Abstract

Simultaneous multiple access (MA) within a single wavelength can increase the data rate and split ratio in a passive optical network while optical beat interference (OBI) becomes serious in the uplink. Previous techniques to reduce OBI were limited by their complexity and lack of extendibility; as well, bandwidth allocation among MA signals is needed for single photo diode (PD) detection. We proposed and experimentally demonstrated full-band optical pulse division multiplexing-based MA (OPDMA) in an optical access network, which can effectively reduce OBI with extendibility and fully utilize frequency resources of optical modulator without bandwidth allocation in a single-wavelength MA.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical pulse division multiplexing-based OBI reduction for single wavelength uplink multiple access in IM/DD OFDMA-PON

Sun-Young Jung, Chang-Hun Kim, Sang-Min Jung, and Sang-Kook Han
Opt. Express 24(25) 29198-29208 (2016)

Novel OBI noise reduction technique by using similar-OBI estimation in optical multiple access uplink

Hyoung Joon Park, Sun-Young Jung, and Sang-Kook Han
Opt. Express 25(17) 20860-20865 (2017)

Optical beat interference noise reduction by using out-of-band RF clipping tone signal in remotely fed OFDMA-PON link

Sang-Min Jung, Seung-Min Yang, Kyung-Hak Mun, and Sang-Kook Han
Opt. Express 22(15) 18246-18253 (2014)

References

  • View by:
  • |
  • |
  • |

  1. E. Dahlman, S. Parkvall, and J. Skold, 4G: LTE/LTE-Advanced for Mobile Broadband, 2nd ed. (Academic, 2015), Ch. 1.
  2. N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10 Gb/s,” IEEE J. Sel. Areas Comm. 28(6), 781–790 (2010).
    [Crossref]
  3. N. K. Shankaranarayanan, S. D. Elby, and K. Y. Lau, “WDMA/Subcarrier-FDMA Lightwave Networks: Limitations due to Optical Beat Interference,” J. Lightwave Technol. 9(7), 931–943 (1991).
    [Crossref]
  4. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photonics Technol. Lett. 21(17), 1265–1267 (2009).
    [Crossref]
  5. W. Q. Jin and J. M. Tang, “Experimental investigations of wavelength spacing and colorlessness of RSOA-based ONUs in real-time optical OFDMA PONs,” J. Lightwave Technol. 30(16), 2603–2609 (2012).
    [Crossref]
  6. D. H. Kim, P. Y. Xing, Y. Y. Won, S. J. Park, and S. K. Han, “Bidirectional 1.25Gb/s colorless RSOA based WDM-PON using suppressed optical carrier and polarization beam splitter,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2008, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JThA97.
    [Crossref]
  7. S. L. Woodward, X. Lu, T. E. Darcie, and G. E. Bodeep, “Reduction of optical-beat interference in subcarrier networks,” IEEE Photonics Technol. Lett. 8(5), 694–696 (1996).
    [Crossref]
  8. S. M. Jung, S. M. Yang, K. H. Mun, and S. K. Han, “Optical beat interference noise reduction by using out-of-band RF clipping tone signal in remotely fed OFDMA-PON link,” Opt. Express 22(15), 18246–18253 (2014).
    [Crossref] [PubMed]
  9. S. Y. Jung, C. H. Kim, S. M. Jung, and S. K. Han, “Optical pulse division multiplexing-based OBI reduction for single wavelength uplink multiple access in IM/DD OFDMA-PON,” Opt. Express 24(25), 29198–29208 (2016).
    [Crossref] [PubMed]
  10. S. Y. Jung, S. M. Jung, H. J. Park, and S. K. Han, “Mitigation of timing offset effect in IM/DD based OFDMA-PON uplink multiple access,” Opt. Express 23(11), 13889–13898 (2015).
    [Crossref] [PubMed]

2016 (1)

2015 (1)

2014 (1)

2012 (1)

2010 (1)

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10 Gb/s,” IEEE J. Sel. Areas Comm. 28(6), 781–790 (2010).
[Crossref]

2009 (1)

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photonics Technol. Lett. 21(17), 1265–1267 (2009).
[Crossref]

1996 (1)

S. L. Woodward, X. Lu, T. E. Darcie, and G. E. Bodeep, “Reduction of optical-beat interference in subcarrier networks,” IEEE Photonics Technol. Lett. 8(5), 694–696 (1996).
[Crossref]

1991 (1)

N. K. Shankaranarayanan, S. D. Elby, and K. Y. Lau, “WDMA/Subcarrier-FDMA Lightwave Networks: Limitations due to Optical Beat Interference,” J. Lightwave Technol. 9(7), 931–943 (1991).
[Crossref]

Bodeep, G. E.

S. L. Woodward, X. Lu, T. E. Darcie, and G. E. Bodeep, “Reduction of optical-beat interference in subcarrier networks,” IEEE Photonics Technol. Lett. 8(5), 694–696 (1996).
[Crossref]

Cvijetic, N.

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10 Gb/s,” IEEE J. Sel. Areas Comm. 28(6), 781–790 (2010).
[Crossref]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photonics Technol. Lett. 21(17), 1265–1267 (2009).
[Crossref]

Darcie, T. E.

S. L. Woodward, X. Lu, T. E. Darcie, and G. E. Bodeep, “Reduction of optical-beat interference in subcarrier networks,” IEEE Photonics Technol. Lett. 8(5), 694–696 (1996).
[Crossref]

Elby, S. D.

N. K. Shankaranarayanan, S. D. Elby, and K. Y. Lau, “WDMA/Subcarrier-FDMA Lightwave Networks: Limitations due to Optical Beat Interference,” J. Lightwave Technol. 9(7), 931–943 (1991).
[Crossref]

Han, S. K.

Hu, J.

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10 Gb/s,” IEEE J. Sel. Areas Comm. 28(6), 781–790 (2010).
[Crossref]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photonics Technol. Lett. 21(17), 1265–1267 (2009).
[Crossref]

Jin, W. Q.

Jung, S. M.

Jung, S. Y.

Kim, C. H.

Lau, K. Y.

N. K. Shankaranarayanan, S. D. Elby, and K. Y. Lau, “WDMA/Subcarrier-FDMA Lightwave Networks: Limitations due to Optical Beat Interference,” J. Lightwave Technol. 9(7), 931–943 (1991).
[Crossref]

Lu, X.

S. L. Woodward, X. Lu, T. E. Darcie, and G. E. Bodeep, “Reduction of optical-beat interference in subcarrier networks,” IEEE Photonics Technol. Lett. 8(5), 694–696 (1996).
[Crossref]

Mun, K. H.

Park, H. J.

Qian, D.

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10 Gb/s,” IEEE J. Sel. Areas Comm. 28(6), 781–790 (2010).
[Crossref]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photonics Technol. Lett. 21(17), 1265–1267 (2009).
[Crossref]

Shankaranarayanan, N. K.

N. K. Shankaranarayanan, S. D. Elby, and K. Y. Lau, “WDMA/Subcarrier-FDMA Lightwave Networks: Limitations due to Optical Beat Interference,” J. Lightwave Technol. 9(7), 931–943 (1991).
[Crossref]

Tang, J. M.

Wang, T.

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10 Gb/s,” IEEE J. Sel. Areas Comm. 28(6), 781–790 (2010).
[Crossref]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photonics Technol. Lett. 21(17), 1265–1267 (2009).
[Crossref]

Woodward, S. L.

S. L. Woodward, X. Lu, T. E. Darcie, and G. E. Bodeep, “Reduction of optical-beat interference in subcarrier networks,” IEEE Photonics Technol. Lett. 8(5), 694–696 (1996).
[Crossref]

Yang, S. M.

IEEE J. Sel. Areas Comm. (1)

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10 Gb/s,” IEEE J. Sel. Areas Comm. 28(6), 781–790 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (2)

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photonics Technol. Lett. 21(17), 1265–1267 (2009).
[Crossref]

S. L. Woodward, X. Lu, T. E. Darcie, and G. E. Bodeep, “Reduction of optical-beat interference in subcarrier networks,” IEEE Photonics Technol. Lett. 8(5), 694–696 (1996).
[Crossref]

J. Lightwave Technol. (2)

W. Q. Jin and J. M. Tang, “Experimental investigations of wavelength spacing and colorlessness of RSOA-based ONUs in real-time optical OFDMA PONs,” J. Lightwave Technol. 30(16), 2603–2609 (2012).
[Crossref]

N. K. Shankaranarayanan, S. D. Elby, and K. Y. Lau, “WDMA/Subcarrier-FDMA Lightwave Networks: Limitations due to Optical Beat Interference,” J. Lightwave Technol. 9(7), 931–943 (1991).
[Crossref]

Opt. Express (3)

Other (2)

D. H. Kim, P. Y. Xing, Y. Y. Won, S. J. Park, and S. K. Han, “Bidirectional 1.25Gb/s colorless RSOA based WDM-PON using suppressed optical carrier and polarization beam splitter,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2008, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JThA97.
[Crossref]

E. Dahlman, S. Parkvall, and J. Skold, 4G: LTE/LTE-Advanced for Mobile Broadband, 2nd ed. (Academic, 2015), Ch. 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Single wavelength multiple access: (a) TDMA, (b) TDM-OFDMA, (c) TDM-OPDMA.
Fig. 2
Fig. 2 Schematic of the proposed full-band TDM-OPDMA in a source seeding system.
Fig. 3
Fig. 3 Experimental setup to demonstrate full-band TDM-OPDMA and detected OPTs without uplink signal modulation: (a) Waveforms of OPTs before combining. (b) Waveforms of combined OPTs at some position (P1–P4) by controlling the optical delay line.
Fig. 4
Fig. 4 RF spectra of the received signals: (a) OBI and reduced OBI at some positions. Received signal of (a) ONU1 and (b) ONU2 at P1. (MC: multicarrier, SC: single-carrier)
Fig. 5
Fig. 5 Error vector magnitude of the simultaneous MA signals according to subcarrier index by varying optical delay in multicarrier-based full-band TDM-OPDMA: (a) ONU1, (b) ONU2.
Fig. 6
Fig. 6 Bit error rate of the simultaneous MA signals by varying optical delay in full-band TDM-OPDMA: (a) Multicarrier transmission. Subset: constellations. (upper: ONU1, lower: ONU2). (b) Single-carrier transmission. Subset: eye diagrams. (upper: ONU1, lower: ONU2).

Metrics