Abstract

We proposed a simple and fast algorithm for computer-generated hologram (CGH) based on pinhole-type II using a look-up table. The method consists of two steps: in the first step, the unity amplitude diffraction pattern of the center pinhole on hologram plane is pre-calculated and stored as many sub-regions. Secondly, diffraction patterns for other pinholes are obtained by simply shifting and tiling the pre-calculated sub-regions, and the final CGH is obtained by adding them all together. The calculation time is short because only addition and multiplication of the stored diffraction pattern are required. In addition, the required memory space is small since only one diffraction pattern is stored. Numerical simulation and reconstruction are performed on both plane object and object with continuous depth profile to verify the proposed method. Result shows that the proposed method can easily achieve real-time hologram generation with several CPU threads running simultaneously.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fast computer generated hologram calculation with a mini look-up table incorporated with radial symmetric interpolation

Shuming Jiao, Zhaoyong Zhuang, and Wenbin Zou
Opt. Express 25(1) 112-123 (2017)

Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display

Tomoyoshi Shimobaba, Hirotaka Nakayama, Nobuyuki Masuda, and Tomoyoshi Ito
Opt. Express 18(19) 19504-19509 (2010)

Improved look-up table method of computer-generated holograms

Hui Wei, Guanghong Gong, and Ni Li
Appl. Opt. 55(32) 9255-9264 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
    [Crossref] [PubMed]
  2. P. W. M. Tsang and T. C. Poon, “Review on the state-of-the-art technologies for acquisition and display of digital holograms,” IEEE Trans. Industr. Inform. 12(3), 886–901 (2016).
    [Crossref]
  3. T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, “Review of fast calculation techniques for computer-generated holograms with the point-light-source-based model,” IEEE Trans. Industr. Inform. 13(5), 2447–2454 (2017).
    [Crossref]
  4. H. Zhang, L. Cao, and G. Jin, “Computer-generated hologram with occlusion effect using layer-based processing,” Appl. Opt. 56(13), F138–F143 (2017).
    [Crossref] [PubMed]
  5. T. Shimobaba, T. Kakue, and T. Ito, “Review of fast algorithms and hardware implementations on computer holography,” IEEE Trans. Industr. Inform. 12(4), 1611–1622 (2016).
    [Crossref]
  6. M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
    [Crossref]
  7. S.-C. Kim and E.-S. Kim, “Effective generation of digital holograms of three-dimensional objects using a novel look-up table method,” Appl. Opt. 47(19), D55–D62 (2008).
    [Crossref] [PubMed]
  8. T. Shimobaba, N. Masuda, and T. Ito, “Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane,” Opt. Lett. 34(20), 3133–3135 (2009).
    [Crossref] [PubMed]
  9. T. Shimobaba, H. Nakayama, N. Masuda, and T. Ito, “Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display,” Opt. Express 18(19), 19504–19509 (2010).
    [Crossref] [PubMed]
  10. T. Mishina, M. Okui, and F. Okano, “Calculation of holograms from elemental images captured by integral photography,” Appl. Opt. 45(17), 4026–4036 (2006).
    [Crossref] [PubMed]
  11. N. T. Shaked, J. Rosen, and A. Stern, “Integral holography: white-light single-shot hologram acquisition,” Opt. Express 15(9), 5754–5760 (2007).
    [Crossref] [PubMed]
  12. J.-H. Park, M.-S. Kim, G. Baasantseren, and N. Kim, “Fresnel and Fourier hologram generation using orthographic projection images,” Opt. Express 17(8), 6320–6334 (2009).
    [Crossref] [PubMed]
  13. J. Yeom, J. Hong, J.-H. Jung, K. Hong, J.-H. Park, and B. Lee, “Phase-only hologram generation based on integral imaging and its enhancement in depth resolution,” Chin. Opt. Lett. 9(12), 120009 (2011).
    [Crossref]
  14. S.-K. Lee, S.-I. Hong, Y.-S. Kim, H.-G. Lim, N.-Y. Jo, and J.-H. Park, “Hologram synthesis of three-dimensional real objects using portable integral imaging camera,” Opt. Express 21(20), 23662–23670 (2013).
    [Crossref] [PubMed]
  15. K. Wakunami, M. Yamaguchi, and B. Javidi, “High-resolution three-dimensional holographic display using dense ray sampling from integral imaging,” Opt. Lett. 37(24), 5103–5105 (2012).
    [Crossref] [PubMed]
  16. H. Kang, T. Yamaguchi, and H. Yoshikawa, “Accurate phase-added stereogram to improve the coherent stereogram,” Appl. Opt. 47(19), D44–D54 (2008).
    [Crossref] [PubMed]
  17. H. Kang, E. Stoykova, and H. Yoshikawa, “Fast phase-added stereogram algorithm for generation of photorealistic 3D content,” Appl. Opt. 55(3), A135–A143 (2016).
    [Crossref] [PubMed]
  18. M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–32 (1993).
    [Crossref]
  19. Y. Ichihashi, R. Oi, T. Senoh, K. Yamamoto, and T. Kurita, “Real-time capture and reconstruction system with multiple GPUs for a 3D live scene by a generation from 4K IP images to 8K holograms,” Opt. Express 20(19), 21645–21655 (2012).
    [Crossref] [PubMed]
  20. M. Yamaguchi, “Light-field and holographic three-dimensional displays [Invited],” J. Opt. Soc. Am. A 33(12), 2348–2364 (2016).
    [Crossref] [PubMed]
  21. J. H. Jung, S. G. Park, Y. Kim, and B. Lee, “Integral imaging using a color filter pinhole array on a display panel,” Opt. Express 20(17), 18744–18756 (2012).
    [Crossref] [PubMed]
  22. H. Navarro, R. Martínez-Cuenca, A. Molina-Martian, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral-imaging monitors,” J. Disp. Technol. 6(10), 404–411 (2010).
    [Crossref]

2017 (2)

T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, “Review of fast calculation techniques for computer-generated holograms with the point-light-source-based model,” IEEE Trans. Industr. Inform. 13(5), 2447–2454 (2017).
[Crossref]

H. Zhang, L. Cao, and G. Jin, “Computer-generated hologram with occlusion effect using layer-based processing,” Appl. Opt. 56(13), F138–F143 (2017).
[Crossref] [PubMed]

2016 (4)

H. Kang, E. Stoykova, and H. Yoshikawa, “Fast phase-added stereogram algorithm for generation of photorealistic 3D content,” Appl. Opt. 55(3), A135–A143 (2016).
[Crossref] [PubMed]

M. Yamaguchi, “Light-field and holographic three-dimensional displays [Invited],” J. Opt. Soc. Am. A 33(12), 2348–2364 (2016).
[Crossref] [PubMed]

T. Shimobaba, T. Kakue, and T. Ito, “Review of fast algorithms and hardware implementations on computer holography,” IEEE Trans. Industr. Inform. 12(4), 1611–1622 (2016).
[Crossref]

P. W. M. Tsang and T. C. Poon, “Review on the state-of-the-art technologies for acquisition and display of digital holograms,” IEEE Trans. Industr. Inform. 12(3), 886–901 (2016).
[Crossref]

2013 (1)

2012 (3)

2011 (1)

2010 (2)

T. Shimobaba, H. Nakayama, N. Masuda, and T. Ito, “Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display,” Opt. Express 18(19), 19504–19509 (2010).
[Crossref] [PubMed]

H. Navarro, R. Martínez-Cuenca, A. Molina-Martian, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral-imaging monitors,” J. Disp. Technol. 6(10), 404–411 (2010).
[Crossref]

2009 (2)

2008 (2)

2007 (1)

2006 (1)

1993 (2)

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[Crossref]

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–32 (1993).
[Crossref]

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

Baasantseren, G.

Cao, L.

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

Honda, T.

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–32 (1993).
[Crossref]

Hong, J.

Hong, K.

Hong, S.-I.

Hoshino, H.

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–32 (1993).
[Crossref]

Ichihashi, Y.

Ito, T.

T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, “Review of fast calculation techniques for computer-generated holograms with the point-light-source-based model,” IEEE Trans. Industr. Inform. 13(5), 2447–2454 (2017).
[Crossref]

T. Shimobaba, T. Kakue, and T. Ito, “Review of fast algorithms and hardware implementations on computer holography,” IEEE Trans. Industr. Inform. 12(4), 1611–1622 (2016).
[Crossref]

T. Shimobaba, H. Nakayama, N. Masuda, and T. Ito, “Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display,” Opt. Express 18(19), 19504–19509 (2010).
[Crossref] [PubMed]

T. Shimobaba, N. Masuda, and T. Ito, “Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane,” Opt. Lett. 34(20), 3133–3135 (2009).
[Crossref] [PubMed]

Javidi, B.

K. Wakunami, M. Yamaguchi, and B. Javidi, “High-resolution three-dimensional holographic display using dense ray sampling from integral imaging,” Opt. Lett. 37(24), 5103–5105 (2012).
[Crossref] [PubMed]

H. Navarro, R. Martínez-Cuenca, A. Molina-Martian, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral-imaging monitors,” J. Disp. Technol. 6(10), 404–411 (2010).
[Crossref]

Jin, G.

Jo, N.-Y.

Jung, J. H.

Jung, J.-H.

Kakue, T.

T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, “Review of fast calculation techniques for computer-generated holograms with the point-light-source-based model,” IEEE Trans. Industr. Inform. 13(5), 2447–2454 (2017).
[Crossref]

T. Shimobaba, T. Kakue, and T. Ito, “Review of fast algorithms and hardware implementations on computer holography,” IEEE Trans. Industr. Inform. 12(4), 1611–1622 (2016).
[Crossref]

Kang, H.

Kim, E.-S.

Kim, M.-S.

Kim, N.

Kim, S.-C.

Kim, Y.

Kim, Y.-S.

Kurita, T.

Lee, B.

Lee, S.-K.

Lim, H.-G.

Lucente, M.

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[Crossref]

Martínez-Corral, M.

H. Navarro, R. Martínez-Cuenca, A. Molina-Martian, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral-imaging monitors,” J. Disp. Technol. 6(10), 404–411 (2010).
[Crossref]

Martínez-Cuenca, R.

H. Navarro, R. Martínez-Cuenca, A. Molina-Martian, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral-imaging monitors,” J. Disp. Technol. 6(10), 404–411 (2010).
[Crossref]

Masuda, N.

Mishina, T.

Molina-Martian, A.

H. Navarro, R. Martínez-Cuenca, A. Molina-Martian, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral-imaging monitors,” J. Disp. Technol. 6(10), 404–411 (2010).
[Crossref]

Nakayama, H.

Navarro, H.

H. Navarro, R. Martínez-Cuenca, A. Molina-Martian, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral-imaging monitors,” J. Disp. Technol. 6(10), 404–411 (2010).
[Crossref]

Nishitsuji, T.

T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, “Review of fast calculation techniques for computer-generated holograms with the point-light-source-based model,” IEEE Trans. Industr. Inform. 13(5), 2447–2454 (2017).
[Crossref]

Ohyama, N.

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–32 (1993).
[Crossref]

Oi, R.

Okano, F.

Okui, M.

Park, J.-H.

Park, S. G.

Poon, T. C.

P. W. M. Tsang and T. C. Poon, “Review on the state-of-the-art technologies for acquisition and display of digital holograms,” IEEE Trans. Industr. Inform. 12(3), 886–901 (2016).
[Crossref]

Rosen, J.

Saavedra, G.

H. Navarro, R. Martínez-Cuenca, A. Molina-Martian, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral-imaging monitors,” J. Disp. Technol. 6(10), 404–411 (2010).
[Crossref]

Senoh, T.

Shaked, N. T.

Shimobaba, T.

T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, “Review of fast calculation techniques for computer-generated holograms with the point-light-source-based model,” IEEE Trans. Industr. Inform. 13(5), 2447–2454 (2017).
[Crossref]

T. Shimobaba, T. Kakue, and T. Ito, “Review of fast algorithms and hardware implementations on computer holography,” IEEE Trans. Industr. Inform. 12(4), 1611–1622 (2016).
[Crossref]

T. Shimobaba, H. Nakayama, N. Masuda, and T. Ito, “Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display,” Opt. Express 18(19), 19504–19509 (2010).
[Crossref] [PubMed]

T. Shimobaba, N. Masuda, and T. Ito, “Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane,” Opt. Lett. 34(20), 3133–3135 (2009).
[Crossref] [PubMed]

Stern, A.

Stoykova, E.

Tsang, P. W. M.

P. W. M. Tsang and T. C. Poon, “Review on the state-of-the-art technologies for acquisition and display of digital holograms,” IEEE Trans. Industr. Inform. 12(3), 886–901 (2016).
[Crossref]

Wakunami, K.

Yamaguchi, M.

Yamaguchi, T.

Yamamoto, K.

Yeom, J.

Yoshikawa, H.

Zhang, H.

Appl. Opt. (5)

Chin. Opt. Lett. (1)

IEEE Trans. Industr. Inform. (3)

T. Shimobaba, T. Kakue, and T. Ito, “Review of fast algorithms and hardware implementations on computer holography,” IEEE Trans. Industr. Inform. 12(4), 1611–1622 (2016).
[Crossref]

P. W. M. Tsang and T. C. Poon, “Review on the state-of-the-art technologies for acquisition and display of digital holograms,” IEEE Trans. Industr. Inform. 12(3), 886–901 (2016).
[Crossref]

T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, “Review of fast calculation techniques for computer-generated holograms with the point-light-source-based model,” IEEE Trans. Industr. Inform. 13(5), 2447–2454 (2017).
[Crossref]

J. Disp. Technol. (1)

H. Navarro, R. Martínez-Cuenca, A. Molina-Martian, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral-imaging monitors,” J. Disp. Technol. 6(10), 404–411 (2010).
[Crossref]

J. Electron. Imaging (1)

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[Crossref]

J. Opt. Soc. Am. A (1)

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (2)

Proc. SPIE (1)

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–32 (1993).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Principle of proposed method. (b)Light rays emitted from one pinhole.
Fig. 2
Fig. 2 (a)Generation of Fresnel hologram with an intermediate virtual plane. (b) Resolution on the reconstructed object plane.
Fig. 3
Fig. 3 (a) Fresnel hologram generation of two letters. (b) Generated EI array of the two letters using computational II. (c) Amplitude (upper figure) and phase (lower figure) of the unity amplitude diffraction pattern of the center pinhole on the virtual plane. (d) Amplitude (left figure) and phase (right figure) of the CGH.
Fig. 4
Fig. 4 Numerical reconstruction of the CGH at different depths.
Fig. 5
Fig. 5 (a) Frontal image of the bee model. (b) the distances from the virtual camera array to the different parts of the object. (c) Generated EI array of the object using 3ds Max software. (d) Amplitude (left figure) and phase (right figure) of the CGH.
Fig. 6
Fig. 6 Numerical reconstruction of the CGH at different depths.
Fig. 7
Fig. 7 Numerical reconstruction results from different viewing directions.
Fig. 8
Fig. 8 Numerical reconstruction results using the method in [19] with the same elemental image array.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

u kl (x,y)= E I N+1k,N+1l 0,0 R exp(i 2π λ R), (k1) pL Ng x<k pL Ng , (l1) pL Ng y<l pL Ng
u(x,y)= k N l N u kl (x,y) .
v kl (x,y)= 1 R exp(i 2π λ R), (k1) pL Ng x<k pL Ng , (l1) pL Ng y<l pL Ng
u(x,y)= k N l N v kl (x,y) E I N+1k,N+1l 0,0 .
U total (x,y)= m=M/2 M/2 n=M/2 M/2 k N l N v kl (xmp,ynp) E I N+1k,N+1l m,n exp(j φ random ).
tan 1 (p/2g)< sin 1 (λ/2 p cgh ).
R o = 1 lp/gN = gN lp .

Metrics