Abstract

Biomimetic photonics extract the good design of nature and mimic it with photonics. The weakly electric fish genus, Eigenmannia, has a unique neural algorithm – jamming avoidance response, to facilitate their survival in the deep dark ocean, by automatically adjusts the local transmitter carrier frequency to move away from the jamming frequency when it is within the jamming spectral range. Examining our own wireless microwave systems, the situation of inadvertent jamming is very similar as that in Eigenmannia. In this article, a biomimetic photonic approach inspired by the jamming avoidance response in a weakly electric fish genus, Eigenmannia, is naturally adopted to experimentally tackle signal jamming in wireless systems. Mimicking the system with photonics enables the proposed scheme to work for frequencies from hundreds of MHz to tens of GHz.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
All-optical NAND/NOT/AND/OR logic gates based on combined Brillouin gain and loss in an optical fiber

Daisy Williams, Xiaoyi Bao, and Liang Chen
Appl. Opt. 52(14) 3404-3411 (2013)

Cascadable and reconfigurable photonic logic gates based on linear lightwave interference and non-linear phase erasure

Bar Larom, Moshe Nazarathy, Arkady Rudnitsky, Amir Nevet, and Zeev Zalevsky
Opt. Express 18(13) 13600-13607 (2010)

Photonic generation of ultra-wideband signals by direct current modulation on SOA section of an SOA-integrated SGDBR laser

Hui Lv, Yonglin Yu, Tan Shu, Dexiu Huang, Shan Jiang, and Liam P. Barry
Opt. Express 18(7) 7219-7227 (2010)

References

  • View by:
  • |
  • |
  • |

  1. P. Gupta and P. R. Kumar, “The capacity of wireless networks,” ‎,” IEEE Trans. Inf. Theory 46(2), 388–404 (2000).
    [Crossref]
  2. M. Wilhelm, I. Martinovic, J. B. Schmitt, and V. Lenders, “Short paper: reactive jamming in wireless networks: how realistic is the threat?” in Proceedings of the fourth ACM conference on Wireless network security (ACM, 2011) 47–52.
    [Crossref]
  3. R. A. Poisel, Modern Communications Jamming Principles and Techniques (Artech House, Inc., 2011).
  4. K. Grover, A. Lim, and Q. Yang, “Jamming and anti-jamming techniques in wireless networks: a survey,” Int. J. Ad Hoc Ubiquitous Comput. 17(4), 197–215 (2014).
    [Crossref]
  5. Q. Xu, W. Trappe, Y. Zhang, and T. Wood, “The feasibility of launching and detecting jamming attacks in wireless networks,” in Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing (ACM, 2005) 46–57.
    [Crossref]
  6. R. Gummadi, D. Wetherall, B. Greenstein, and S. Seshan, “Understanding and mitigating the impact of RF interference on 802.11 networks,” ACM SIGCOMM Comput. Commun. Rev. 37(4), 385–396 (2007).
    [Crossref]
  7. S. Katti, S. Gollakota, and D. Katabi, “Embracing wireless interference: analog network coding,” ACM SIGCOMM Comput. Commun. Rev. 37(4), 397–408 (2007).
    [Crossref]
  8. K. Grover, A. Lim, and Q. Yang, “Jamming and anti–jamming techniques in wireless networks: a survey,” Int. J. Ad Hoc Ubiquitous Comput. 17(4), 197–215 (2014).
    [Crossref]
  9. R. Pickholtz, D. Schilling, and L. Milstein, “Theory of spread-spectrum communications - a tutorial,” IEEE Trans. Commun. 30(5), 855–884 (1982).
    [Crossref]
  10. R. L. Peterson, D. E. Borth, and R. E. Ziemer, An introduction to spread-spectrum communications (Prentice-Hall, Inc., 1995) p 614.
  11. C. Popper, M. Strasser, and S. Capkun, “Anti-jamming broadcast communication using uncoordinated spread spectrum techniques,” IEEE J. Sel. Areas Comm. 28(5), 703–715 (2010).
    [Crossref]
  12. K. M. Dostert, “Frequency-hopping spread-spectrum modulation for digital communications over electrical power lines,” IEEE J. Sel. Areas Comm. 8(4), 700–710 (1990).
    [Crossref]
  13. R. T. Mason, E. W. Hodges, R. C. Hemminger, and K. C. Shuey, Frequency hopping spread spectrum communications system. (Google Patents, 2005).
  14. W. J. Brennan, Spread spectrum frequency hopping system and method. (Google Patents, 2002).
  15. S. Khattab, D. Mosse, and R. Melhem, “Jamming mitigation in multi-radio wireless networks: Reactive or proactive?” In: Proceedings of the 4th International Conference on Security and privacy in communication networks (ACM, 2008) 27.
    [Crossref]
  16. S. Khattab, D. Mosse, and R. Melhem, “Modeling of the channel-hopping anti-jamming defense in multi-radio wireless networks,” In: Proceedings of the 5th Annual International Conference on Mobile and Ubiquitous Systems: Computing, Networking, and Services (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2008) 25.
    [Crossref]
  17. V. Navda, A. Bohra, S. Ganguly, and D. Rubenstein, “Using channel hopping to increase 802.11 resilience to jamming attacks,” In: IEEE 26th IEEE International Conference on Computer Communications (IEEE, 2007) 2526–2530.
    [Crossref]
  18. B. Kerkez, T. Watteyne, M. Magliocco, S. Glaser, and K. Pister, “Feasibility analysis of controller design for adaptive channel hopping,” In: Proceedings of the Fourth International ICST Conference on Performance Evaluation Methodologies and Tools (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2009) 76.
    [Crossref]
  19. H. Wang, L. Zhang, T. Li, and J. Tugnait, “Spectrally efficient jamming mitigation based on code-controlled frequency hopping,” IEEE Trans. Wirel. Commun. 10(3), 728–732 (2011).
    [Crossref]
  20. S. U. Yoon, R. Murawski, E. Ekici, S. Park, and Z. Mir, “Adaptive channel hopping for interference robust wireless sensor networks,” In: 2010 IEEE International Conference on Communications (IEEE, 2010) p 1–5.
    [Crossref]
  21. K. Pelechrinis, C. Koufogiannakis, and S. V. Krishnamurthy, “Gaming the jammer: is frequency hopping effective?” In: Proceedings of the 7th International Conference on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, (IEEE, 2009) 187–196.
    [Crossref]
  22. S. K. Jain and K. Garg, “A hybrid model of defense techniques against base station jamming attack in wireless sensor networks,” In: Proceedings of the 2009 First International Conference on Computational Intelligence, Communication Systems and Networks, (IEEE, 2009) 102–107.
    [Crossref]
  23. T. H. Bullock, R. H. Hamstra, and H. Scheich, “The Jamming Avoidance Response of High Frequency Electric Fish,” How do Brains Work? (Birkhäuser Boston, 1993) 509–534.
  24. H. Scheich, “Neural basis of communication in the high frequency electric fish, Eigenmannia virescens (Jamming Avoidance Response)‎,” J. Comp. Physiol. 113(2), 181–206 (1977).
    [Crossref]
  25. W. Heiligenberg and G. Rose, “Phase and amplitude computations in the midbrain of an electric fish: intracellular studies of neurons participating in the jamming avoidance response of Eigenmannia,” J. Neurosci. 5(2), 515–531 (1985).
    [Crossref] [PubMed]
  26. W. Metzner, “The jamming avoidance response in Eigenmannia is controlled by two separate motor pathways,” J. Neurosci. 13(5), 1862–1878 (1993).
    [Crossref] [PubMed]
  27. S. A. Stamper, M. S. Madhav, N. J. Cowan, and E. S. Fortune, “Beyond the jamming avoidance response: weakly electric fish respond to the envelope of social electrosensory signals,” J. Exp. Biol. 215(23), 4196–4207 (2012).
    [Crossref] [PubMed]
  28. J. E. LeMoncheck and E. John, “An analog VLSI model of the jamming avoidance response in electric fish,” IEEE J. Solid-State Circuits 27(6), 874–882 (1992).
    [Crossref]
  29. R. Toole and M. P. Fok, “A photonic RF jamming avoidance response system bio-inspired by Eigenmannia,” 2016 Optical Fiber Communications Conference and Exhibition (Optical Society of America, 2016), paper W1G.4.
    [Crossref]
  30. P. R. Prucnal, M. P. Fok, D. Rosenbluth, and K. Kravtsov, “Lightwave neuromorphic signal processing,” 2011 ICO International Conference on Information Photonics (IEEE, 2011) p. 1–2.
  31. R. Toole and M. P. Fok, “Photonic implementation of a neuronal algorithm applicable towards angle of arrival detection and localization,” Opt. Express 23(12), 16133–16141 (2015).
    [Crossref] [PubMed]
  32. M. P. Fok, J. Ge, R. Toole, R. Lin, Q. Zhou, A. James, and A. Mathews, “Wideband dynamic microwave photonic systems: from photonics to neuromorphic,” Asia Communications and Photonics Conference 2016, (Optical Society of America, 2016), paper ATh3H.1.
    [Crossref]
  33. P. R. Prucnal, B. J. Shastri, T. Ferreira de Lima, M. A. Nahmias, and A. N. Tait, “Recent progress in semiconductor excitable lasers for photonic spike processing,” Adv. Opt. Photonics 8(2), 228–299 (2016).
    [Crossref]
  34. H. J. Lee, H. G. Kim, J. Y. Choi, and H. K. Lee, “All-optical clock recovery from NRZ data with simple NRZ-to-PRZ converter based on self-phase modulation of semiconductor optical amplifier,” Electron. Lett. 35(12), 989–990 (1999).
    [Crossref]
  35. L. Yin, Y. Yan, Y. Zhou, J. Wu, and J. Lin, “All-optical clock recovery from 10-Gb/s NRZ data and NRZ to RZ format conversion,” Chin. Opt. Lett. 4(1), 4–7 (2006).
  36. R. Lin, L. Perea, T. Do, J. Ge, L. Xu, and M. P. Fok, “Bio-inspired optical microwave phase lock loop based on nonlinear effects in semiconductor optical amplifier,” Optical Fiber Communication Conference, (Optical Society of America, 2017), paper Th2A.41.
    [Crossref]
  37. Y. K. Seo, C. S. Choi, and W. Y. Choi, “All-optical signal up-conversion for radio-on-fiber applications using cross-gain modulation in semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 14(10), 1448–1450 (2002).
    [Crossref]
  38. R. Inohara, K. Nishimura, M. Tsurusawa, and M. Usami, “Experimental analysis of cross-phase modulation and cross-gain modulation in SOA-injecting CW assist light,” IEEE Photonics Technol. Lett. 15(9), 1192–1194 (2003).
    [Crossref]
  39. W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10(3), 190–195 (2016).
    [Crossref]
  40. J. Xu, X. Zhang, J. Dong, D. Liu, and D. Huang, “High-speed all-optical differentiator based on a semiconductor optical amplifier and an optical filter,” Opt. Lett. 32(13), 1872–1874 (2007).
    [Crossref] [PubMed]
  41. J. M. Wang, S. C. Fang, and W. S. Feng, “New efficient designs for XOR and XNOR functions on the transistor level,” IEEE J. Solid-State Circuits 29(7), 780–786 (1994).
    [Crossref]
  42. R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, “40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett. 39(1), 79–81 (2003).
    [Crossref]
  43. J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photonics Technol. Lett. 14(10), 1436–1438 (2002).
    [Crossref]
  44. M. P. Fok and P. R. Prucnal, “All-optical XOR gate with optical feedback using highly Ge-doped nonlinear fiber and a terahertz optical asymmetric demultiplexer,” Appl. Opt. 50(2), 237–241 (2011).
    [Crossref] [PubMed]

2016 (2)

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10(3), 190–195 (2016).
[Crossref]

P. R. Prucnal, B. J. Shastri, T. Ferreira de Lima, M. A. Nahmias, and A. N. Tait, “Recent progress in semiconductor excitable lasers for photonic spike processing,” Adv. Opt. Photonics 8(2), 228–299 (2016).
[Crossref]

2015 (1)

2014 (2)

K. Grover, A. Lim, and Q. Yang, “Jamming and anti-jamming techniques in wireless networks: a survey,” Int. J. Ad Hoc Ubiquitous Comput. 17(4), 197–215 (2014).
[Crossref]

K. Grover, A. Lim, and Q. Yang, “Jamming and anti–jamming techniques in wireless networks: a survey,” Int. J. Ad Hoc Ubiquitous Comput. 17(4), 197–215 (2014).
[Crossref]

2012 (1)

S. A. Stamper, M. S. Madhav, N. J. Cowan, and E. S. Fortune, “Beyond the jamming avoidance response: weakly electric fish respond to the envelope of social electrosensory signals,” J. Exp. Biol. 215(23), 4196–4207 (2012).
[Crossref] [PubMed]

2011 (2)

H. Wang, L. Zhang, T. Li, and J. Tugnait, “Spectrally efficient jamming mitigation based on code-controlled frequency hopping,” IEEE Trans. Wirel. Commun. 10(3), 728–732 (2011).
[Crossref]

M. P. Fok and P. R. Prucnal, “All-optical XOR gate with optical feedback using highly Ge-doped nonlinear fiber and a terahertz optical asymmetric demultiplexer,” Appl. Opt. 50(2), 237–241 (2011).
[Crossref] [PubMed]

2010 (1)

C. Popper, M. Strasser, and S. Capkun, “Anti-jamming broadcast communication using uncoordinated spread spectrum techniques,” IEEE J. Sel. Areas Comm. 28(5), 703–715 (2010).
[Crossref]

2007 (3)

R. Gummadi, D. Wetherall, B. Greenstein, and S. Seshan, “Understanding and mitigating the impact of RF interference on 802.11 networks,” ACM SIGCOMM Comput. Commun. Rev. 37(4), 385–396 (2007).
[Crossref]

S. Katti, S. Gollakota, and D. Katabi, “Embracing wireless interference: analog network coding,” ACM SIGCOMM Comput. Commun. Rev. 37(4), 397–408 (2007).
[Crossref]

J. Xu, X. Zhang, J. Dong, D. Liu, and D. Huang, “High-speed all-optical differentiator based on a semiconductor optical amplifier and an optical filter,” Opt. Lett. 32(13), 1872–1874 (2007).
[Crossref] [PubMed]

2006 (1)

2003 (2)

R. Inohara, K. Nishimura, M. Tsurusawa, and M. Usami, “Experimental analysis of cross-phase modulation and cross-gain modulation in SOA-injecting CW assist light,” IEEE Photonics Technol. Lett. 15(9), 1192–1194 (2003).
[Crossref]

R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, “40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett. 39(1), 79–81 (2003).
[Crossref]

2002 (2)

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photonics Technol. Lett. 14(10), 1436–1438 (2002).
[Crossref]

Y. K. Seo, C. S. Choi, and W. Y. Choi, “All-optical signal up-conversion for radio-on-fiber applications using cross-gain modulation in semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 14(10), 1448–1450 (2002).
[Crossref]

2000 (1)

P. Gupta and P. R. Kumar, “The capacity of wireless networks,” ‎,” IEEE Trans. Inf. Theory 46(2), 388–404 (2000).
[Crossref]

1999 (1)

H. J. Lee, H. G. Kim, J. Y. Choi, and H. K. Lee, “All-optical clock recovery from NRZ data with simple NRZ-to-PRZ converter based on self-phase modulation of semiconductor optical amplifier,” Electron. Lett. 35(12), 989–990 (1999).
[Crossref]

1994 (1)

J. M. Wang, S. C. Fang, and W. S. Feng, “New efficient designs for XOR and XNOR functions on the transistor level,” IEEE J. Solid-State Circuits 29(7), 780–786 (1994).
[Crossref]

1993 (1)

W. Metzner, “The jamming avoidance response in Eigenmannia is controlled by two separate motor pathways,” J. Neurosci. 13(5), 1862–1878 (1993).
[Crossref] [PubMed]

1992 (1)

J. E. LeMoncheck and E. John, “An analog VLSI model of the jamming avoidance response in electric fish,” IEEE J. Solid-State Circuits 27(6), 874–882 (1992).
[Crossref]

1990 (1)

K. M. Dostert, “Frequency-hopping spread-spectrum modulation for digital communications over electrical power lines,” IEEE J. Sel. Areas Comm. 8(4), 700–710 (1990).
[Crossref]

1985 (1)

W. Heiligenberg and G. Rose, “Phase and amplitude computations in the midbrain of an electric fish: intracellular studies of neurons participating in the jamming avoidance response of Eigenmannia,” J. Neurosci. 5(2), 515–531 (1985).
[Crossref] [PubMed]

1982 (1)

R. Pickholtz, D. Schilling, and L. Milstein, “Theory of spread-spectrum communications - a tutorial,” IEEE Trans. Commun. 30(5), 855–884 (1982).
[Crossref]

1977 (1)

H. Scheich, “Neural basis of communication in the high frequency electric fish, Eigenmannia virescens (Jamming Avoidance Response)‎,” J. Comp. Physiol. 113(2), 181–206 (1977).
[Crossref]

Bohra, A.

V. Navda, A. Bohra, S. Ganguly, and D. Rubenstein, “Using channel hopping to increase 802.11 resilience to jamming attacks,” In: IEEE 26th IEEE International Conference on Computer Communications (IEEE, 2007) 2526–2530.
[Crossref]

Byun, Y. T.

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photonics Technol. Lett. 14(10), 1436–1438 (2002).
[Crossref]

Capkun, S.

C. Popper, M. Strasser, and S. Capkun, “Anti-jamming broadcast communication using uncoordinated spread spectrum techniques,” IEEE J. Sel. Areas Comm. 28(5), 703–715 (2010).
[Crossref]

Choi, C. S.

Y. K. Seo, C. S. Choi, and W. Y. Choi, “All-optical signal up-conversion for radio-on-fiber applications using cross-gain modulation in semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 14(10), 1448–1450 (2002).
[Crossref]

Choi, J. Y.

H. J. Lee, H. G. Kim, J. Y. Choi, and H. K. Lee, “All-optical clock recovery from NRZ data with simple NRZ-to-PRZ converter based on self-phase modulation of semiconductor optical amplifier,” Electron. Lett. 35(12), 989–990 (1999).
[Crossref]

Choi, W. Y.

Y. K. Seo, C. S. Choi, and W. Y. Choi, “All-optical signal up-conversion for radio-on-fiber applications using cross-gain modulation in semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 14(10), 1448–1450 (2002).
[Crossref]

Coldren, L. A.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10(3), 190–195 (2016).
[Crossref]

Cowan, N. J.

S. A. Stamper, M. S. Madhav, N. J. Cowan, and E. S. Fortune, “Beyond the jamming avoidance response: weakly electric fish respond to the envelope of social electrosensory signals,” J. Exp. Biol. 215(23), 4196–4207 (2012).
[Crossref] [PubMed]

Dong, J.

Dostert, K. M.

K. M. Dostert, “Frequency-hopping spread-spectrum modulation for digital communications over electrical power lines,” IEEE J. Sel. Areas Comm. 8(4), 700–710 (1990).
[Crossref]

Ekici, E.

S. U. Yoon, R. Murawski, E. Ekici, S. Park, and Z. Mir, “Adaptive channel hopping for interference robust wireless sensor networks,” In: 2010 IEEE International Conference on Communications (IEEE, 2010) p 1–5.
[Crossref]

Fang, S. C.

J. M. Wang, S. C. Fang, and W. S. Feng, “New efficient designs for XOR and XNOR functions on the transistor level,” IEEE J. Solid-State Circuits 29(7), 780–786 (1994).
[Crossref]

Feng, W. S.

J. M. Wang, S. C. Fang, and W. S. Feng, “New efficient designs for XOR and XNOR functions on the transistor level,” IEEE J. Solid-State Circuits 29(7), 780–786 (1994).
[Crossref]

Ferreira de Lima, T.

P. R. Prucnal, B. J. Shastri, T. Ferreira de Lima, M. A. Nahmias, and A. N. Tait, “Recent progress in semiconductor excitable lasers for photonic spike processing,” Adv. Opt. Photonics 8(2), 228–299 (2016).
[Crossref]

Fok, M. P.

Fortune, E. S.

S. A. Stamper, M. S. Madhav, N. J. Cowan, and E. S. Fortune, “Beyond the jamming avoidance response: weakly electric fish respond to the envelope of social electrosensory signals,” J. Exp. Biol. 215(23), 4196–4207 (2012).
[Crossref] [PubMed]

Ganguly, S.

V. Navda, A. Bohra, S. Ganguly, and D. Rubenstein, “Using channel hopping to increase 802.11 resilience to jamming attacks,” In: IEEE 26th IEEE International Conference on Computer Communications (IEEE, 2007) 2526–2530.
[Crossref]

Garg, K.

S. K. Jain and K. Garg, “A hybrid model of defense techniques against base station jamming attack in wireless sensor networks,” In: Proceedings of the 2009 First International Conference on Computational Intelligence, Communication Systems and Networks, (IEEE, 2009) 102–107.
[Crossref]

Gollakota, S.

S. Katti, S. Gollakota, and D. Katabi, “Embracing wireless interference: analog network coding,” ACM SIGCOMM Comput. Commun. Rev. 37(4), 397–408 (2007).
[Crossref]

Greenstein, B.

R. Gummadi, D. Wetherall, B. Greenstein, and S. Seshan, “Understanding and mitigating the impact of RF interference on 802.11 networks,” ACM SIGCOMM Comput. Commun. Rev. 37(4), 385–396 (2007).
[Crossref]

Grover, K.

K. Grover, A. Lim, and Q. Yang, “Jamming and anti-jamming techniques in wireless networks: a survey,” Int. J. Ad Hoc Ubiquitous Comput. 17(4), 197–215 (2014).
[Crossref]

K. Grover, A. Lim, and Q. Yang, “Jamming and anti–jamming techniques in wireless networks: a survey,” Int. J. Ad Hoc Ubiquitous Comput. 17(4), 197–215 (2014).
[Crossref]

Gummadi, R.

R. Gummadi, D. Wetherall, B. Greenstein, and S. Seshan, “Understanding and mitigating the impact of RF interference on 802.11 networks,” ACM SIGCOMM Comput. Commun. Rev. 37(4), 385–396 (2007).
[Crossref]

Gupta, P.

P. Gupta and P. R. Kumar, “The capacity of wireless networks,” ‎,” IEEE Trans. Inf. Theory 46(2), 388–404 (2000).
[Crossref]

Guzzon, R. S.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10(3), 190–195 (2016).
[Crossref]

Heiligenberg, W.

W. Heiligenberg and G. Rose, “Phase and amplitude computations in the midbrain of an electric fish: intracellular studies of neurons participating in the jamming avoidance response of Eigenmannia,” J. Neurosci. 5(2), 515–531 (1985).
[Crossref] [PubMed]

Huang, D.

Inohara, R.

R. Inohara, K. Nishimura, M. Tsurusawa, and M. Usami, “Experimental analysis of cross-phase modulation and cross-gain modulation in SOA-injecting CW assist light,” IEEE Photonics Technol. Lett. 15(9), 1192–1194 (2003).
[Crossref]

Jain, S. K.

S. K. Jain and K. Garg, “A hybrid model of defense techniques against base station jamming attack in wireless sensor networks,” In: Proceedings of the 2009 First International Conference on Computational Intelligence, Communication Systems and Networks, (IEEE, 2009) 102–107.
[Crossref]

Jhon, Y. M.

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photonics Technol. Lett. 14(10), 1436–1438 (2002).
[Crossref]

John, E.

J. E. LeMoncheck and E. John, “An analog VLSI model of the jamming avoidance response in electric fish,” IEEE J. Solid-State Circuits 27(6), 874–882 (1992).
[Crossref]

Katabi, D.

S. Katti, S. Gollakota, and D. Katabi, “Embracing wireless interference: analog network coding,” ACM SIGCOMM Comput. Commun. Rev. 37(4), 397–408 (2007).
[Crossref]

Katti, S.

S. Katti, S. Gollakota, and D. Katabi, “Embracing wireless interference: analog network coding,” ACM SIGCOMM Comput. Commun. Rev. 37(4), 397–408 (2007).
[Crossref]

Khattab, S.

S. Khattab, D. Mosse, and R. Melhem, “Jamming mitigation in multi-radio wireless networks: Reactive or proactive?” In: Proceedings of the 4th International Conference on Security and privacy in communication networks (ACM, 2008) 27.
[Crossref]

Kim, H. G.

H. J. Lee, H. G. Kim, J. Y. Choi, and H. K. Lee, “All-optical clock recovery from NRZ data with simple NRZ-to-PRZ converter based on self-phase modulation of semiconductor optical amplifier,” Electron. Lett. 35(12), 989–990 (1999).
[Crossref]

Kim, J. H.

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photonics Technol. Lett. 14(10), 1436–1438 (2002).
[Crossref]

Kim, S. H.

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photonics Technol. Lett. 14(10), 1436–1438 (2002).
[Crossref]

Koufogiannakis, C.

K. Pelechrinis, C. Koufogiannakis, and S. V. Krishnamurthy, “Gaming the jammer: is frequency hopping effective?” In: Proceedings of the 7th International Conference on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, (IEEE, 2009) 187–196.
[Crossref]

Kravtsov, K.

P. R. Prucnal, M. P. Fok, D. Rosenbluth, and K. Kravtsov, “Lightwave neuromorphic signal processing,” 2011 ICO International Conference on Information Photonics (IEEE, 2011) p. 1–2.

Krishnamurthy, S. V.

K. Pelechrinis, C. Koufogiannakis, and S. V. Krishnamurthy, “Gaming the jammer: is frequency hopping effective?” In: Proceedings of the 7th International Conference on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, (IEEE, 2009) 187–196.
[Crossref]

Kumar, P. R.

P. Gupta and P. R. Kumar, “The capacity of wireless networks,” ‎,” IEEE Trans. Inf. Theory 46(2), 388–404 (2000).
[Crossref]

Lee, H. J.

H. J. Lee, H. G. Kim, J. Y. Choi, and H. K. Lee, “All-optical clock recovery from NRZ data with simple NRZ-to-PRZ converter based on self-phase modulation of semiconductor optical amplifier,” Electron. Lett. 35(12), 989–990 (1999).
[Crossref]

Lee, H. K.

H. J. Lee, H. G. Kim, J. Y. Choi, and H. K. Lee, “All-optical clock recovery from NRZ data with simple NRZ-to-PRZ converter based on self-phase modulation of semiconductor optical amplifier,” Electron. Lett. 35(12), 989–990 (1999).
[Crossref]

Lee, S.

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photonics Technol. Lett. 14(10), 1436–1438 (2002).
[Crossref]

LeMoncheck, J. E.

J. E. LeMoncheck and E. John, “An analog VLSI model of the jamming avoidance response in electric fish,” IEEE J. Solid-State Circuits 27(6), 874–882 (1992).
[Crossref]

Lenders, V.

M. Wilhelm, I. Martinovic, J. B. Schmitt, and V. Lenders, “Short paper: reactive jamming in wireless networks: how realistic is the threat?” in Proceedings of the fourth ACM conference on Wireless network security (ACM, 2011) 47–52.
[Crossref]

Li, M.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10(3), 190–195 (2016).
[Crossref]

Li, T.

H. Wang, L. Zhang, T. Li, and J. Tugnait, “Spectrally efficient jamming mitigation based on code-controlled frequency hopping,” IEEE Trans. Wirel. Commun. 10(3), 728–732 (2011).
[Crossref]

Lim, A.

K. Grover, A. Lim, and Q. Yang, “Jamming and anti-jamming techniques in wireless networks: a survey,” Int. J. Ad Hoc Ubiquitous Comput. 17(4), 197–215 (2014).
[Crossref]

K. Grover, A. Lim, and Q. Yang, “Jamming and anti–jamming techniques in wireless networks: a survey,” Int. J. Ad Hoc Ubiquitous Comput. 17(4), 197–215 (2014).
[Crossref]

Lin, J.

Liu, D.

Liu, W.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10(3), 190–195 (2016).
[Crossref]

Lu, M.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10(3), 190–195 (2016).
[Crossref]

Madhav, M. S.

S. A. Stamper, M. S. Madhav, N. J. Cowan, and E. S. Fortune, “Beyond the jamming avoidance response: weakly electric fish respond to the envelope of social electrosensory signals,” J. Exp. Biol. 215(23), 4196–4207 (2012).
[Crossref] [PubMed]

Manning, R. J.

R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, “40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett. 39(1), 79–81 (2003).
[Crossref]

Martinovic, I.

M. Wilhelm, I. Martinovic, J. B. Schmitt, and V. Lenders, “Short paper: reactive jamming in wireless networks: how realistic is the threat?” in Proceedings of the fourth ACM conference on Wireless network security (ACM, 2011) 47–52.
[Crossref]

Maxwell, G. D.

R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, “40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett. 39(1), 79–81 (2003).
[Crossref]

Melhem, R.

S. Khattab, D. Mosse, and R. Melhem, “Jamming mitigation in multi-radio wireless networks: Reactive or proactive?” In: Proceedings of the 4th International Conference on Security and privacy in communication networks (ACM, 2008) 27.
[Crossref]

Metzner, W.

W. Metzner, “The jamming avoidance response in Eigenmannia is controlled by two separate motor pathways,” J. Neurosci. 13(5), 1862–1878 (1993).
[Crossref] [PubMed]

Milstein, L.

R. Pickholtz, D. Schilling, and L. Milstein, “Theory of spread-spectrum communications - a tutorial,” IEEE Trans. Commun. 30(5), 855–884 (1982).
[Crossref]

Mir, Z.

S. U. Yoon, R. Murawski, E. Ekici, S. Park, and Z. Mir, “Adaptive channel hopping for interference robust wireless sensor networks,” In: 2010 IEEE International Conference on Communications (IEEE, 2010) p 1–5.
[Crossref]

Mosse, D.

S. Khattab, D. Mosse, and R. Melhem, “Jamming mitigation in multi-radio wireless networks: Reactive or proactive?” In: Proceedings of the 4th International Conference on Security and privacy in communication networks (ACM, 2008) 27.
[Crossref]

Murawski, R.

S. U. Yoon, R. Murawski, E. Ekici, S. Park, and Z. Mir, “Adaptive channel hopping for interference robust wireless sensor networks,” In: 2010 IEEE International Conference on Communications (IEEE, 2010) p 1–5.
[Crossref]

Nahmias, M. A.

P. R. Prucnal, B. J. Shastri, T. Ferreira de Lima, M. A. Nahmias, and A. N. Tait, “Recent progress in semiconductor excitable lasers for photonic spike processing,” Adv. Opt. Photonics 8(2), 228–299 (2016).
[Crossref]

Navda, V.

V. Navda, A. Bohra, S. Ganguly, and D. Rubenstein, “Using channel hopping to increase 802.11 resilience to jamming attacks,” In: IEEE 26th IEEE International Conference on Computer Communications (IEEE, 2007) 2526–2530.
[Crossref]

Nishimura, K.

R. Inohara, K. Nishimura, M. Tsurusawa, and M. Usami, “Experimental analysis of cross-phase modulation and cross-gain modulation in SOA-injecting CW assist light,” IEEE Photonics Technol. Lett. 15(9), 1192–1194 (2003).
[Crossref]

Norberg, E. J.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10(3), 190–195 (2016).
[Crossref]

Park, S.

S. U. Yoon, R. Murawski, E. Ekici, S. Park, and Z. Mir, “Adaptive channel hopping for interference robust wireless sensor networks,” In: 2010 IEEE International Conference on Communications (IEEE, 2010) p 1–5.
[Crossref]

Parker, J. S.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10(3), 190–195 (2016).
[Crossref]

Pelechrinis, K.

K. Pelechrinis, C. Koufogiannakis, and S. V. Krishnamurthy, “Gaming the jammer: is frequency hopping effective?” In: Proceedings of the 7th International Conference on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, (IEEE, 2009) 187–196.
[Crossref]

Pickholtz, R.

R. Pickholtz, D. Schilling, and L. Milstein, “Theory of spread-spectrum communications - a tutorial,” IEEE Trans. Commun. 30(5), 855–884 (1982).
[Crossref]

Popper, C.

C. Popper, M. Strasser, and S. Capkun, “Anti-jamming broadcast communication using uncoordinated spread spectrum techniques,” IEEE J. Sel. Areas Comm. 28(5), 703–715 (2010).
[Crossref]

Poustie, A. J.

R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, “40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett. 39(1), 79–81 (2003).
[Crossref]

Prucnal, P. R.

P. R. Prucnal, B. J. Shastri, T. Ferreira de Lima, M. A. Nahmias, and A. N. Tait, “Recent progress in semiconductor excitable lasers for photonic spike processing,” Adv. Opt. Photonics 8(2), 228–299 (2016).
[Crossref]

M. P. Fok and P. R. Prucnal, “All-optical XOR gate with optical feedback using highly Ge-doped nonlinear fiber and a terahertz optical asymmetric demultiplexer,” Appl. Opt. 50(2), 237–241 (2011).
[Crossref] [PubMed]

P. R. Prucnal, M. P. Fok, D. Rosenbluth, and K. Kravtsov, “Lightwave neuromorphic signal processing,” 2011 ICO International Conference on Information Photonics (IEEE, 2011) p. 1–2.

Rose, G.

W. Heiligenberg and G. Rose, “Phase and amplitude computations in the midbrain of an electric fish: intracellular studies of neurons participating in the jamming avoidance response of Eigenmannia,” J. Neurosci. 5(2), 515–531 (1985).
[Crossref] [PubMed]

Rosenbluth, D.

P. R. Prucnal, M. P. Fok, D. Rosenbluth, and K. Kravtsov, “Lightwave neuromorphic signal processing,” 2011 ICO International Conference on Information Photonics (IEEE, 2011) p. 1–2.

Rubenstein, D.

V. Navda, A. Bohra, S. Ganguly, and D. Rubenstein, “Using channel hopping to increase 802.11 resilience to jamming attacks,” In: IEEE 26th IEEE International Conference on Computer Communications (IEEE, 2007) 2526–2530.
[Crossref]

Scheich, H.

H. Scheich, “Neural basis of communication in the high frequency electric fish, Eigenmannia virescens (Jamming Avoidance Response)‎,” J. Comp. Physiol. 113(2), 181–206 (1977).
[Crossref]

Schilling, D.

R. Pickholtz, D. Schilling, and L. Milstein, “Theory of spread-spectrum communications - a tutorial,” IEEE Trans. Commun. 30(5), 855–884 (1982).
[Crossref]

Schmitt, J. B.

M. Wilhelm, I. Martinovic, J. B. Schmitt, and V. Lenders, “Short paper: reactive jamming in wireless networks: how realistic is the threat?” in Proceedings of the fourth ACM conference on Wireless network security (ACM, 2011) 47–52.
[Crossref]

Seo, Y. K.

Y. K. Seo, C. S. Choi, and W. Y. Choi, “All-optical signal up-conversion for radio-on-fiber applications using cross-gain modulation in semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 14(10), 1448–1450 (2002).
[Crossref]

Seshan, S.

R. Gummadi, D. Wetherall, B. Greenstein, and S. Seshan, “Understanding and mitigating the impact of RF interference on 802.11 networks,” ACM SIGCOMM Comput. Commun. Rev. 37(4), 385–396 (2007).
[Crossref]

Shastri, B. J.

P. R. Prucnal, B. J. Shastri, T. Ferreira de Lima, M. A. Nahmias, and A. N. Tait, “Recent progress in semiconductor excitable lasers for photonic spike processing,” Adv. Opt. Photonics 8(2), 228–299 (2016).
[Crossref]

Stamper, S. A.

S. A. Stamper, M. S. Madhav, N. J. Cowan, and E. S. Fortune, “Beyond the jamming avoidance response: weakly electric fish respond to the envelope of social electrosensory signals,” J. Exp. Biol. 215(23), 4196–4207 (2012).
[Crossref] [PubMed]

Strasser, M.

C. Popper, M. Strasser, and S. Capkun, “Anti-jamming broadcast communication using uncoordinated spread spectrum techniques,” IEEE J. Sel. Areas Comm. 28(5), 703–715 (2010).
[Crossref]

Tait, A. N.

P. R. Prucnal, B. J. Shastri, T. Ferreira de Lima, M. A. Nahmias, and A. N. Tait, “Recent progress in semiconductor excitable lasers for photonic spike processing,” Adv. Opt. Photonics 8(2), 228–299 (2016).
[Crossref]

Toole, R.

Trappe, W.

Q. Xu, W. Trappe, Y. Zhang, and T. Wood, “The feasibility of launching and detecting jamming attacks in wireless networks,” in Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing (ACM, 2005) 46–57.
[Crossref]

Tsurusawa, M.

R. Inohara, K. Nishimura, M. Tsurusawa, and M. Usami, “Experimental analysis of cross-phase modulation and cross-gain modulation in SOA-injecting CW assist light,” IEEE Photonics Technol. Lett. 15(9), 1192–1194 (2003).
[Crossref]

Tugnait, J.

H. Wang, L. Zhang, T. Li, and J. Tugnait, “Spectrally efficient jamming mitigation based on code-controlled frequency hopping,” IEEE Trans. Wirel. Commun. 10(3), 728–732 (2011).
[Crossref]

Usami, M.

R. Inohara, K. Nishimura, M. Tsurusawa, and M. Usami, “Experimental analysis of cross-phase modulation and cross-gain modulation in SOA-injecting CW assist light,” IEEE Photonics Technol. Lett. 15(9), 1192–1194 (2003).
[Crossref]

Wang, H.

H. Wang, L. Zhang, T. Li, and J. Tugnait, “Spectrally efficient jamming mitigation based on code-controlled frequency hopping,” IEEE Trans. Wirel. Commun. 10(3), 728–732 (2011).
[Crossref]

Wang, J. M.

J. M. Wang, S. C. Fang, and W. S. Feng, “New efficient designs for XOR and XNOR functions on the transistor level,” IEEE J. Solid-State Circuits 29(7), 780–786 (1994).
[Crossref]

Webb, R. P.

R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, “40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett. 39(1), 79–81 (2003).
[Crossref]

Wetherall, D.

R. Gummadi, D. Wetherall, B. Greenstein, and S. Seshan, “Understanding and mitigating the impact of RF interference on 802.11 networks,” ACM SIGCOMM Comput. Commun. Rev. 37(4), 385–396 (2007).
[Crossref]

Wilhelm, M.

M. Wilhelm, I. Martinovic, J. B. Schmitt, and V. Lenders, “Short paper: reactive jamming in wireless networks: how realistic is the threat?” in Proceedings of the fourth ACM conference on Wireless network security (ACM, 2011) 47–52.
[Crossref]

Woo, D. H.

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photonics Technol. Lett. 14(10), 1436–1438 (2002).
[Crossref]

Wood, T.

Q. Xu, W. Trappe, Y. Zhang, and T. Wood, “The feasibility of launching and detecting jamming attacks in wireless networks,” in Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing (ACM, 2005) 46–57.
[Crossref]

Wu, J.

Xu, J.

Xu, Q.

Q. Xu, W. Trappe, Y. Zhang, and T. Wood, “The feasibility of launching and detecting jamming attacks in wireless networks,” in Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing (ACM, 2005) 46–57.
[Crossref]

Yan, Y.

Yang, Q.

K. Grover, A. Lim, and Q. Yang, “Jamming and anti-jamming techniques in wireless networks: a survey,” Int. J. Ad Hoc Ubiquitous Comput. 17(4), 197–215 (2014).
[Crossref]

K. Grover, A. Lim, and Q. Yang, “Jamming and anti–jamming techniques in wireless networks: a survey,” Int. J. Ad Hoc Ubiquitous Comput. 17(4), 197–215 (2014).
[Crossref]

Yao, J.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10(3), 190–195 (2016).
[Crossref]

Yin, L.

Yoon, S. U.

S. U. Yoon, R. Murawski, E. Ekici, S. Park, and Z. Mir, “Adaptive channel hopping for interference robust wireless sensor networks,” In: 2010 IEEE International Conference on Communications (IEEE, 2010) p 1–5.
[Crossref]

Zhang, L.

H. Wang, L. Zhang, T. Li, and J. Tugnait, “Spectrally efficient jamming mitigation based on code-controlled frequency hopping,” IEEE Trans. Wirel. Commun. 10(3), 728–732 (2011).
[Crossref]

Zhang, X.

Zhang, Y.

Q. Xu, W. Trappe, Y. Zhang, and T. Wood, “The feasibility of launching and detecting jamming attacks in wireless networks,” in Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing (ACM, 2005) 46–57.
[Crossref]

Zhou, Y.

ACM SIGCOMM Comput. Commun. Rev. (2)

R. Gummadi, D. Wetherall, B. Greenstein, and S. Seshan, “Understanding and mitigating the impact of RF interference on 802.11 networks,” ACM SIGCOMM Comput. Commun. Rev. 37(4), 385–396 (2007).
[Crossref]

S. Katti, S. Gollakota, and D. Katabi, “Embracing wireless interference: analog network coding,” ACM SIGCOMM Comput. Commun. Rev. 37(4), 397–408 (2007).
[Crossref]

Adv. Opt. Photonics (1)

P. R. Prucnal, B. J. Shastri, T. Ferreira de Lima, M. A. Nahmias, and A. N. Tait, “Recent progress in semiconductor excitable lasers for photonic spike processing,” Adv. Opt. Photonics 8(2), 228–299 (2016).
[Crossref]

Appl. Opt. (1)

Chin. Opt. Lett. (1)

Electron. Lett. (2)

R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, “40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett. 39(1), 79–81 (2003).
[Crossref]

H. J. Lee, H. G. Kim, J. Y. Choi, and H. K. Lee, “All-optical clock recovery from NRZ data with simple NRZ-to-PRZ converter based on self-phase modulation of semiconductor optical amplifier,” Electron. Lett. 35(12), 989–990 (1999).
[Crossref]

IEEE J. Sel. Areas Comm. (2)

C. Popper, M. Strasser, and S. Capkun, “Anti-jamming broadcast communication using uncoordinated spread spectrum techniques,” IEEE J. Sel. Areas Comm. 28(5), 703–715 (2010).
[Crossref]

K. M. Dostert, “Frequency-hopping spread-spectrum modulation for digital communications over electrical power lines,” IEEE J. Sel. Areas Comm. 8(4), 700–710 (1990).
[Crossref]

IEEE J. Solid-State Circuits (2)

J. E. LeMoncheck and E. John, “An analog VLSI model of the jamming avoidance response in electric fish,” IEEE J. Solid-State Circuits 27(6), 874–882 (1992).
[Crossref]

J. M. Wang, S. C. Fang, and W. S. Feng, “New efficient designs for XOR and XNOR functions on the transistor level,” IEEE J. Solid-State Circuits 29(7), 780–786 (1994).
[Crossref]

IEEE Photonics Technol. Lett. (3)

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photonics Technol. Lett. 14(10), 1436–1438 (2002).
[Crossref]

Y. K. Seo, C. S. Choi, and W. Y. Choi, “All-optical signal up-conversion for radio-on-fiber applications using cross-gain modulation in semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 14(10), 1448–1450 (2002).
[Crossref]

R. Inohara, K. Nishimura, M. Tsurusawa, and M. Usami, “Experimental analysis of cross-phase modulation and cross-gain modulation in SOA-injecting CW assist light,” IEEE Photonics Technol. Lett. 15(9), 1192–1194 (2003).
[Crossref]

IEEE Trans. Commun. (1)

R. Pickholtz, D. Schilling, and L. Milstein, “Theory of spread-spectrum communications - a tutorial,” IEEE Trans. Commun. 30(5), 855–884 (1982).
[Crossref]

IEEE Trans. Inf. Theory (1)

P. Gupta and P. R. Kumar, “The capacity of wireless networks,” ‎,” IEEE Trans. Inf. Theory 46(2), 388–404 (2000).
[Crossref]

IEEE Trans. Wirel. Commun. (1)

H. Wang, L. Zhang, T. Li, and J. Tugnait, “Spectrally efficient jamming mitigation based on code-controlled frequency hopping,” IEEE Trans. Wirel. Commun. 10(3), 728–732 (2011).
[Crossref]

Int. J. Ad Hoc Ubiquitous Comput. (2)

K. Grover, A. Lim, and Q. Yang, “Jamming and anti-jamming techniques in wireless networks: a survey,” Int. J. Ad Hoc Ubiquitous Comput. 17(4), 197–215 (2014).
[Crossref]

K. Grover, A. Lim, and Q. Yang, “Jamming and anti–jamming techniques in wireless networks: a survey,” Int. J. Ad Hoc Ubiquitous Comput. 17(4), 197–215 (2014).
[Crossref]

J. Comp. Physiol. (1)

H. Scheich, “Neural basis of communication in the high frequency electric fish, Eigenmannia virescens (Jamming Avoidance Response)‎,” J. Comp. Physiol. 113(2), 181–206 (1977).
[Crossref]

J. Exp. Biol. (1)

S. A. Stamper, M. S. Madhav, N. J. Cowan, and E. S. Fortune, “Beyond the jamming avoidance response: weakly electric fish respond to the envelope of social electrosensory signals,” J. Exp. Biol. 215(23), 4196–4207 (2012).
[Crossref] [PubMed]

J. Neurosci. (2)

W. Heiligenberg and G. Rose, “Phase and amplitude computations in the midbrain of an electric fish: intracellular studies of neurons participating in the jamming avoidance response of Eigenmannia,” J. Neurosci. 5(2), 515–531 (1985).
[Crossref] [PubMed]

W. Metzner, “The jamming avoidance response in Eigenmannia is controlled by two separate motor pathways,” J. Neurosci. 13(5), 1862–1878 (1993).
[Crossref] [PubMed]

Nat. Photonics (1)

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10(3), 190–195 (2016).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Other (18)

M. P. Fok, J. Ge, R. Toole, R. Lin, Q. Zhou, A. James, and A. Mathews, “Wideband dynamic microwave photonic systems: from photonics to neuromorphic,” Asia Communications and Photonics Conference 2016, (Optical Society of America, 2016), paper ATh3H.1.
[Crossref]

R. Toole and M. P. Fok, “A photonic RF jamming avoidance response system bio-inspired by Eigenmannia,” 2016 Optical Fiber Communications Conference and Exhibition (Optical Society of America, 2016), paper W1G.4.
[Crossref]

P. R. Prucnal, M. P. Fok, D. Rosenbluth, and K. Kravtsov, “Lightwave neuromorphic signal processing,” 2011 ICO International Conference on Information Photonics (IEEE, 2011) p. 1–2.

S. U. Yoon, R. Murawski, E. Ekici, S. Park, and Z. Mir, “Adaptive channel hopping for interference robust wireless sensor networks,” In: 2010 IEEE International Conference on Communications (IEEE, 2010) p 1–5.
[Crossref]

K. Pelechrinis, C. Koufogiannakis, and S. V. Krishnamurthy, “Gaming the jammer: is frequency hopping effective?” In: Proceedings of the 7th International Conference on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, (IEEE, 2009) 187–196.
[Crossref]

S. K. Jain and K. Garg, “A hybrid model of defense techniques against base station jamming attack in wireless sensor networks,” In: Proceedings of the 2009 First International Conference on Computational Intelligence, Communication Systems and Networks, (IEEE, 2009) 102–107.
[Crossref]

T. H. Bullock, R. H. Hamstra, and H. Scheich, “The Jamming Avoidance Response of High Frequency Electric Fish,” How do Brains Work? (Birkhäuser Boston, 1993) 509–534.

R. L. Peterson, D. E. Borth, and R. E. Ziemer, An introduction to spread-spectrum communications (Prentice-Hall, Inc., 1995) p 614.

Q. Xu, W. Trappe, Y. Zhang, and T. Wood, “The feasibility of launching and detecting jamming attacks in wireless networks,” in Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing (ACM, 2005) 46–57.
[Crossref]

M. Wilhelm, I. Martinovic, J. B. Schmitt, and V. Lenders, “Short paper: reactive jamming in wireless networks: how realistic is the threat?” in Proceedings of the fourth ACM conference on Wireless network security (ACM, 2011) 47–52.
[Crossref]

R. A. Poisel, Modern Communications Jamming Principles and Techniques (Artech House, Inc., 2011).

R. T. Mason, E. W. Hodges, R. C. Hemminger, and K. C. Shuey, Frequency hopping spread spectrum communications system. (Google Patents, 2005).

W. J. Brennan, Spread spectrum frequency hopping system and method. (Google Patents, 2002).

S. Khattab, D. Mosse, and R. Melhem, “Jamming mitigation in multi-radio wireless networks: Reactive or proactive?” In: Proceedings of the 4th International Conference on Security and privacy in communication networks (ACM, 2008) 27.
[Crossref]

S. Khattab, D. Mosse, and R. Melhem, “Modeling of the channel-hopping anti-jamming defense in multi-radio wireless networks,” In: Proceedings of the 5th Annual International Conference on Mobile and Ubiquitous Systems: Computing, Networking, and Services (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2008) 25.
[Crossref]

V. Navda, A. Bohra, S. Ganguly, and D. Rubenstein, “Using channel hopping to increase 802.11 resilience to jamming attacks,” In: IEEE 26th IEEE International Conference on Computer Communications (IEEE, 2007) 2526–2530.
[Crossref]

B. Kerkez, T. Watteyne, M. Magliocco, S. Glaser, and K. Pister, “Feasibility analysis of controller design for adaptive channel hopping,” In: Proceedings of the Fourth International ICST Conference on Performance Evaluation Methodologies and Tools (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2009) 76.
[Crossref]

R. Lin, L. Perea, T. Do, J. Ge, L. Xu, and M. P. Fok, “Bio-inspired optical microwave phase lock loop based on nonlinear effects in semiconductor optical amplifier,” Optical Fiber Communication Conference, (Optical Society of America, 2017), paper Th2A.41.
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1       Mimicking jamming avoidance response in Eigenmannia using photonics.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Principle of the jamming avoidance response (JAR) in Eigenmannia. (a) when fR > fJ, phase of beat signal is lagging the phase of the reference signal at the falling edge of the envelope, while it is leading at the rising edge. (b) when fR < fJ, the phase of beat signal is leading the phase of the reference signal during the falling portion of the envelope, while it is lagging during the rising portion.
Fig. 2
Fig. 2 Illustration of the JAR design and the four functional units – ZeroX unit, Phase unit, Amplitude unit, and Logic unit in JAR.
Fig. 3
Fig. 3 Experimental setup of the photonics based JAR. DFB 1-4: distributed feedback laser; VCO: voltage controlled oscillator; CD: clock divider; EOM 1-3: electro-optic intensity modulator; ED: envelope detector; LPF: electrical low pass filter; SOA 1-3: semiconductor optical amplifier; OBPF 1-4: optical bandpass filter; PD: photo detector.
Fig. 4
Fig. 4 Experimental results of the photonics based JAR. (a) ZeroX unit – positive zero crossing points of the reference signal are identified and represented by the bottom red pulses. Top blue: reference signal; bottom red: output positive zero crossing pulses. (b) Phase unit – beat signal phase is compared with the zero crossing pulses. The zero crossing pulses’ amplitudes are high for phase lag and a low for phase lead. An envelope detector is used to detect the resultant envelope. Top (i)-(iii): fR > fJ; Bottom (i)-(iii): fR < fJ; Top pink: beat signal; bottom blue: modulated zero crossing output; middle green: modulated output after envelope detection; (c) Amplitude unit – rising and falling in beat signal envelope amplitude are distinguished, a high output represents rising in amplitude and a low output represents falling in amplitude. top brown: beat signal envelope; bottom blue output amplitude information.
Fig. 5
Fig. 5 Measured RF spectra when the photonic JAR is in action. (a) Sinusoid interference signal without modulation. (b) Sinusoidally amplitude-modulated interference signal. (c) Digitally amplitude-modulated interference signal. (i) Initial state – jamming signal (fJ) is approaching from lower frequency, (ii) jamming signal (fJ) is pushing towards the high frequency - JAR activated and the reference signal (fR) is moved to a higher frequency, (iii) jamming signal (fJ) is then pushed towards low frequency – JAR activated and the reference signal (fR) is moved to a lower frequency.
Fig. 6
Fig. 6 Spectral waterfall measurement of the photonic JAR in action with sinusoidal reference signal fR and jamming signals fJ with various modulation formats. (a) Pure sinusoidal – no modulation, fJAR = 150 MHz. (b) Sinusoidal amplitude modulated, fJAR = 170 MHz. (c) Digitally-amplitude modulated, fJAR = 170 MHz. For each sub-figure, (i) fJ is approaching fR from the low frequency side and triggers the JAR, (ii) fJ is approaching fR from the low frequency side and triggers the JAR, and then is moved away, (iii) fJ is approaching fR from the high frequency side and triggers the JAR, (ii) fJ is approaching fR from the high frequency side and triggers the JAR and then is moved away.

Tables (1)

Tables Icon

Table 1 Relationship between amplitude, phase, and resultant frequency change direction.

Metrics