebregziabher, I.

Gonzalo, J.

J. Siegel, G. Epurescu, A. Perea, F. J. Gordillo-Vázquez, J. Gonzalo, and C. N. Afonso, “High spatial resolution in laser-induced breakdown spectroscopy of expanding plasmas,” Spectrochim. Acta - Part B At. Spectrosc. 60, 915–919 (2005).

Gordillo-Vázquez, F. J.

J. Siegel, G. Epurescu, A. Perea, F. J. Gordillo-Vázquez, J. Gonzalo, and C. N. Afonso, “High spatial resolution in laser-induced breakdown spectroscopy of expanding plasmas,” Spectrochim. Acta - Part B At. Spectrosc. 60, 915–919 (2005).

Graydon, O.

O. Graydon, “Filament vortices,” Nat. Photonics 8(12), 886 (2014).
[Crossref]

Hahn, D. W.

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

Hammer, P. D.

S. P. Davis and P. D. Hammer, “Energy levels of zirconium oxide,” Astrophys. J. 332, 1090–1091 (1988).
[Crossref]

Harilal, S. S.

S. S. Harilal, B. E. Brumfield, B. D. Cannon, and M. C. Phillips, “Shock Wave Mediated Plume Chemistry for Molecular Formation in Laser Ablation Plasmas,” Anal. Chem. 88(4), 2296–2302 (2016).
[Crossref] [PubMed]

S. S. Harilal, P. K. Diwakar, M. P. Polek, and M. C. Phillips, “Morphological changes in ultrafast laser ablation plumes with varying spot size,” Opt. Express 23(12), 15608–15615 (2015).
[Crossref] [PubMed]

S. S. Harilal, N. Farid, J. R. Freeman, P. K. Diwakar, N. L. LaHaye, and A. Hassanein, “Background gas collisional effects on expanding fs and ns laser ablation plumes,” Appl. Phys. A Mater. Sci. Process. 117, 1–8 (2014).

Hartig, K. C.

Hassanein, A.

S. S. Harilal, N. Farid, J. R. Freeman, P. K. Diwakar, N. L. LaHaye, and A. Hassanein, “Background gas collisional effects on expanding fs and ns laser ablation plumes,” Appl. Phys. A Mater. Sci. Process. 117, 1–8 (2014).

Hatzes, A. P.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J. P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 69, 1–7 (2004).

Heck, G.

E. J. Judge, G. Heck, E. B. Cerkez, and R. J. Levis, “Discrimination of composite graphite samples using remote filament-induced breakdown spectroscopy,” Anal. Chem. 81(7), 2658–2663 (2009).
[Crossref] [PubMed]

Henderson, R.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6(1), 6021 (2015).
[Crossref] [PubMed]

Heshmat, B.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6(1), 6021 (2015).
[Crossref] [PubMed]

Hirao, K.

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[Crossref] [PubMed]

Hosseini, S.

J. F. Daigle, A. Jaroń-Becker, S. Hosseini, T. J. Wang, Y. Kamali, G. Roy, A. Becker, and S. L. Chin, “Intensity clamping measurement of laser filaments in air at 400 and 800 nm,” Phys. Rev. A – At. Mol. Opt. Phys. 82, 1–5 (2010).

Q. Luo, S. Hosseini, B. Ferland, and S. L. Chin, “Backward time-resolved spectroscopy from filament induced by ultrafast intense laser pulses,” Opt. Commun. 233(4-6), 411–416 (2004).
[Crossref]

Hosseini, S. A.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
[Crossref]

Hou, H.

H. Hou, G. C.-Y. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta Part B At. Spectrosc. 113, 113–118 (2015).

H. Hou, G. C.-Y. Chan, X. Mao, V. Zorba, R. Zheng, and R. E. Russo, “Femtosecond laser ablation molecular isotopic spectrometry for zirconium isotope analysis,” Anal. Chem. 87(9), 4788–4796 (2015).
[Crossref] [PubMed]

Houard, A.

G. Point, C. Milián, A. Couairon, A. Mysyrowicz, and A. Houard, “Generation of long-lived underdense channels using femtosecond filamentation in air,” J. Phys. At. Mol. Opt. Phys. 48(9), 094009 (2015).
[Crossref]

M. Durand, A. Houard, B. Prade, A. Mysyrowicz, A. Durécu, B. Moreau, D. Fleury, O. Vasseur, H. Borchert, K. Diener, R. Schmitt, F. Théberge, M. Chateauneuf, J.-F. Daigle, and J. Dubois, “Kilometer range filamentation,” Opt. Express 21(22), 26836–26845 (2013).
[Crossref] [PubMed]

Hüller, S.

S. Tzortzakis, B. Prade, M. Franco, A. Mysyrowicz, S. Hüller, and P. Mora, “Femtosecond laser-guided electric discharge in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 057401 (2001).
[Crossref] [PubMed]

Jaron-Becker, A.

J. F. Daigle, A. Jaroń-Becker, S. Hosseini, T. J. Wang, Y. Kamali, G. Roy, A. Becker, and S. L. Chin, “Intensity clamping measurement of laser filaments in air at 400 and 800 nm,” Phys. Rev. A – At. Mol. Opt. Phys. 82, 1–5 (2010).

Jhajj, N.

E. W. Rosenthal, J. P. Palastro, N. Jhajj, S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Sensitivity of propagation and energy deposition in femtosecond filamentation to the nonlinear refractive index,” J. Phys. At. Mol. Opt. Phys. 48(9), 094011 (2015).
[Crossref]

N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of Long-Lived High-Power Optical Waveguides in Air,” Phys. Rev. X 4(1), 011027 (2014).
[Crossref]

J. K. Wahlstrand, N. Jhajj, E. W. Rosenthal, S. Zahedpour, and H. M. Milchberg, “Direct imaging of the acoustic waves generated by femtosecond filaments in air,” Opt. Lett. 39(5), 1290–1293 (2014).
[Crossref] [PubMed]

Y. H. Cheng, J. K. Wahlstrand, N. Jhajj, and H. M. Milchberg, “The effect of long timescale gas dynamics on femtosecond filamentation,” Opt. Express 21(4), 4740–4751 (2013).
[Crossref] [PubMed]

Jovanovic, I.

Judge, E. J.

E. J. Judge, G. Heck, E. B. Cerkez, and R. J. Levis, “Discrimination of composite graphite samples using remote filament-induced breakdown spectroscopy,” Anal. Chem. 81(7), 2658–2663 (2009).
[Crossref] [PubMed]

Kamali, Y.

J. F. Daigle, A. Jaroń-Becker, S. Hosseini, T. J. Wang, Y. Kamali, G. Roy, A. Becker, and S. L. Chin, “Intensity clamping measurement of laser filaments in air at 400 and 800 nm,” Phys. Rev. A – At. Mol. Opt. Phys. 82, 1–5 (2010).

H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. L. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360(1-3), 171–175 (2009).
[Crossref]

H. L. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. F. Daigle, A. Azarm, P. T. T. Simard, P. Mathieu, G. Roy, J.-R. R. Simard, and S. L. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87(1), 151–156 (2007).
[Crossref]

Kaminer, I.

O. Lahav, L. Levi, I. Orr, R. Nemirovsky, J. Nemirovsky, I. Kaminer, M. Segev, and O. Cohen, “Long-lived waveguides and sound-wave generation by laser filamentation,” Phys. Rev. A 90(2), 021801 (2014).
[Crossref]

Kandidov, V. P.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
[Crossref]

Kanehira, S.

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[Crossref] [PubMed]

Kasparian, J.

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta Part B At. Spectrosc. 60, 1025–1033 (2005).

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J. P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 69, 1–7 (2004).

Koochesfahani, M.

Kosareva, O.

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Kosareva, O. G.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
[Crossref]

Kovacev, M.

Kretschmar, M.

Krstajic, N.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6(1), 6021 (2015).
[Crossref] [PubMed]

Krupenie, P.

A. Lofthus and P. Krupenie, “The spectrum of molecular nitrogen,” Phys. Chem. Ref. Data 6(1), 113–307 (1977).
[Crossref]

Kurz, H. G.

Lahav, O.

O. Lahav, L. Levi, I. Orr, R. Nemirovsky, J. Nemirovsky, I. Kaminer, M. Segev, and O. Cohen, “Long-lived waveguides and sound-wave generation by laser filamentation,” Phys. Rev. A 90(2), 021801 (2014).
[Crossref]

LaHaye, N. L.

S. S. Harilal, N. Farid, J. R. Freeman, P. K. Diwakar, N. L. LaHaye, and A. Hassanein, “Background gas collisional effects on expanding fs and ns laser ablation plumes,” Appl. Phys. A Mater. Sci. Process. 117, 1–8 (2014).

Lam, O. P.

G. C.-Y. Chan, I. Choi, X. Mao, V. Zorba, O. P. Lam, D. K. Shuh, and R. E. Russo, “Isotopic determination of uranium in soil by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B At. Spectrosc. 122, 31–39 (2016).

Laux, U.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J. P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 69, 1–7 (2004).

Leach, J.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6(1), 6021 (2015).
[Crossref] [PubMed]

Levi, L.

O. Lahav, L. Levi, I. Orr, R. Nemirovsky, J. Nemirovsky, I. Kaminer, M. Segev, and O. Cohen, “Long-lived waveguides and sound-wave generation by laser filamentation,” Phys. Rev. A 90(2), 021801 (2014).
[Crossref]

Levis, R. J.

E. J. Judge, G. Heck, E. B. Cerkez, and R. J. Levis, “Discrimination of composite graphite samples using remote filament-induced breakdown spectroscopy,” Anal. Chem. 81(7), 2658–2663 (2009).
[Crossref] [PubMed]

Li, C.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6(1), 6021 (2015).
[Crossref] [PubMed]

Li, R.

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Liu, J. S.

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Liu, W.

S. Xu, X. Sun, B. Zeng, W. Chu, J. Zhao, W. Liu, Y. Cheng, Z. Xu, and S. L. Chin, “Simple method of measuring laser peak intensity inside femtosecond laser filament in air,” Opt. Express 20(1), 299–307 (2012).
[Crossref] [PubMed]

X. Sun, S. Xu, J. Zhao, W. Liu, Y. Cheng, Z. Xu, S. L. Chin, and G. Mu, “Impressive laser intensity increase at the trailing stage of femtosecond laser filamentation in air,” Opt. Express 20(4), 4790–4795 (2012).
[Crossref] [PubMed]

H. L. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. F. Daigle, A. Azarm, P. T. T. Simard, P. Mathieu, G. Roy, J.-R. R. Simard, and S. L. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87(1), 151–156 (2007).
[Crossref]

F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: Strong dependence on external focusing,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036406 (2006).
[Crossref] [PubMed]

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
[Crossref]

W. Liu and S. Chin, “Direct measurement of the critical power of femtosecond Ti:sapphire laser pulse in air,” Opt. Express 13(15), 5750–5755 (2005).
[Crossref] [PubMed]

Liu, W. W.

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Lofthus, A.

A. Lofthus and P. Krupenie, “The spectrum of molecular nitrogen,” Phys. Chem. Ref. Data 6(1), 113–307 (1977).
[Crossref]

Lowater, F.

F. Lowater, “The band spectrum of zirconium oxide,” Proc. Phys. Soc. 44(1), 51–66 (1932).
[Crossref]

Luo, Q.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
[Crossref]

Q. Luo, S. Hosseini, B. Ferland, and S. L. Chin, “Backward time-resolved spectroscopy from filament induced by ultrafast intense laser pulses,” Opt. Commun. 233(4-6), 411–416 (2004).
[Crossref]

Mao, X.

G. C.-Y. Chan, I. Choi, X. Mao, V. Zorba, O. P. Lam, D. K. Shuh, and R. E. Russo, “Isotopic determination of uranium in soil by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B At. Spectrosc. 122, 31–39 (2016).

H. Hou, G. C.-Y. Chan, X. Mao, V. Zorba, R. Zheng, and R. E. Russo, “Femtosecond laser ablation molecular isotopic spectrometry for zirconium isotope analysis,” Anal. Chem. 87(9), 4788–4796 (2015).
[Crossref] [PubMed]

H. Hou, G. C.-Y. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta Part B At. Spectrosc. 113, 113–118 (2015).

Marceau, C.

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Mathieu, P.

H. L. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. F. Daigle, A. Azarm, P. T. T. Simard, P. Mathieu, G. Roy, J.-R. R. Simard, and S. L. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87(1), 151–156 (2007).
[Crossref]

Méjean, G.

H. L. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. F. Daigle, A. Azarm, P. T. T. Simard, P. Mathieu, G. Roy, J.-R. R. Simard, and S. L. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87(1), 151–156 (2007).
[Crossref]

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta Part B At. Spectrosc. 60, 1025–1033 (2005).

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J. P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 69, 1–7 (2004).

Milchberg, H. M.

E. W. Rosenthal, J. P. Palastro, N. Jhajj, S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Sensitivity of propagation and energy deposition in femtosecond filamentation to the nonlinear refractive index,” J. Phys. At. Mol. Opt. Phys. 48(9), 094011 (2015).
[Crossref]

S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Quantum Control of Molecular Gas Hydrodynamics,” Phys. Rev. Lett. 112(14), 143601 (2014).
[Crossref] [PubMed]

N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of Long-Lived High-Power Optical Waveguides in Air,” Phys. Rev. X 4(1), 011027 (2014).
[Crossref]

J. K. Wahlstrand, N. Jhajj, E. W. Rosenthal, S. Zahedpour, and H. M. Milchberg, “Direct imaging of the acoustic waves generated by femtosecond filaments in air,” Opt. Lett. 39(5), 1290–1293 (2014).
[Crossref] [PubMed]

Y. H. Cheng, J. K. Wahlstrand, N. Jhajj, and H. M. Milchberg, “The effect of long timescale gas dynamics on femtosecond filamentation,” Opt. Express 21(4), 4740–4751 (2013).
[Crossref] [PubMed]

Y. H. Chen, S. Varma, T. M. Antonsen, and H. M. Milchberg, “Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments,” Phys. Rev. Lett. 105(21), 215005 (2010).
[Crossref] [PubMed]

Milián, C.

G. Point, C. Milián, A. Couairon, A. Mysyrowicz, and A. Houard, “Generation of long-lived underdense channels using femtosecond filamentation in air,” J. Phys. At. Mol. Opt. Phys. 48(9), 094009 (2015).
[Crossref]

Mirell, D.

Misawa, H.

Mora, P.

S. Tzortzakis, B. Prade, M. Franco, A. Mysyrowicz, S. Hüller, and P. Mora, “Femtosecond laser-guided electric discharge in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 057401 (2001).
[Crossref] [PubMed]

Moreau, B.

Morgner, U.

Mu, G.

Murazawa, N.

Mysyrowicz, A.

G. Point, C. Milián, A. Couairon, A. Mysyrowicz, and A. Houard, “Generation of long-lived underdense channels using femtosecond filamentation in air,” J. Phys. At. Mol. Opt. Phys. 48(9), 094009 (2015).
[Crossref]

M. Durand, A. Houard, B. Prade, A. Mysyrowicz, A. Durécu, B. Moreau, D. Fleury, O. Vasseur, H. Borchert, K. Diener, R. Schmitt, F. Théberge, M. Chateauneuf, J.-F. Daigle, and J. Dubois, “Kilometer range filamentation,” Opt. Express 21(22), 26836–26845 (2013).
[Crossref] [PubMed]

S. Tzortzakis, B. Prade, M. Franco, A. Mysyrowicz, S. Hüller, and P. Mora, “Femtosecond laser-guided electric discharge in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 057401 (2001).
[Crossref] [PubMed]

Nagy, T.

Nakano, H.

K. Oguri, Y. Okano, T. Nishikawa, and H. Nakano, “Dynamics of femtosecond laser ablation studied with time-resolved x-ray absorption fine structure imaging,” Phys. Rev. B 79(14), 144106 (2009).
[Crossref]

Nemirovsky, J.

O. Lahav, L. Levi, I. Orr, R. Nemirovsky, J. Nemirovsky, I. Kaminer, M. Segev, and O. Cohen, “Long-lived waveguides and sound-wave generation by laser filamentation,” Phys. Rev. A 90(2), 021801 (2014).
[Crossref]

Nemirovsky, R.

O. Lahav, L. Levi, I. Orr, R. Nemirovsky, J. Nemirovsky, I. Kaminer, M. Segev, and O. Cohen, “Long-lived waveguides and sound-wave generation by laser filamentation,” Phys. Rev. A 90(2), 021801 (2014).
[Crossref]

Ni, X.

K. K. Anoop, X. Ni, M. Bianco, D. Paparo, X. Wang, R. Bruzzese, and S. Amoruso, “Two-dimensional imaging of atomic and nanoparticle components in copper plasma plume produced by ultrafast laser ablation,” Appl. Phys., A Mater. Sci. Process. 117, 1–6 (2014).

Nishijima, Y.

Nishikawa, T.

K. Oguri, Y. Okano, T. Nishikawa, and H. Nakano, “Dynamics of femtosecond laser ablation studied with time-resolved x-ray absorption fine structure imaging,” Phys. Rev. B 79(14), 144106 (2009).
[Crossref]

Oguri, K.

K. Oguri, Y. Okano, T. Nishikawa, and H. Nakano, “Dynamics of femtosecond laser ablation studied with time-resolved x-ray absorption fine structure imaging,” Phys. Rev. B 79(14), 144106 (2009).
[Crossref]

Okano, Y.

K. Oguri, Y. Okano, T. Nishikawa, and H. Nakano, “Dynamics of femtosecond laser ablation studied with time-resolved x-ray absorption fine structure imaging,” Phys. Rev. B 79(14), 144106 (2009).
[Crossref]

Omenetto, N.

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

Orr, I.

O. Lahav, L. Levi, I. Orr, R. Nemirovsky, J. Nemirovsky, I. Kaminer, M. Segev, and O. Cohen, “Long-lived waveguides and sound-wave generation by laser filamentation,” Phys. Rev. A 90(2), 021801 (2014).
[Crossref]

Palastro, J. P.

E. W. Rosenthal, J. P. Palastro, N. Jhajj, S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Sensitivity of propagation and energy deposition in femtosecond filamentation to the nonlinear refractive index,” J. Phys. At. Mol. Opt. Phys. 48(9), 094011 (2015).
[Crossref]

Panov, N.

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Paparo, D.

K. K. Anoop, X. Ni, M. Bianco, D. Paparo, X. Wang, R. Bruzzese, and S. Amoruso, “Two-dimensional imaging of atomic and nanoparticle components in copper plasma plume produced by ultrafast laser ablation,” Appl. Phys., A Mater. Sci. Process. 117, 1–6 (2014).

Perea, A.

J. Siegel, G. Epurescu, A. Perea, F. J. Gordillo-Vázquez, J. Gonzalo, and C. N. Afonso, “High spatial resolution in laser-induced breakdown spectroscopy of expanding plasmas,” Spectrochim. Acta - Part B At. Spectrosc. 60, 915–919 (2005).

Peterson, K.

Phillips, M. C.

S. S. Harilal, B. E. Brumfield, B. D. Cannon, and M. C. Phillips, “Shock Wave Mediated Plume Chemistry for Molecular Formation in Laser Ablation Plasmas,” Anal. Chem. 88(4), 2296–2302 (2016).
[Crossref] [PubMed]

S. S. Harilal, P. K. Diwakar, M. P. Polek, and M. C. Phillips, “Morphological changes in ultrafast laser ablation plumes with varying spot size,” Opt. Express 23(12), 15608–15615 (2015).
[Crossref] [PubMed]

Point, G.

G. Point, C. Milián, A. Couairon, A. Mysyrowicz, and A. Houard, “Generation of long-lived underdense channels using femtosecond filamentation in air,” J. Phys. At. Mol. Opt. Phys. 48(9), 094009 (2015).
[Crossref]

Polek, M. P.

Pouya, S.

Prade, B.

Qiu, J.

H. Zhang, F. Zhang, X. Du, G. Dong, and J. Qiu, “Influence of laser-induced air breakdown on femtosecond laser ablation of aluminum,” Opt. Express 23(2), 1370–1376 (2015).
[Crossref] [PubMed]

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[Crossref] [PubMed]

Raskar, R.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6(1), 6021 (2015).
[Crossref] [PubMed]

Richardson, M.

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Rodriguez, M.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J. P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 69, 1–7 (2004).

Rohwetter, P.

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta Part B At. Spectrosc. 60, 1025–1033 (2005).

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

Rosenthal, E. W.

E. W. Rosenthal, J. P. Palastro, N. Jhajj, S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Sensitivity of propagation and energy deposition in femtosecond filamentation to the nonlinear refractive index,” J. Phys. At. Mol. Opt. Phys. 48(9), 094011 (2015).
[Crossref]

N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of Long-Lived High-Power Optical Waveguides in Air,” Phys. Rev. X 4(1), 011027 (2014).
[Crossref]

J. K. Wahlstrand, N. Jhajj, E. W. Rosenthal, S. Zahedpour, and H. M. Milchberg, “Direct imaging of the acoustic waves generated by femtosecond filaments in air,” Opt. Lett. 39(5), 1290–1293 (2014).
[Crossref] [PubMed]

Roy, G.

J. F. Daigle, A. Jaroń-Becker, S. Hosseini, T. J. Wang, Y. Kamali, G. Roy, A. Becker, and S. L. Chin, “Intensity clamping measurement of laser filaments in air at 400 and 800 nm,” Phys. Rev. A – At. Mol. Opt. Phys. 82, 1–5 (2010).

H. L. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. F. Daigle, A. Azarm, P. T. T. Simard, P. Mathieu, G. Roy, J.-R. R. Simard, and S. L. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87(1), 151–156 (2007).
[Crossref]

Russo, R. E.

G. C.-Y. Chan, I. Choi, X. Mao, V. Zorba, O. P. Lam, D. K. Shuh, and R. E. Russo, “Isotopic determination of uranium in soil by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B At. Spectrosc. 122, 31–39 (2016).

H. Hou, G. C.-Y. Chan, X. Mao, V. Zorba, R. Zheng, and R. E. Russo, “Femtosecond laser ablation molecular isotopic spectrometry for zirconium isotope analysis,” Anal. Chem. 87(9), 4788–4796 (2015).
[Crossref] [PubMed]

H. Hou, G. C.-Y. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta Part B At. Spectrosc. 113, 113–118 (2015).

Ryabtsev, A.

Salmon, E.

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta Part B At. Spectrosc. 60, 1025–1033 (2005).

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J. P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 69, 1–7 (2004).

Sauerbrey, R.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J. P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 69, 1–7 (2004).

Schmitt, R.

Scholz, A.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J. P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 69, 1–7 (2004).

Schroeder, H.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
[Crossref]

Segev, M.

O. Lahav, L. Levi, I. Orr, R. Nemirovsky, J. Nemirovsky, I. Kaminer, M. Segev, and O. Cohen, “Long-lived waveguides and sound-wave generation by laser filamentation,” Phys. Rev. A 90(2), 021801 (2014).
[Crossref]

Seideman, T.

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Shuh, D. K.

G. C.-Y. Chan, I. Choi, X. Mao, V. Zorba, O. P. Lam, D. K. Shuh, and R. E. Russo, “Isotopic determination of uranium in soil by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B At. Spectrosc. 122, 31–39 (2016).

Si, J.

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[Crossref] [PubMed]

Siegel, J.

J. Siegel, G. Epurescu, A. Perea, F. J. Gordillo-Vázquez, J. Gonzalo, and C. N. Afonso, “High spatial resolution in laser-induced breakdown spectroscopy of expanding plasmas,” Spectrochim. Acta - Part B At. Spectrosc. 60, 915–919 (2005).

Simard, J.-R. R.

H. L. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. F. Daigle, A. Azarm, P. T. T. Simard, P. Mathieu, G. Roy, J.-R. R. Simard, and S. L. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87(1), 151–156 (2007).
[Crossref]

Simard, P. T.

F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: Strong dependence on external focusing,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036406 (2006).
[Crossref] [PubMed]

Simard, P. T. T.

H. L. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. F. Daigle, A. Azarm, P. T. T. Simard, P. Mathieu, G. Roy, J.-R. R. Simard, and S. L. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87(1), 151–156 (2007).
[Crossref]

Stecklum, B.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J. P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 69, 1–7 (2004).

Stelmaszczyk, K.

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta Part B At. Spectrosc. 60, 1025–1033 (2005).

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

Sun, Q.

Sun, X.

Talebpour, A.

A. Talebpour and M. Abdel-Fattah, “Spectroscopy of the gases interacting with intense femtosecond laser pulses,” Laser Phys. 11, 68–76 (2001).

A. Talebpour, J. Yang, and S. L. Chin, “Semi-empirical model for the rate of tunnel ionization of N2 and O2 molecule in an intense Ti:sapphire laser pulse,” Opt. Commun. 163(1-3), 29–32 (1999).
[Crossref]

Théberge, F.

M. Durand, A. Houard, B. Prade, A. Mysyrowicz, A. Durécu, B. Moreau, D. Fleury, O. Vasseur, H. Borchert, K. Diener, R. Schmitt, F. Théberge, M. Chateauneuf, J.-F. Daigle, and J. Dubois, “Kilometer range filamentation,” Opt. Express 21(22), 26836–26845 (2013).
[Crossref] [PubMed]

F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: Strong dependence on external focusing,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036406 (2006).
[Crossref] [PubMed]

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
[Crossref]

Thomson, R. R.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6(1), 6021 (2015).
[Crossref] [PubMed]

Tzortzakis, S.

S. Tzortzakis, B. Prade, M. Franco, A. Mysyrowicz, S. Hüller, and P. Mora, “Femtosecond laser-guided electric discharge in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 057401 (2001).
[Crossref] [PubMed]

Ueno, K.

Varma, S.

Y. H. Chen, S. Varma, T. M. Antonsen, and H. M. Milchberg, “Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments,” Phys. Rev. Lett. 105(21), 215005 (2010).
[Crossref] [PubMed]

Vasseur, O.

Wahlstrand, J. K.

E. W. Rosenthal, J. P. Palastro, N. Jhajj, S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Sensitivity of propagation and energy deposition in femtosecond filamentation to the nonlinear refractive index,” J. Phys. At. Mol. Opt. Phys. 48(9), 094011 (2015).
[Crossref]

S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Quantum Control of Molecular Gas Hydrodynamics,” Phys. Rev. Lett. 112(14), 143601 (2014).
[Crossref] [PubMed]

N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of Long-Lived High-Power Optical Waveguides in Air,” Phys. Rev. X 4(1), 011027 (2014).
[Crossref]

J. K. Wahlstrand, N. Jhajj, E. W. Rosenthal, S. Zahedpour, and H. M. Milchberg, “Direct imaging of the acoustic waves generated by femtosecond filaments in air,” Opt. Lett. 39(5), 1290–1293 (2014).
[Crossref] [PubMed]

Y. H. Cheng, J. K. Wahlstrand, N. Jhajj, and H. M. Milchberg, “The effect of long timescale gas dynamics on femtosecond filamentation,” Opt. Express 21(4), 4740–4751 (2013).
[Crossref] [PubMed]

Wang, T. J.

J. F. Daigle, A. Jaroń-Becker, S. Hosseini, T. J. Wang, Y. Kamali, G. Roy, A. Becker, and S. L. Chin, “Intensity clamping measurement of laser filaments in air at 400 and 800 nm,” Phys. Rev. A – At. Mol. Opt. Phys. 82, 1–5 (2010).

Wang, T.-J.

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Wang, X.

K. K. Anoop, X. Ni, M. Bianco, D. Paparo, X. Wang, R. Bruzzese, and S. Amoruso, “Two-dimensional imaging of atomic and nanoparticle components in copper plasma plume produced by ultrafast laser ablation,” Appl. Phys., A Mater. Sci. Process. 117, 1–6 (2014).

Wolf, J. P.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J. P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 69, 1–7 (2004).

Wolf, J.-P.

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta Part B At. Spectrosc. 60, 1025–1033 (2005).

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

Wöste, L.

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta Part B At. Spectrosc. 60, 1025–1033 (2005).

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J. P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 69, 1–7 (2004).

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

Wu, J.

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Xu, H. L.

H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. L. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360(1-3), 171–175 (2009).
[Crossref]

Xu, H. L. L.

H. L. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. F. Daigle, A. Azarm, P. T. T. Simard, P. Mathieu, G. Roy, J.-R. R. Simard, and S. L. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87(1), 151–156 (2007).
[Crossref]

Xu, S.

Xu, Z.

Xu, Z. Z.

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Yang, J.

A. Talebpour, J. Yang, and S. L. Chin, “Semi-empirical model for the rate of tunnel ionization of N2 and O2 molecule in an intense Ti:sapphire laser pulse,” Opt. Commun. 163(1-3), 29–32 (1999).
[Crossref]

Yu, J.

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta Part B At. Spectrosc. 60, 1025–1033 (2005).

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J. P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 69, 1–7 (2004).

Yuan, S.

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Zahedpour, S.

E. W. Rosenthal, J. P. Palastro, N. Jhajj, S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Sensitivity of propagation and energy deposition in femtosecond filamentation to the nonlinear refractive index,” J. Phys. At. Mol. Opt. Phys. 48(9), 094011 (2015).
[Crossref]

S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Quantum Control of Molecular Gas Hydrodynamics,” Phys. Rev. Lett. 112(14), 143601 (2014).
[Crossref] [PubMed]

J. K. Wahlstrand, N. Jhajj, E. W. Rosenthal, S. Zahedpour, and H. M. Milchberg, “Direct imaging of the acoustic waves generated by femtosecond filaments in air,” Opt. Lett. 39(5), 1290–1293 (2014).
[Crossref] [PubMed]

Zeng, B.

Zeng, H. P.

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

Zhang, F.

Zhang, H.

Zhao, J.

Zheng, R.

H. Hou, G. C.-Y. Chan, X. Mao, V. Zorba, R. Zheng, and R. E. Russo, “Femtosecond laser ablation molecular isotopic spectrometry for zirconium isotope analysis,” Anal. Chem. 87(9), 4788–4796 (2015).
[Crossref] [PubMed]

H. Hou, G. C.-Y. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta Part B At. Spectrosc. 113, 113–118 (2015).

Zorba, V.

G. C.-Y. Chan, I. Choi, X. Mao, V. Zorba, O. P. Lam, D. K. Shuh, and R. E. Russo, “Isotopic determination of uranium in soil by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B At. Spectrosc. 122, 31–39 (2016).

H. Hou, G. C.-Y. Chan, X. Mao, V. Zorba, R. Zheng, and R. E. Russo, “Femtosecond laser ablation molecular isotopic spectrometry for zirconium isotope analysis,” Anal. Chem. 87(9), 4788–4796 (2015).
[Crossref] [PubMed]

H. Hou, G. C.-Y. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta Part B At. Spectrosc. 113, 113–118 (2015).

Anal. Chem. (3)

E. J. Judge, G. Heck, E. B. Cerkez, and R. J. Levis, “Discrimination of composite graphite samples using remote filament-induced breakdown spectroscopy,” Anal. Chem. 81(7), 2658–2663 (2009).
[Crossref] [PubMed]

H. Hou, G. C.-Y. Chan, X. Mao, V. Zorba, R. Zheng, and R. E. Russo, “Femtosecond laser ablation molecular isotopic spectrometry for zirconium isotope analysis,” Anal. Chem. 87(9), 4788–4796 (2015).
[Crossref] [PubMed]

S. S. Harilal, B. E. Brumfield, B. D. Cannon, and M. C. Phillips, “Shock Wave Mediated Plume Chemistry for Molecular Formation in Laser Ablation Plasmas,” Anal. Chem. 88(4), 2296–2302 (2016).
[Crossref] [PubMed]

Appl. Phys. A Mater. Sci. Process. (1)

S. S. Harilal, N. Farid, J. R. Freeman, P. K. Diwakar, N. L. LaHaye, and A. Hassanein, “Background gas collisional effects on expanding fs and ns laser ablation plumes,” Appl. Phys. A Mater. Sci. Process. 117, 1–8 (2014).

Appl. Phys. B (1)

H. L. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. F. Daigle, A. Azarm, P. T. T. Simard, P. Mathieu, G. Roy, J.-R. R. Simard, and S. L. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87(1), 151–156 (2007).
[Crossref]

Appl. Phys. Lett. (1)

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

K. K. Anoop, X. Ni, M. Bianco, D. Paparo, X. Wang, R. Bruzzese, and S. Amoruso, “Two-dimensional imaging of atomic and nanoparticle components in copper plasma plume produced by ultrafast laser ablation,” Appl. Phys., A Mater. Sci. Process. 117, 1–6 (2014).

Appl. Spectrosc. (1)

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

Astrophys. J. (1)

S. P. Davis and P. D. Hammer, “Energy levels of zirconium oxide,” Astrophys. J. 332, 1090–1091 (1988).
[Crossref]

Can. J. Phys. (1)

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
[Crossref]

Chem. Phys. (1)

H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. L. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360(1-3), 171–175 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. At. Mol. Opt. Phys. (2)

E. W. Rosenthal, J. P. Palastro, N. Jhajj, S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Sensitivity of propagation and energy deposition in femtosecond filamentation to the nonlinear refractive index,” J. Phys. At. Mol. Opt. Phys. 48(9), 094011 (2015).
[Crossref]

G. Point, C. Milián, A. Couairon, A. Mysyrowicz, and A. Houard, “Generation of long-lived underdense channels using femtosecond filamentation in air,” J. Phys. At. Mol. Opt. Phys. 48(9), 094009 (2015).
[Crossref]

Laser Phys. (2)

S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22(1), 1–53 (2012).
[Crossref]

A. Talebpour and M. Abdel-Fattah, “Spectroscopy of the gases interacting with intense femtosecond laser pulses,” Laser Phys. 11, 68–76 (2001).

Nano Lett. (1)

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[Crossref] [PubMed]

Nat. Commun. (1)

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6(1), 6021 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

O. Graydon, “Filament vortices,” Nat. Photonics 8(12), 886 (2014).
[Crossref]

Opt. Commun. (2)

A. Talebpour, J. Yang, and S. L. Chin, “Semi-empirical model for the rate of tunnel ionization of N2 and O2 molecule in an intense Ti:sapphire laser pulse,” Opt. Commun. 163(1-3), 29–32 (1999).
[Crossref]

Q. Luo, S. Hosseini, B. Ferland, and S. L. Chin, “Backward time-resolved spectroscopy from filament induced by ultrafast intense laser pulses,” Opt. Commun. 233(4-6), 411–416 (2004).
[Crossref]

Opt. Express (11)

Y. H. Cheng, J. K. Wahlstrand, N. Jhajj, and H. M. Milchberg, “The effect of long timescale gas dynamics on femtosecond filamentation,” Opt. Express 21(4), 4740–4751 (2013).
[Crossref] [PubMed]

S. S. Harilal, P. K. Diwakar, M. P. Polek, and M. C. Phillips, “Morphological changes in ultrafast laser ablation plumes with varying spot size,” Opt. Express 23(12), 15608–15615 (2015).
[Crossref] [PubMed]

A. Ryabtsev, S. Pouya, M. Koochesfahani, and M. Dantus, “Vortices in the wake of a femtosecond laser filament,” Opt. Express 22(21), 26098–26102 (2014).
[Crossref] [PubMed]

H. Zhang, F. Zhang, X. Du, G. Dong, and J. Qiu, “Influence of laser-induced air breakdown on femtosecond laser ablation of aluminum,” Opt. Express 23(2), 1370–1376 (2015).
[Crossref] [PubMed]

M. Kretschmar, C. Brée, T. Nagy, A. Demircan, H. G. Kurz, U. Morgner, and M. Kovačev, “Direct observation of pulse dynamics and self-compression along a femtosecond filament,” Opt. Express 22(19), 22905–22916 (2014).
[Crossref] [PubMed]

W. Liu and S. Chin, “Direct measurement of the critical power of femtosecond Ti:sapphire laser pulse in air,” Opt. Express 13(15), 5750–5755 (2005).
[Crossref] [PubMed]

M. Durand, A. Houard, B. Prade, A. Mysyrowicz, A. Durécu, B. Moreau, D. Fleury, O. Vasseur, H. Borchert, K. Diener, R. Schmitt, F. Théberge, M. Chateauneuf, J.-F. Daigle, and J. Dubois, “Kilometer range filamentation,” Opt. Express 21(22), 26836–26845 (2013).
[Crossref] [PubMed]

I. Ghebregziabher, K. C. Hartig, and I. Jovanovic, “Propagation distance-resolved characteristics of filament-induced copper plasma,” Opt. Express 24(5), 5263–5276 (2016).
[Crossref] [PubMed]

Q. Sun, H. Asahi, Y. Nishijima, N. Murazawa, K. Ueno, and H. Misawa, “Pulse duration dependent nonlinear propagation of a focused femtosecond laser pulse in fused silica,” Opt. Express 18(24), 24495–24503 (2010).
[Crossref] [PubMed]

X. Sun, S. Xu, J. Zhao, W. Liu, Y. Cheng, Z. Xu, S. L. Chin, and G. Mu, “Impressive laser intensity increase at the trailing stage of femtosecond laser filamentation in air,” Opt. Express 20(4), 4790–4795 (2012).
[Crossref] [PubMed]

S. Xu, X. Sun, B. Zeng, W. Chu, J. Zhao, W. Liu, Y. Cheng, Z. Xu, and S. L. Chin, “Simple method of measuring laser peak intensity inside femtosecond laser filament in air,” Opt. Express 20(1), 299–307 (2012).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Chem. Ref. Data (1)

A. Lofthus and P. Krupenie, “The spectrum of molecular nitrogen,” Phys. Chem. Ref. Data 6(1), 113–307 (1977).
[Crossref]

Phys. Rev. A (1)

O. Lahav, L. Levi, I. Orr, R. Nemirovsky, J. Nemirovsky, I. Kaminer, M. Segev, and O. Cohen, “Long-lived waveguides and sound-wave generation by laser filamentation,” Phys. Rev. A 90(2), 021801 (2014).
[Crossref]

Phys. Rev. A – At. Mol. Opt. Phys. (1)

J. F. Daigle, A. Jaroń-Becker, S. Hosseini, T. J. Wang, Y. Kamali, G. Roy, A. Becker, and S. L. Chin, “Intensity clamping measurement of laser filaments in air at 400 and 800 nm,” Phys. Rev. A – At. Mol. Opt. Phys. 82, 1–5 (2010).

Phys. Rev. B (1)

K. Oguri, Y. Okano, T. Nishikawa, and H. Nakano, “Dynamics of femtosecond laser ablation studied with time-resolved x-ray absorption fine structure imaging,” Phys. Rev. B 79(14), 144106 (2009).
[Crossref]

Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. (1)

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J. P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 69, 1–7 (2004).

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: Strong dependence on external focusing,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036406 (2006).
[Crossref] [PubMed]

S. Tzortzakis, B. Prade, M. Franco, A. Mysyrowicz, S. Hüller, and P. Mora, “Femtosecond laser-guided electric discharge in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 057401 (2001).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

Y. H. Chen, S. Varma, T. M. Antonsen, and H. M. Milchberg, “Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments,” Phys. Rev. Lett. 105(21), 215005 (2010).
[Crossref] [PubMed]

S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Quantum Control of Molecular Gas Hydrodynamics,” Phys. Rev. Lett. 112(14), 143601 (2014).
[Crossref] [PubMed]

Phys. Rev. X (1)

N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of Long-Lived High-Power Optical Waveguides in Air,” Phys. Rev. X 4(1), 011027 (2014).
[Crossref]

Proc. Phys. Soc. (1)

F. Lowater, “The band spectrum of zirconium oxide,” Proc. Phys. Soc. 44(1), 51–66 (1932).
[Crossref]

Spectrochim. Acta - Part B At. Spectrosc. (1)

J. Siegel, G. Epurescu, A. Perea, F. J. Gordillo-Vázquez, J. Gonzalo, and C. N. Afonso, “High spatial resolution in laser-induced breakdown spectroscopy of expanding plasmas,” Spectrochim. Acta - Part B At. Spectrosc. 60, 915–919 (2005).

Spectrochim. Acta Part B At. Spectrosc. (3)

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta Part B At. Spectrosc. 60, 1025–1033 (2005).

H. Hou, G. C.-Y. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta Part B At. Spectrosc. 113, 113–118 (2015).

G. C.-Y. Chan, I. Choi, X. Mao, V. Zorba, O. P. Lam, D. K. Shuh, and R. E. Russo, “Isotopic determination of uranium in soil by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B At. Spectrosc. 122, 31–39 (2016).

Other (1)

E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics (Springer Berlin Heidelberg, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup.
Fig. 2
Fig. 2 (a): Air filament fluorescence image and longitudinal intensity distribution. Red triangles indicate the sample surface positions for following experiments. 1000 laser pulses were accumulated and the ICCD gate delay and gate width were 0 and 10 ns, respectively. The persistent time of fluorescence is less than 10 ns, which was experimentally confirmed, as shown in (b). The spectra shown in (b) were taken with 2 ns gate width.
Fig. 3
Fig. 3 The time evolution of (a) density and (b) radical velocity component v r as color-coded by temperature in K and the radical pressure component (-σr) in kPa, respectively.
Fig. 4
Fig. 4 Time resolved images of fs-laser induced plasmas from zirconium metal sample positioned at five different locations as indicated in Fig. 1.
Fig. 5
Fig. 5 Temporal and spatial resolved plasma emission spectra recorded by two dimensional ICCD array. Zirconium metal sample was placed at position of H4. Zone I is the bottom of plasma and Zone II is the top plasma, as shown in (e).
Fig. 6
Fig. 6 (a) Intensity distribution of Zr I 462.64 nm versus plasma height. Continuum and molecular emission components were subtracted, and intensity was further normalized by dividing the maximum. (b) Spectra obtained by integrating ICCD pixel counts corresponding to Zone I and Zone II, respectively. Dark current was subtracted and the two spectra were normalized by dividing maximum intensity. The gate delay was 1000 ns and gate width was 500 ns.
Fig. 7
Fig. 7 Temporal evolutions of (a): intensity of Zr atomic line at 462.64 nm, (b): peak width of Zr I 462.64 nm, (c): intensity ratio of ZrO molecular bandhead to Zr I 462.64 nm, and (d): excitation temperature for two separate portions of plasma induced at position H4. For late plasma, plasma plume split into two parts, the one close to sample was defined as Zone I and another part was defined as Zone II.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n t + j n =0,
( np ) t +( j n p )=σ,
( ) t +( j n ε )= j k +( σv ),
j n =nv,
σ=( P+λv )I+η( v+ T v ),
j k =kε,

Metrics