Abstract

Visible light positioning (VLP) is a promising technique to complement Global Navigation Satellite System (GNSS) such as Global positioning system (GPS) and BeiDou Navigation Satellite System (BDS) which features the advantage of low-cost and high accuracy. The situation becomes even more crucial for indoor environments, where satellite signals are weak or even unavailable. For large-scale application of VLP, there would be a considerable number of Light emitting diode (LED) IDs, which bring forward the demand of long LED ID detection. In particular, to provision indoor localization globally, a convenient way is to program a unique ID into each LED during manufacture. This poses a big challenge for image sensors, such as the CMOS camera in everybody’s hands since the long ID covers the span of multiple frames. In this paper, we investigate the detection of ultra-long ID using rolling shutter cameras. By analyzing the pattern of data loss in each frame, we proposed a novel coding technique to improve the efficiency of LED ID detection. We studied the performance of Reed-Solomon (RS) code in this system and designed a new coding method which considered the trade-off between performance and decoding complexity. Coding technique decreases the number of frames needed in data processing, significantly reduces the detection time, and improves the accuracy of detection. Numerical and experimental results show that the detected LED ID can be much longer with the coding technique. Besides, our proposed coding method is proved to achieve a performance close to that of RS code while the decoding complexity is much lower.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Accuracy analysis and improvement of visible light positioning based on VLC system using orthogonal frequency division multiple access

Yitong Xu, Zixiong Wang, Peixi Liu, Jian Chen, Shiying Han, Changyuan Yu, and Jinlong Yu
Opt. Express 25(26) 32618-32630 (2017)

Visible light communication and positioning using positioning cells and machine learning algorithms

Yu-Cheng Chuang, Zhi-Qing Li, Chin-Wei Hsu, Yang Liu, and Chi-Wai Chow
Opt. Express 27(11) 16377-16383 (2019)

Long distance non-line-of-sight (NLOS) visible light signal detection based on rolling-shutter-patterning of mobile-phone camera

Wei-Chung Wang, Chi-Wai Chow, Liang-Yu Wei, Yang Liu, and Chien-Hung Yeh
Opt. Express 25(9) 10103-10108 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Y. F. Yin, W. Y. Lan, T. C. Lin, C. Wang, M. Feng, and J. J. Huang, “High-speed visible light communication using GaN-based light-emitting diodes with photonic crystals,” J. Lightwave Technol. 35(2), 258–264 (2017).
    [Crossref]
  2. Z. Lu, P. Tian, H. Chen, I. Baranowski, H. Fu, X. Huang, J. Montes, Y. Fan, H. Wang, X. Liu, R. Liu, and Y. Zhao, “Active tracking system for visible light communication using a GaN-based micro-LED and NRZ-OOK,” Opt. Express 25(15), 17971–17981 (2017).
    [Crossref] [PubMed]
  3. A. Sewaiwar, S. V. Tiwari, and Y. H. Chung, “Visible light communication based motion detection,” Opt. Express 23(14), 18769–18776 (2015).
    [Crossref] [PubMed]
  4. T. H. Do and M. Yoo, “An in-depth survey of visible light communication based positioning systems,” Sensors (Basel) 16(5), 678 (2016).
    [Crossref] [PubMed]
  5. Z. Zheng, L. Liu, and W. Hu, “Accuracy of ranging based on DMT visible light communication for indoor positioning,” IEEE Photonics Technol. Lett. 29(8), 679–682 (2017).
    [Crossref]
  6. H. Zheng, Z. Xu, C. Yu, and M. Gurusamy, “Indoor three-dimensional positioning based on visible light communication using Hamming filter,” in Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2016), paper SpM4E.3.
  7. P. Luo, M. Zhang, Z. Ghassemlooy, S. Zvanovec, S. Feng, and P. Zhang, “Undersampled-Based Modulation Schemes for Optical Camera Communications,” IEEE Commun. Mag. 56(2), 204–212 (2018).
    [Crossref]
  8. B. Lin, Z. Ghassemlooy, C. Lin, X. Tang, Y. Li, and S. Zhang, “An Indoor Visible Light Positioning System Based on Optical Camera Communications,” IEEE Photonics Technol. Lett. 29(7), 579–582 (2017).
    [Crossref]
  9. K. Liang, C.-W. Chow, and Y. Liu, “Mobile-phone based visible light communication using region-grow light source tracking for unstable light source,” Opt. Express 24(15), 17505–17510 (2016).
    [Crossref] [PubMed]
  10. K. Liang, C.-W. Chow, and Y. Liu, “RGB visible light communication using mobile-phone camera and multi-input multi-output,” Opt. Express 24(9), 9383–9388 (2016).
    [Crossref] [PubMed]
  11. R. Boubezari, H. L. Minh, Z. Ghassemlooy, and A. Bouridane, “Smartphone camera based visible light communication,” J. Lightwave Technol. 34(17), 4020–4026 (2016).
    [Crossref]
  12. J. Shi, J. He, J. He, R. Deng, Y. Wei, F. Long, Y. Cheng, and L. Chen, “Multilevel modulation scheme using the overlapping of two light sources for visible light communication with mobile phone camera,” Opt. Express 25(14), 15905–15912 (2017).
    [Crossref] [PubMed]
  13. U. Demir and O. Aktas, “Raptor versus Reed Solomon forward error correction codes,” in Proceedings of IEEE International Symposium on Computer Networks (IEEE, 2006), pp. 264–269.
    [Crossref]

2018 (1)

P. Luo, M. Zhang, Z. Ghassemlooy, S. Zvanovec, S. Feng, and P. Zhang, “Undersampled-Based Modulation Schemes for Optical Camera Communications,” IEEE Commun. Mag. 56(2), 204–212 (2018).
[Crossref]

2017 (5)

2016 (4)

T. H. Do and M. Yoo, “An in-depth survey of visible light communication based positioning systems,” Sensors (Basel) 16(5), 678 (2016).
[Crossref] [PubMed]

K. Liang, C.-W. Chow, and Y. Liu, “Mobile-phone based visible light communication using region-grow light source tracking for unstable light source,” Opt. Express 24(15), 17505–17510 (2016).
[Crossref] [PubMed]

K. Liang, C.-W. Chow, and Y. Liu, “RGB visible light communication using mobile-phone camera and multi-input multi-output,” Opt. Express 24(9), 9383–9388 (2016).
[Crossref] [PubMed]

R. Boubezari, H. L. Minh, Z. Ghassemlooy, and A. Bouridane, “Smartphone camera based visible light communication,” J. Lightwave Technol. 34(17), 4020–4026 (2016).
[Crossref]

2015 (1)

Aktas, O.

U. Demir and O. Aktas, “Raptor versus Reed Solomon forward error correction codes,” in Proceedings of IEEE International Symposium on Computer Networks (IEEE, 2006), pp. 264–269.
[Crossref]

Baranowski, I.

Boubezari, R.

R. Boubezari, H. L. Minh, Z. Ghassemlooy, and A. Bouridane, “Smartphone camera based visible light communication,” J. Lightwave Technol. 34(17), 4020–4026 (2016).
[Crossref]

Bouridane, A.

R. Boubezari, H. L. Minh, Z. Ghassemlooy, and A. Bouridane, “Smartphone camera based visible light communication,” J. Lightwave Technol. 34(17), 4020–4026 (2016).
[Crossref]

Chen, H.

Chen, L.

Cheng, Y.

Chow, C.-W.

Chung, Y. H.

Demir, U.

U. Demir and O. Aktas, “Raptor versus Reed Solomon forward error correction codes,” in Proceedings of IEEE International Symposium on Computer Networks (IEEE, 2006), pp. 264–269.
[Crossref]

Deng, R.

Do, T. H.

T. H. Do and M. Yoo, “An in-depth survey of visible light communication based positioning systems,” Sensors (Basel) 16(5), 678 (2016).
[Crossref] [PubMed]

Fan, Y.

Feng, M.

Feng, S.

P. Luo, M. Zhang, Z. Ghassemlooy, S. Zvanovec, S. Feng, and P. Zhang, “Undersampled-Based Modulation Schemes for Optical Camera Communications,” IEEE Commun. Mag. 56(2), 204–212 (2018).
[Crossref]

Fu, H.

Ghassemlooy, Z.

P. Luo, M. Zhang, Z. Ghassemlooy, S. Zvanovec, S. Feng, and P. Zhang, “Undersampled-Based Modulation Schemes for Optical Camera Communications,” IEEE Commun. Mag. 56(2), 204–212 (2018).
[Crossref]

B. Lin, Z. Ghassemlooy, C. Lin, X. Tang, Y. Li, and S. Zhang, “An Indoor Visible Light Positioning System Based on Optical Camera Communications,” IEEE Photonics Technol. Lett. 29(7), 579–582 (2017).
[Crossref]

R. Boubezari, H. L. Minh, Z. Ghassemlooy, and A. Bouridane, “Smartphone camera based visible light communication,” J. Lightwave Technol. 34(17), 4020–4026 (2016).
[Crossref]

He, J.

Hu, W.

Z. Zheng, L. Liu, and W. Hu, “Accuracy of ranging based on DMT visible light communication for indoor positioning,” IEEE Photonics Technol. Lett. 29(8), 679–682 (2017).
[Crossref]

Huang, J. J.

Huang, X.

Lan, W. Y.

Li, Y.

B. Lin, Z. Ghassemlooy, C. Lin, X. Tang, Y. Li, and S. Zhang, “An Indoor Visible Light Positioning System Based on Optical Camera Communications,” IEEE Photonics Technol. Lett. 29(7), 579–582 (2017).
[Crossref]

Liang, K.

Lin, B.

B. Lin, Z. Ghassemlooy, C. Lin, X. Tang, Y. Li, and S. Zhang, “An Indoor Visible Light Positioning System Based on Optical Camera Communications,” IEEE Photonics Technol. Lett. 29(7), 579–582 (2017).
[Crossref]

Lin, C.

B. Lin, Z. Ghassemlooy, C. Lin, X. Tang, Y. Li, and S. Zhang, “An Indoor Visible Light Positioning System Based on Optical Camera Communications,” IEEE Photonics Technol. Lett. 29(7), 579–582 (2017).
[Crossref]

Lin, T. C.

Liu, L.

Z. Zheng, L. Liu, and W. Hu, “Accuracy of ranging based on DMT visible light communication for indoor positioning,” IEEE Photonics Technol. Lett. 29(8), 679–682 (2017).
[Crossref]

Liu, R.

Liu, X.

Liu, Y.

Long, F.

Lu, Z.

Luo, P.

P. Luo, M. Zhang, Z. Ghassemlooy, S. Zvanovec, S. Feng, and P. Zhang, “Undersampled-Based Modulation Schemes for Optical Camera Communications,” IEEE Commun. Mag. 56(2), 204–212 (2018).
[Crossref]

Minh, H. L.

R. Boubezari, H. L. Minh, Z. Ghassemlooy, and A. Bouridane, “Smartphone camera based visible light communication,” J. Lightwave Technol. 34(17), 4020–4026 (2016).
[Crossref]

Montes, J.

Sewaiwar, A.

Shi, J.

Tang, X.

B. Lin, Z. Ghassemlooy, C. Lin, X. Tang, Y. Li, and S. Zhang, “An Indoor Visible Light Positioning System Based on Optical Camera Communications,” IEEE Photonics Technol. Lett. 29(7), 579–582 (2017).
[Crossref]

Tian, P.

Tiwari, S. V.

Wang, C.

Wang, H.

Wei, Y.

Yin, Y. F.

Yoo, M.

T. H. Do and M. Yoo, “An in-depth survey of visible light communication based positioning systems,” Sensors (Basel) 16(5), 678 (2016).
[Crossref] [PubMed]

Zhang, M.

P. Luo, M. Zhang, Z. Ghassemlooy, S. Zvanovec, S. Feng, and P. Zhang, “Undersampled-Based Modulation Schemes for Optical Camera Communications,” IEEE Commun. Mag. 56(2), 204–212 (2018).
[Crossref]

Zhang, P.

P. Luo, M. Zhang, Z. Ghassemlooy, S. Zvanovec, S. Feng, and P. Zhang, “Undersampled-Based Modulation Schemes for Optical Camera Communications,” IEEE Commun. Mag. 56(2), 204–212 (2018).
[Crossref]

Zhang, S.

B. Lin, Z. Ghassemlooy, C. Lin, X. Tang, Y. Li, and S. Zhang, “An Indoor Visible Light Positioning System Based on Optical Camera Communications,” IEEE Photonics Technol. Lett. 29(7), 579–582 (2017).
[Crossref]

Zhao, Y.

Zheng, Z.

Z. Zheng, L. Liu, and W. Hu, “Accuracy of ranging based on DMT visible light communication for indoor positioning,” IEEE Photonics Technol. Lett. 29(8), 679–682 (2017).
[Crossref]

Zvanovec, S.

P. Luo, M. Zhang, Z. Ghassemlooy, S. Zvanovec, S. Feng, and P. Zhang, “Undersampled-Based Modulation Schemes for Optical Camera Communications,” IEEE Commun. Mag. 56(2), 204–212 (2018).
[Crossref]

IEEE Commun. Mag. (1)

P. Luo, M. Zhang, Z. Ghassemlooy, S. Zvanovec, S. Feng, and P. Zhang, “Undersampled-Based Modulation Schemes for Optical Camera Communications,” IEEE Commun. Mag. 56(2), 204–212 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (2)

B. Lin, Z. Ghassemlooy, C. Lin, X. Tang, Y. Li, and S. Zhang, “An Indoor Visible Light Positioning System Based on Optical Camera Communications,” IEEE Photonics Technol. Lett. 29(7), 579–582 (2017).
[Crossref]

Z. Zheng, L. Liu, and W. Hu, “Accuracy of ranging based on DMT visible light communication for indoor positioning,” IEEE Photonics Technol. Lett. 29(8), 679–682 (2017).
[Crossref]

J. Lightwave Technol. (2)

R. Boubezari, H. L. Minh, Z. Ghassemlooy, and A. Bouridane, “Smartphone camera based visible light communication,” J. Lightwave Technol. 34(17), 4020–4026 (2016).
[Crossref]

Y. F. Yin, W. Y. Lan, T. C. Lin, C. Wang, M. Feng, and J. J. Huang, “High-speed visible light communication using GaN-based light-emitting diodes with photonic crystals,” J. Lightwave Technol. 35(2), 258–264 (2017).
[Crossref]

Opt. Express (5)

Sensors (Basel) (1)

T. H. Do and M. Yoo, “An in-depth survey of visible light communication based positioning systems,” Sensors (Basel) 16(5), 678 (2016).
[Crossref] [PubMed]

Other (2)

U. Demir and O. Aktas, “Raptor versus Reed Solomon forward error correction codes,” in Proceedings of IEEE International Symposium on Computer Networks (IEEE, 2006), pp. 264–269.
[Crossref]

H. Zheng, Z. Xu, C. Yu, and M. Gurusamy, “Indoor three-dimensional positioning based on visible light communication using Hamming filter,” in Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2016), paper SpM4E.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Block diagram of the coding aided VLC based positioning system.
Fig. 2
Fig. 2 The operation of rolling shutter. The squares above indicate the state of LED light. The squares below show the output of camera—the stripes in photos.
Fig. 3
Fig. 3 Flow chart of the image processing.
Fig. 4
Fig. 4 The principle of the proposed encoder.
Fig. 5
Fig. 5 Schematic diagram of decoding procedure.
Fig. 6
Fig. 6 The fuzziness of stripes causes the data loss.
Fig. 7
Fig. 7 (a) The relations between the largest LED ID length and the number of the used photos; (b) the relations between the largest LED ID length and the block length.
Fig. 8
Fig. 8 The length of LED ID that can be reliably detected ( λ80%) when the proposed code, RS code and the DS method are used.
Fig. 9
Fig. 9 The experimental indoor visible light positioning system.
Fig. 10
Fig. 10 Data loss μ versus the distance d.
Fig. 11
Fig. 11 Successful detection probability λ with different distances.

Tables (1)

Tables Icon

Table 1 Parameters of transmitter and receiver

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

G=[ I G' ],
G ' ij ={ 1 jiF 0 others ,
Exposure time 1 f t .
k t =m× f t f s .
μ=1- k r k t .
G'=[ 1 1 0 1 0 0 0 1 1 0 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 1 0 0 1 1 1 0 1 0 0 1 ]

Metrics