Abstract

The research and development of optical metasurfaces has been primarily driven by the curiosity for novel optical phenomena that are unattainable from materials that exist in nature and by the desire for miniaturization of optical devices. Metasurfaces constructed of artificial patterns of subwavelength depth make it possible to achieve flat, ultrathin optical devices of high performance. A wide variety of fabrication techniques have been developed to explore their unconventional functionalities which in many ways have revolutionized the means with which we control and manipulate electromagnetic waves. The relevant research community could benefit from an overview on recent progress in the fabrication and applications of the metasurfaces. This review article is intended to serve that purpose by reviewing the state-of-the-art fabrication methods and surveying their cutting-edge applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Recent advances in planar optics: from plasmonic to dielectric metasurfaces

Patrice Genevet, Federico Capasso, Francesco Aieta, Mohammadreza Khorasaninejad, and Robert Devlin
Optica 4(1) 139-152 (2017)

Recent progress in gradient metasurfaces

Nasim Mohammadi Estakhri and Andrea Alù
J. Opt. Soc. Am. B 33(2) A21-A30 (2016)

Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications

Dora Juan Juan Hu and Ho Pui Ho
Adv. Opt. Photon. 9(2) 257-314 (2017)

References

  • View by:
  • |
  • |
  • |

  1. E. F. Kuester, M. A. Mohamed, M. Piket-May, and C. L. Holloway, “Averaged transition conditions for electromagnetic fields at a metafilm,” IEEE Trans. Antenn. Propag. 51(10), 2641–2651 (2003).
    [Crossref]
  2. Z. Bomzon, V. Kleiner, and E. Hasman, “Pancharatnam--Berry phase in space-variant polarization-state manipulations with subwavelength gratings,” Opt. Lett. 26(18), 1424–1426 (2001).
    [Crossref] [PubMed]
  3. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings,” Opt. Lett. 27(13), 1141–1143 (2002).
    [Crossref] [PubMed]
  4. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  5. N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
    [Crossref] [PubMed]
  6. X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband Light Bending with Plasmonic Nanoantennas,” Science 335(6067), 4277 (2012).
    [Crossref] [PubMed]
  7. R. Blanchard, G. Aoust, P. Genevet, N. F. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale V-shaped antennas for the design of optical phased arrays,” Phys. Rev. B 85(15), 155457 (2012).
    [Crossref]
  8. A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13(2), 829–834 (2013).
    [Crossref] [PubMed]
  9. S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
    [Crossref] [PubMed]
  10. L. Zhang, J. Hao, M. Qiu, S. Zouhdi, J. K. Yang, and C. W. Qiu, “Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array,” Nanoscale 6(21), 12303–12309 (2014).
    [Crossref] [PubMed]
  11. W. Mo, X. Wei, K. Wang, Y. Li, and J. Liu, “Ultrathin flexible terahertz polarization converter based on metasurfaces,” Opt. Express 24(12), 13621–13627 (2016).
    [Crossref] [PubMed]
  12. A. Pors and S. I. Bozhevolnyi, “Plasmonic metasurfaces for efficient phase control in reflection,” Opt. Express 21(22), 27438–27451 (2013).
    [Crossref] [PubMed]
  13. W. L. Hsu, P. C. Wu, J. W. Chen, T. Y. Chen, B. H. Cheng, W. T. Chen, Y. W. Huang, C. Y. Liao, G. Sun, and D. P. Tsai, “Vertical split-ring resonator based anomalous beam steering with high extinction ratio,” Sci. Rep. 5(1), 11226 (2015).
    [Crossref] [PubMed]
  14. A. Pors, O. Albrektsen, I. P. Radko, and S. I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3(1), 2155 (2013).
    [Crossref] [PubMed]
  15. A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
    [Crossref] [PubMed]
  16. J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
    [Crossref] [PubMed]
  17. T. Galfsky, H. N. S. Krishnamoorthy, W. Newman, E. E. Narimanov, Z. Jacob, and V. M. Menon, “Active hyperbolic metamaterials: enhanced spontaneous emission and light extraction,” Optica 2(1), 62–65 (2015).
    [Crossref]
  18. D. Keene and M. Durach, “Hyperbolic resonances of metasurface cavities,” Opt. Express 23(14), 18577–18588 (2015).
    [Crossref] [PubMed]
  19. J. S. Gomez-Diaz, M. Tymchenko, and A. Alu, “Hyperbolic metasurfaces: surface plasmons, light-matter interactions, and physical implementation using graphene strips,” Opt. Mater. Express 5(10), 2313–2329 (2015).
    [Crossref]
  20. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
    [Crossref] [PubMed]
  21. U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
    [Crossref] [PubMed]
  22. M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-Efficiency Dielectric Huygens’ Surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
    [Crossref]
  23. P. P. Iyer, N. A. Butakov, and J. A. Schuller, “Reconfigurable Semiconductor Phased-Array Metasurfaces,” ACS Photonics 2(8), 1077–1084 (2015).
    [Crossref]
  24. Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015).
    [Crossref]
  25. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
    [Crossref] [PubMed]
  26. S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited Article: Broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
    [Crossref]
  27. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
    [Crossref] [PubMed]
  28. F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
    [Crossref] [PubMed]
  29. C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
    [Crossref] [PubMed]
  30. C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
    [Crossref] [PubMed]
  31. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
    [Crossref] [PubMed]
  32. A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
    [Crossref] [PubMed]
  33. S. M. Kamali, A. Arbabi, E. Arbabi, Y. Horie, and A. Faraon, “Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces,” Nat. Commun. 7, 11618 (2016).
    [Crossref] [PubMed]
  34. X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
    [Crossref] [PubMed]
  35. L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
    [Crossref] [PubMed]
  36. L. Cong, N. Xu, W. Zhang, and R. Singh, “Polarization Control in Terahertz Metasurfaces with the Lowest Order Rotational Symmetry,” Adv. Opt. Mat. 3(9), 1176–1183 (2015).
    [Crossref]
  37. X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
    [Crossref] [PubMed]
  38. S.-C. Jiang, X. Xiong, Y.-S. Hu, S.-W. Jiang, Y.-H. Hu, D.-H. Xu, R.-W. Peng, and M. Wang, “High-efficiency generation of circularly polarized light via symmetry-induced anomalous reflection,” Phys. Rev. B 91(12), 125421 (2015).
    [Crossref]
  39. D. Wen, F. Yue, S. Kumar, Y. Ma, M. Chen, X. Ren, P. E. Kremer, B. D. Gerardot, M. R. Taghizadeh, G. S. Buller, and X. Chen, “Metasurface for characterization of the polarization state of light,” Opt. Express 23(8), 10272–10281 (2015).
    [Crossref] [PubMed]
  40. M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
    [Crossref] [PubMed]
  41. P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
    [Crossref] [PubMed]
  42. Z. Yue, G. Xue, J. Liu, Y. Wang, and M. Gu, “Nanometric holograms based on a topological insulator material,” Nat. Commun. 8, 15354 (2017).
    [Crossref] [PubMed]
  43. H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2013).
    [Crossref] [PubMed]
  44. W. Streyer, S. Law, G. Rooney, T. Jacobs, and D. Wasserman, “Strong absorption and selective emission from engineered metals with dielectric coatings,” Opt. Express 21(7), 9113–9122 (2013).
    [Crossref] [PubMed]
  45. M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
    [Crossref] [PubMed]
  46. T. Lee, J. Jang, H. Jeong, and J. Rho, “Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications,” Nano Convergence 5(1), 1 (2018).
    [Crossref] [PubMed]
  47. P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
    [Crossref]
  48. F. R. Tan, N. Wang, D. Y. Lei, W. X. Yu, and X. M. Zhang, “Plasmonic Black Absorbers for Enhanced Photocurrent of Visible-Light Photocatalysis,” Adv. Opt. Mater. 5, 7 (2017).
  49. J. Xiang, J. Li, H. Li, C. Zhang, Q. Dai, S. Tie, and S. Lan, “Polarization beam splitters, converters and analyzers based on a metasurface composed of regularly arranged silicon nanospheres with controllable coupling strength,” Opt. Express 24(11), 11420–11434 (2016).
    [Crossref] [PubMed]
  50. Y. D. Hou, H. M. Leung, C. T. Chan, J. L. Du, H. L. W. Chan, and D. Y. Lei, “Ultrabroadband Optical Superchirality in a 3D Stacked-Patch Plasmonic Metamaterial Designed by Two-Step Glancing Angle Deposition,” Adv. Funct. Mater. 26(43), 7807–7816 (2016).
    [Crossref]
  51. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
    [Crossref] [PubMed]
  52. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
    [Crossref] [PubMed]
  53. N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
    [Crossref]
  54. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  55. Y. Zhao, X.-X. Liu, and A. Alù, “Recent advances on optical metasurfaces,” J. Opt. 16(12), 123001 (2014).
    [Crossref]
  56. N. M. Estakhri and A. Alù, “Recent progress in gradient metasurfaces,” J. Opt. Soc. Am. B 33(2), A21 (2016).
    [Crossref]
  57. P. Genevet and F. Capasso, “Holographic optical metasurfaces: a review of current progress,” Rep. Prog. Phys. 78(2), 024401 (2015).
    [Crossref] [PubMed]
  58. A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photonics Rev. 9(2), 195–213 (2015).
    [Crossref]
  59. S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
    [Crossref]
  60. H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
    [Crossref] [PubMed]
  61. S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
    [Crossref]
  62. A. M. Shaltout, A. V. Kildishev, and V. M. Shalaev, “Evolution of photonic metasurfaces: from static to dynamic,” J. Opt. Soc. Am. B 33(3), 501–510 (2016).
    [Crossref]
  63. L. Zhang, S. Mei, K. Huang, and C.-W. Qiu, “Advances in Full Control of Electromagnetic Waves with Metasurfaces,” Adv. Opt. Mate. 4(6), 818–833 (2016).
    [Crossref]
  64. H.-H. Hsiao, C. H. Chu, and D. P. Tsai, “Fundamentals and Applications of Metasurfaces,” Small Methods 1(4), 1600064 (2017).
    [Crossref]
  65. M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, C. Roques-Carmes, I. Mishra, and F. Capasso, “Visible Wavelength Planar Metalenses Based on Titanium Dioxide,” IEEE J. Sel. Top. Quantum Electron. 23(3), 43–58 (2017).
    [Crossref]
  66. P. Lalanne and P. Chavel, “Metalenses at visible wavelengths: past, present, perspectives,” Laser Photonics Rev. 11(3), 1600295 (2017).
    [Crossref]
  67. A. Y. Zhu, A. I. Kuznetsov, B. Luk’yanchuk, N. Engheta, and P. Genevet, “Traditional and emerging materials for optical metasurfaces,” Nanophotonics 6(2), 452–471 (2017).
    [Crossref]
  68. S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
    [Crossref] [PubMed]
  69. B. H. Chen, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, I. C. Lee, J. W. Chen, Y. H. Chen, Y. C. Lan, C. H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
    [Crossref] [PubMed]
  70. C. Nien, L. C. Chang, J. H. Ye, V. C. Su, C. H. Wu, and C. H. Kuan, “Proximity effect correction in electron-beam lithography based on computation of critical-development time with swarm intelligence,” J. Vac. Sci. Technol. B 35, 10 (2017).
  71. L. C. Chang, C. Nien, J. H. Ye, C. H. Chung, V. C. Su, C. H. Wu, and C. H. Kuan, “A comprehensive model for sub-10nm electron-beam patterning through the short-time and cold development,” Nanotechnology 28(42), 425301 (2017).
    [Crossref]
  72. V. C. Su, P. H. Chen, R. M. Lin, M. L. Lee, Y. H. You, C. I. Ho, Y. C. Chen, W. F. Chen, and C. H. Kuan, “Suppressed quantum-confined Stark effect in InGaN-based LEDs with nano-sized patterned sapphire substrates,” Opt. Express 21(24), 30065–30073 (2013).
    [Crossref] [PubMed]
  73. X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
    [Crossref]
  74. X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, Z. Zhao, and X. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
    [Crossref] [PubMed]
  75. Z. Jakšić, D. Vasiljević-Radović, M. Maksimović, M. Sarajlić, A. Vujanić, and Z. Djurić, “Nanofabrication of negative refractive index metasurfaces,” Microelectron. Eng. 83(4-9), 1786–1791 (2006).
    [Crossref]
  76. Y. Guo, L. Yan, W. Pan, and L. Shao, “Scattering engineering in continuously shaped metasurface: An approach for electromagnetic illusion,” Sci. Rep. 6(1), 30154 (2016).
    [Crossref] [PubMed]
  77. Z. Zhang, J. Luo, M. Song, and H. Yu, “Large-area, broadband and high-efficiency near-infrared linear polarization manipulating metasurface fabricated by orthogonal interference lithography,” Appl. Phys. Lett. 107(24), 241904 (2015).
    [Crossref]
  78. J. Zheng, Z. C. Ye, N. L. Sun, R. Zhang, Z. M. Sheng, H. P. Shieh, and J. Zhang, “Highly anisotropic metasurface: a polarized beam splitter and hologram,” Sci. Rep. 4(1), 6491 (2015).
    [Crossref] [PubMed]
  79. C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photonics Rev. 4(4), 568–580 (2010).
    [Crossref]
  80. J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale 7(44), 18805–18812 (2015).
    [Crossref] [PubMed]
  81. L. Liu, X. Zhang, Z. Zhao, M. Pu, P. Gao, Y. Luo, J. Jin, C. Wang, and X. Luo, “Batch Fabrication of Metasurface Holograms Enabled by Plasmonic Cavity Lithography,” Adv. Opt. Mater. 5(21), 1700429 (2017).
    [Crossref]
  82. W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C. B. Murray, A. Alu, and C. R. Kagan, “Large-Area Nanoimprinted Colloidal Au Nanocrystal-Based Nanoantennas for Ultrathin Polarizing Plasmonic Metasurfaces,” Nano Lett. 15(8), 5254–5260 (2015).
    [Crossref] [PubMed]
  83. S. V. Makarov, V. Milichko, E. V. Ushakova, M. Omelyanovich, A. Cerdan Pasaran, R. Haroldson, B. Balachandran, H. Wang, W. Hu, Y. S. Kivshar, and A. A. Zakhidov, “Multifold Emission Enhancement in Nanoimprinted Hybrid Perovskite Metasurfaces,” ACS Photonics 4(4), 728–735 (2017).
    [Crossref]
  84. Y. H. Yao and W. Wu, “All-Dielectric Heterogeneous Metasurface as an Efficient Ultra-Broadband Reflector,” Adv. Opt. Mater. 5(14), 1700090 (2017).
    [Crossref]
  85. H. T. Miyazaki, T. Kasaya, H. Oosato, Y. Sugimoto, B. Choi, M. Iwanaga, and K. Sakoda, “Ultraviolet-nanoimprinted packaged metasurface thermal emitters for infrared CO2 sensing,” Sci. Technol. Adv. Mater. 16(3), 035005 (2015).
    [Crossref] [PubMed]
  86. Y. Yao, H. Liu, Y. Wang, Y. Li, B. Song, R. P. Wang, M. L. Povinelli, and W. Wu, “Nanoimprint-defined, large-area meta-surfaces for unidirectional optical transmission with superior extinction in the visible-to-infrared range,” Opt. Express 24(14), 15362–15372 (2016).
    [Crossref] [PubMed]
  87. N. Bonod, “Silicon photonics: Large-scale dielectric metasurfaces,” Nat. Mater. 14(7), 664–665 (2015).
    [Crossref] [PubMed]
  88. G. Zhang, C. Lan, H. Bian, R. Gao, and J. Zhou, “Flexible, all-dielectric metasurface fabricated via nanosphere lithography and its applications in sensing,” Opt. Express 25(18), 22038–22045 (2017).
    [Crossref] [PubMed]
  89. A. Nemiroski, M. Gonidec, J. M. Fox, P. Jean-Remy, E. Turnage, and G. M. Whitesides, “Engineering Shadows to Fabricate Optical Metasurfaces,” ACS Nano 8(11), 11061–11070 (2014).
    [Crossref] [PubMed]
  90. Z. Wu, K. Chen, R. Menz, T. Nagao, and Y. Zheng, “Tunable multiband metasurfaces by moiré nanosphere lithography,” Nanoscale 7(48), 20391–20396 (2015).
    [Crossref] [PubMed]
  91. S. V. Makarov, A. N. Tsypkin, T. A. Voytova, V. A. Milichko, I. S. Mukhin, A. V. Yulin, S. E. Putilin, M. A. Baranov, A. E. Krasnok, I. A. Morozov, and P. A. Belov, “Self-adjusted all-dielectric metasurfaces for deep ultraviolet femtosecond pulse generation,” Nanoscale 8(41), 17809–17814 (2016).
    [Crossref] [PubMed]
  92. J. Y. Kim, H. Kim, B. H. Kim, T. Chang, J. Lim, H. M. Jin, J. H. Mun, Y. J. Choi, K. Chung, J. Shin, S. Fan, and S. O. Kim, “Highly tunable refractive index visible-light metasurface from block copolymer self-assembly,” Nat. Commun. 7, 12911 (2016).
    [Crossref] [PubMed]
  93. M. J. Rozin, D. A. Rosen, T. J. Dill, and A. R. Tao, “Colloidal metasurfaces displaying near-ideal and tunable light absorbance in the infrared,” Nat. Commun. 6(1), 7325 (2015).
    [Crossref] [PubMed]
  94. M. Mayer, M. Tebbe, C. Kuttner, M. J. Schnepf, T. A. König, and A. Fery, “Template-assisted colloidal self-assembly of macroscopic magnetic metasurfaces,” Faraday Discuss. 191, 159–176 (2016).
    [Crossref] [PubMed]
  95. M. Gonidec, M. M. Hamedi, A. Nemiroski, L. M. Rubio, C. Torres, and G. M. Whitesides, “Fabrication of Nonperiodic Metasurfaces by Microlens Projection Lithography,” Nano Lett. 16(7), 4125–4132 (2016).
    [Crossref] [PubMed]
  96. R. Verre, M. Svedendahl, N. O. Länk, Z. J. Yang, G. Zengin, T. J. Antosiewicz, and M. Käll, “Directional Light Extinction and Emission in a Metasurface of Tilted Plasmonic Nanopillars,” Nano Lett. 16(1), 98–104 (2016).
    [Crossref] [PubMed]
  97. M. L. Tseng, P. C. Wu, S. L. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P. L. Chen, L. Zhou, D. W. Huang, T. J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photonics Rev. 6(5), 702–707 (2012).
    [Crossref]
  98. C. H. Chu, C. Da Shiue, H. W. Cheng, M. L. Tseng, H. P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express 18(17), 18383–18393 (2010).
    [Crossref] [PubMed]
  99. S. V. Makarov, V. A. Milichko, I. S. Mukhin, D. A. Shishkin, D. A. Zuev, A. M. Mozharov, A. E. Krasnok, and P. A. Belov, “Controllable femtosecond laser-induced dewetting for plasmonic applications,” Laser Photonics Rev. 10(1), 91–99 (2016).
    [Crossref]
  100. S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev. 2(1-2), 100–111 (2008).
    [Crossref]
  101. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
    [Crossref] [PubMed]
  102. M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N. N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express 19(18), 16975–16984 (2011).
    [Crossref] [PubMed]
  103. M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast Fabrication of a Ag Nanostructure Substrate Using the Femtosecond Laser for Broad-Band and Tunable Plasmonic Enhancement,” ACS Nano 6(6), 5190–5197 (2012).
    [Crossref] [PubMed]
  104. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices –Micromachines can be created with higher resolution using two-photon absorption,” Nature 412(6848), 697–698 (2001).
    [Crossref] [PubMed]
  105. S. Maruo, K. Ikuta, and H. Korogi, “Submicron manipulation tools driven by light in a liquid,” Appl. Phys. Lett. 82(1), 133–135 (2003).
    [Crossref]
  106. S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon micro stereolithography,” J. Microelectromech. Syst. 12(5), 533–539 (2003).
    [Crossref]
  107. X. Q. Zhou, Y. H. Hou, and J. Q. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5(3), 030701 (2015).
    [Crossref]
  108. Y. Z. Ho, B. H. Cheng, W. L. Hsu, C. M. Wang, and D. P. Tsai, “Anomalous reflection from metasurfaces with gradient phase distribution below 2 pi,” Appl. Phys. Express 9(7), 072502 (2016).
    [Crossref]
  109. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
    [Crossref] [PubMed]
  110. M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
    [Crossref] [PubMed]
  111. L. Wang, S. Kruk, H. Z. Tang, T. Li, I. Kravchenko, D. N. Neshev, and Y. S. Kivshar, “Grayscale transparent metasurface holograms,” Optica 3(12), 1504–1505 (2016).
    [Crossref]
  112. Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum Plasmonic Multicolor Meta-Hologram,” Nano Lett. 15(5), 3122–3127 (2015).
    [Crossref] [PubMed]
  113. B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-Frequency Dielectric Metasurfaces for Multiwavelength Achromatic and Highly Dispersive Holograms,” Nano Lett. 16(8), 5235–5240 (2016).
    [Crossref] [PubMed]
  114. L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
    [Crossref] [PubMed]
  115. S. M. Chen, Y. Cai, G. X. Li, S. Zhang, and K. W. Cheah, “Geometric metasurface fork gratings for vortex-beam generation and manipulation,” Laser Photonics Rev. 10(2), 322–326 (2016).
    [Crossref]
  116. M. Q. Mehmood, S. T. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. H. Zhang, X. H. Ling, H. Liu, J. H. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28, 2533 (2016).
  117. S. C. Malek, H. S. Ee, and R. Agarwal, “Strain Multiplexed Metasurface Holograms on a Stretchable Substrate,” Nano Lett. 17(6), 3641–3645 (2017).
    [Crossref] [PubMed]
  118. D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, “Linear up-conversion of orbital angular momentum,” Opt. Lett. 37(15), 3270–3272 (2012).
    [Crossref] [PubMed]
  119. X. B. Zou and W. Mathis, “Scheme for optical implementation of orbital angular momentum beam splitter of a light beam and its application in quantum information processing,” Phys. Rev. A 71(4), 042324 (2005).
    [Crossref]
  120. F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
    [Crossref] [PubMed]
  121. E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules,” Optica 3(6), 628–633 (2016).
    [Crossref]
  122. O. Avayu, E. Almeida, Y. Prior, and T. Ellenbogen, “Composite functional metasurfaces for multispectral achromatic optics,” Nat. Commun. 8, 14992 (2017).
    [Crossref] [PubMed]
  123. M. Khorasaninejad, Z. Shi, A. Y. Zhu, W. T. Chen, V. Sanjeev, A. Zaidi, and F. Capasso, “Achromatic Metalens over 60 nm Bandwidth in the Visible and Metalens with Reverse Chromatic Dispersion,” Nano Lett. 17(3), 1819–1824 (2017).
    [Crossref] [PubMed]
  124. E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces,” Optica 4(6), 625–632 (2017).
    [Crossref]
  125. M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Super-Dispersive Off-Axis Meta-Lenses for Compact High Resolution Spectroscopy,” Nano Lett. 16(6), 3732–3737 (2016).
    [Crossref] [PubMed]
  126. J. Kim, S. Choudhury, C. DeVault, Y. Zhao, A. V. Kildishev, V. M. Shalaev, A. Alu, and A. Boltasseva, “Controlling the Polarization State of Light with Plasmonic Metal Oxide Metasurface,” ACS Nano 10(10), 9326–9333 (2016).
    [Crossref] [PubMed]
  127. J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7, 41893 (2017).
    [Crossref] [PubMed]
  128. G. Z. Liang, Y. Q. Zeng, X. N. Hu, H. Yu, H. K. Liang, Y. Zhang, L. H. Li, A. G. Davies, E. H. Linfield, and Q. J. Wang, “Monolithic Semiconductor Lasers with Dynamically Tunable Linear-to-Circular Polarization,” ACS Photonics 4(3), 517–524 (2017).
    [Crossref]
  129. Z. C. Liu, Z. C. Li, Z. Liu, H. Cheng, W. W. Liu, C. C. Tang, C. Z. Gu, J. J. Li, H. T. Chen, S. Q. Chen, and J. G. Tian, “Single-Layer Plasmonic Metasurface Half-Wave Plates with Wavelength-Independent Polarization Conversion Angle,” ACS Photonics 4(8), 2061–2069 (2017).
    [Crossref]
  130. X. X. Wu, Y. Meng, L. Wang, J. X. Tian, S. W. Dai, and W. J. Wen, “Anisotropic metasurface with near-unity circular polarization conversion,” Appl. Phys. Lett. 108(18), 183502 (2016).
    [Crossref]
  131. J. Park, J. H. Kang, S. J. Kim, X. Liu, and M. L. Brongersma, “Dynamic Reflection Phase and Polarization Control in Metasurfaces,” Nano Lett. 17(1), 407–413 (2017).
    [Crossref] [PubMed]
  132. P. C. Wu, W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile Polarization Generation with an Aluminum Plasmonic Metasurface,” Nano Lett. 17(1), 445–452 (2017).
    [Crossref] [PubMed]
  133. F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel Polarization-Controllable Superpositions of Orbital Angular Momentum States,” Adv. Mater. 29(15), 1603838 (2017).
    [Crossref] [PubMed]
  134. W. T. Chen, P. Török, M. R. Foreman, C. Y. Liao, W. Y. Tsai, P. R. Wu, and D. P. Tsai, “Integrated plasmonic metasurfaces for spectropolarimetry,” Nanotechnology 27(22), 224002 (2016).
    [Crossref] [PubMed]
  135. P. Gutruf, C. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Mechanically Tunable Dielectric Resonator Metasurfaces at Visible Frequencies,” ACS Nano 10(1), 133–141 (2016).
    [Crossref] [PubMed]
  136. H. S. Ee and R. Agarwal, “Tunable Metasurface and Flat Optical Zoom Lens on a Stretchable Substrate,” Nano Lett. 16(4), 2818–2823 (2016).
    [Crossref] [PubMed]
  137. O. Buchnev, N. Podoliak, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electrically Controlled Nanostructured Metasurface Loaded with Liquid Crystal: Toward Multifunctional Photonic Switch,” Adv. Opt. Mate. 3(5), 674–679 (2015).
    [Crossref]
  138. M. R. M. Hashemi, S. H. Yang, T. Wang, N. Sepúlveda, and M. Jarrahi, “Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces,” Sci. Rep. 6(1), 35439 (2016).
    [Crossref] [PubMed]
  139. N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical Switching of Infrared Light Using Graphene Integration with Plasmonic Fano Resonant Metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
    [Crossref]
  140. D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface,” Sci. Rep. 5(1), 15020 (2015).
    [Crossref] [PubMed]
  141. J. Sautter, I. Staude, M. Decker, E. Rusak, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Active Tuning of All-Dielectric Metasurfaces,” ACS Nano 9(4), 4308–4315 (2015).
    [Crossref] [PubMed]
  142. Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. H. Yuan, J. H. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
    [Crossref]
  143. A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109(5), 051103 (2016).
    [Crossref]
  144. C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
    [Crossref]
  145. F. Walter, G. Li, C. Meier, S. Zhang, and T. Zentgraf, “Ultrathin Nonlinear Metasurface for Optical Image Encoding,” Nano Lett. 17(5), 3171–3175 (2017).
    [Crossref] [PubMed]
  146. W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
    [Crossref] [PubMed]
  147. W. Ye, X. Li, J. Liu, and S. Zhang, “Phenomenological modeling of nonlinear holograms based on metallic geometric metasurfaces,” Opt. Express 24(22), 25805–25815 (2016).
    [Crossref] [PubMed]
  148. D. Smirnova and Y. S. Kivshar, “Multipolar nonlinear nanophotonics,” Optica 3(11), 1241–1255 (2016).
    [Crossref]
  149. M. S. Nezami, D. Yoo, G. Hajisalem, S. H. Oh, and R. Gordon, “Gap Plasmon Enhanced Metasurface Third-Harmonic Generation in Transmission Geometry,” ACS Photonics 3(8), 1461–1467 (2016).
    [Crossref]
  150. H. H. Hsiao, A. Abass, J. Fischer, R. Alaee, A. Wickberg, M. Wegener, and C. Rockstuhl, “Enhancement of second-harmonic generation in nonlinear nanolaminate metamaterials by nanophotonic resonances,” Opt. Express 24(9), 9651–9659 (2016).
    [Crossref] [PubMed]
  151. E. Almeida, G. Shalem, and Y. Prior, “Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces,” Nat. Commun. 7, 10367 (2016).
    [Crossref] [PubMed]
  152. P. Y. Chen and J. Jung, “PT Symmetry and Singularity-Enhanced Sensing Based on Photoexcited Graphene Metasurfaces,” Phys. Rev. Appl. 5(6), 064018 (2016).
    [Crossref]
  153. M. Lawrence, N. Xu, X. Zhang, L. Cong, J. Han, W. Zhang, and S. Zhang, “Manifestation of PT Symmetry Breaking in Polarization Space with Terahertz Metasurfaces,” Phys. Rev. Lett. 113(9), 093901 (2014).
    [Crossref] [PubMed]
  154. R. Fleury, D. L. Sounas, and A. Alù, “Negative Refraction and Planar Focusing Based on Parity-Time Symmetric Metasurfaces,” Phys. Rev. Lett. 113(2), 023903 (2014).
    [Crossref] [PubMed]

2018 (1)

T. Lee, J. Jang, H. Jeong, and J. Rho, “Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications,” Nano Convergence 5(1), 1 (2018).
[Crossref] [PubMed]

2017 (27)

Z. Yue, G. Xue, J. Liu, Y. Wang, and M. Gu, “Nanometric holograms based on a topological insulator material,” Nat. Commun. 8, 15354 (2017).
[Crossref] [PubMed]

F. R. Tan, N. Wang, D. Y. Lei, W. X. Yu, and X. M. Zhang, “Plasmonic Black Absorbers for Enhanced Photocurrent of Visible-Light Photocatalysis,” Adv. Opt. Mater. 5, 7 (2017).

H.-H. Hsiao, C. H. Chu, and D. P. Tsai, “Fundamentals and Applications of Metasurfaces,” Small Methods 1(4), 1600064 (2017).
[Crossref]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, C. Roques-Carmes, I. Mishra, and F. Capasso, “Visible Wavelength Planar Metalenses Based on Titanium Dioxide,” IEEE J. Sel. Top. Quantum Electron. 23(3), 43–58 (2017).
[Crossref]

P. Lalanne and P. Chavel, “Metalenses at visible wavelengths: past, present, perspectives,” Laser Photonics Rev. 11(3), 1600295 (2017).
[Crossref]

A. Y. Zhu, A. I. Kuznetsov, B. Luk’yanchuk, N. Engheta, and P. Genevet, “Traditional and emerging materials for optical metasurfaces,” Nanophotonics 6(2), 452–471 (2017).
[Crossref]

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

B. H. Chen, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, I. C. Lee, J. W. Chen, Y. H. Chen, Y. C. Lan, C. H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref] [PubMed]

C. Nien, L. C. Chang, J. H. Ye, V. C. Su, C. H. Wu, and C. H. Kuan, “Proximity effect correction in electron-beam lithography based on computation of critical-development time with swarm intelligence,” J. Vac. Sci. Technol. B 35, 10 (2017).

L. C. Chang, C. Nien, J. H. Ye, C. H. Chung, V. C. Su, C. H. Wu, and C. H. Kuan, “A comprehensive model for sub-10nm electron-beam patterning through the short-time and cold development,” Nanotechnology 28(42), 425301 (2017).
[Crossref]

J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
[Crossref] [PubMed]

L. Liu, X. Zhang, Z. Zhao, M. Pu, P. Gao, Y. Luo, J. Jin, C. Wang, and X. Luo, “Batch Fabrication of Metasurface Holograms Enabled by Plasmonic Cavity Lithography,” Adv. Opt. Mater. 5(21), 1700429 (2017).
[Crossref]

S. V. Makarov, V. Milichko, E. V. Ushakova, M. Omelyanovich, A. Cerdan Pasaran, R. Haroldson, B. Balachandran, H. Wang, W. Hu, Y. S. Kivshar, and A. A. Zakhidov, “Multifold Emission Enhancement in Nanoimprinted Hybrid Perovskite Metasurfaces,” ACS Photonics 4(4), 728–735 (2017).
[Crossref]

Y. H. Yao and W. Wu, “All-Dielectric Heterogeneous Metasurface as an Efficient Ultra-Broadband Reflector,” Adv. Opt. Mater. 5(14), 1700090 (2017).
[Crossref]

G. Zhang, C. Lan, H. Bian, R. Gao, and J. Zhou, “Flexible, all-dielectric metasurface fabricated via nanosphere lithography and its applications in sensing,” Opt. Express 25(18), 22038–22045 (2017).
[Crossref] [PubMed]

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

S. C. Malek, H. S. Ee, and R. Agarwal, “Strain Multiplexed Metasurface Holograms on a Stretchable Substrate,” Nano Lett. 17(6), 3641–3645 (2017).
[Crossref] [PubMed]

O. Avayu, E. Almeida, Y. Prior, and T. Ellenbogen, “Composite functional metasurfaces for multispectral achromatic optics,” Nat. Commun. 8, 14992 (2017).
[Crossref] [PubMed]

M. Khorasaninejad, Z. Shi, A. Y. Zhu, W. T. Chen, V. Sanjeev, A. Zaidi, and F. Capasso, “Achromatic Metalens over 60 nm Bandwidth in the Visible and Metalens with Reverse Chromatic Dispersion,” Nano Lett. 17(3), 1819–1824 (2017).
[Crossref] [PubMed]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces,” Optica 4(6), 625–632 (2017).
[Crossref]

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7, 41893 (2017).
[Crossref] [PubMed]

G. Z. Liang, Y. Q. Zeng, X. N. Hu, H. Yu, H. K. Liang, Y. Zhang, L. H. Li, A. G. Davies, E. H. Linfield, and Q. J. Wang, “Monolithic Semiconductor Lasers with Dynamically Tunable Linear-to-Circular Polarization,” ACS Photonics 4(3), 517–524 (2017).
[Crossref]

Z. C. Liu, Z. C. Li, Z. Liu, H. Cheng, W. W. Liu, C. C. Tang, C. Z. Gu, J. J. Li, H. T. Chen, S. Q. Chen, and J. G. Tian, “Single-Layer Plasmonic Metasurface Half-Wave Plates with Wavelength-Independent Polarization Conversion Angle,” ACS Photonics 4(8), 2061–2069 (2017).
[Crossref]

J. Park, J. H. Kang, S. J. Kim, X. Liu, and M. L. Brongersma, “Dynamic Reflection Phase and Polarization Control in Metasurfaces,” Nano Lett. 17(1), 407–413 (2017).
[Crossref] [PubMed]

P. C. Wu, W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile Polarization Generation with an Aluminum Plasmonic Metasurface,” Nano Lett. 17(1), 445–452 (2017).
[Crossref] [PubMed]

F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel Polarization-Controllable Superpositions of Orbital Angular Momentum States,” Adv. Mater. 29(15), 1603838 (2017).
[Crossref] [PubMed]

F. Walter, G. Li, C. Meier, S. Zhang, and T. Zentgraf, “Ultrathin Nonlinear Metasurface for Optical Image Encoding,” Nano Lett. 17(5), 3171–3175 (2017).
[Crossref] [PubMed]

2016 (45)

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref] [PubMed]

W. Ye, X. Li, J. Liu, and S. Zhang, “Phenomenological modeling of nonlinear holograms based on metallic geometric metasurfaces,” Opt. Express 24(22), 25805–25815 (2016).
[Crossref] [PubMed]

D. Smirnova and Y. S. Kivshar, “Multipolar nonlinear nanophotonics,” Optica 3(11), 1241–1255 (2016).
[Crossref]

M. S. Nezami, D. Yoo, G. Hajisalem, S. H. Oh, and R. Gordon, “Gap Plasmon Enhanced Metasurface Third-Harmonic Generation in Transmission Geometry,” ACS Photonics 3(8), 1461–1467 (2016).
[Crossref]

H. H. Hsiao, A. Abass, J. Fischer, R. Alaee, A. Wickberg, M. Wegener, and C. Rockstuhl, “Enhancement of second-harmonic generation in nonlinear nanolaminate metamaterials by nanophotonic resonances,” Opt. Express 24(9), 9651–9659 (2016).
[Crossref] [PubMed]

E. Almeida, G. Shalem, and Y. Prior, “Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces,” Nat. Commun. 7, 10367 (2016).
[Crossref] [PubMed]

P. Y. Chen and J. Jung, “PT Symmetry and Singularity-Enhanced Sensing Based on Photoexcited Graphene Metasurfaces,” Phys. Rev. Appl. 5(6), 064018 (2016).
[Crossref]

W. T. Chen, P. Török, M. R. Foreman, C. Y. Liao, W. Y. Tsai, P. R. Wu, and D. P. Tsai, “Integrated plasmonic metasurfaces for spectropolarimetry,” Nanotechnology 27(22), 224002 (2016).
[Crossref] [PubMed]

P. Gutruf, C. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Mechanically Tunable Dielectric Resonator Metasurfaces at Visible Frequencies,” ACS Nano 10(1), 133–141 (2016).
[Crossref] [PubMed]

H. S. Ee and R. Agarwal, “Tunable Metasurface and Flat Optical Zoom Lens on a Stretchable Substrate,” Nano Lett. 16(4), 2818–2823 (2016).
[Crossref] [PubMed]

M. R. M. Hashemi, S. H. Yang, T. Wang, N. Sepúlveda, and M. Jarrahi, “Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces,” Sci. Rep. 6(1), 35439 (2016).
[Crossref] [PubMed]

X. X. Wu, Y. Meng, L. Wang, J. X. Tian, S. W. Dai, and W. J. Wen, “Anisotropic metasurface with near-unity circular polarization conversion,” Appl. Phys. Lett. 108(18), 183502 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Super-Dispersive Off-Axis Meta-Lenses for Compact High Resolution Spectroscopy,” Nano Lett. 16(6), 3732–3737 (2016).
[Crossref] [PubMed]

J. Kim, S. Choudhury, C. DeVault, Y. Zhao, A. V. Kildishev, V. M. Shalaev, A. Alu, and A. Boltasseva, “Controlling the Polarization State of Light with Plasmonic Metal Oxide Metasurface,” ACS Nano 10(10), 9326–9333 (2016).
[Crossref] [PubMed]

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-Frequency Dielectric Metasurfaces for Multiwavelength Achromatic and Highly Dispersive Holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

S. M. Chen, Y. Cai, G. X. Li, S. Zhang, and K. W. Cheah, “Geometric metasurface fork gratings for vortex-beam generation and manipulation,” Laser Photonics Rev. 10(2), 322–326 (2016).
[Crossref]

M. Q. Mehmood, S. T. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. H. Zhang, X. H. Ling, H. Liu, J. H. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28, 2533 (2016).

Y. Yao, H. Liu, Y. Wang, Y. Li, B. Song, R. P. Wang, M. L. Povinelli, and W. Wu, “Nanoimprint-defined, large-area meta-surfaces for unidirectional optical transmission with superior extinction in the visible-to-infrared range,” Opt. Express 24(14), 15362–15372 (2016).
[Crossref] [PubMed]

Y. Guo, L. Yan, W. Pan, and L. Shao, “Scattering engineering in continuously shaped metasurface: An approach for electromagnetic illusion,” Sci. Rep. 6(1), 30154 (2016).
[Crossref] [PubMed]

M. Mayer, M. Tebbe, C. Kuttner, M. J. Schnepf, T. A. König, and A. Fery, “Template-assisted colloidal self-assembly of macroscopic magnetic metasurfaces,” Faraday Discuss. 191, 159–176 (2016).
[Crossref] [PubMed]

M. Gonidec, M. M. Hamedi, A. Nemiroski, L. M. Rubio, C. Torres, and G. M. Whitesides, “Fabrication of Nonperiodic Metasurfaces by Microlens Projection Lithography,” Nano Lett. 16(7), 4125–4132 (2016).
[Crossref] [PubMed]

R. Verre, M. Svedendahl, N. O. Länk, Z. J. Yang, G. Zengin, T. J. Antosiewicz, and M. Käll, “Directional Light Extinction and Emission in a Metasurface of Tilted Plasmonic Nanopillars,” Nano Lett. 16(1), 98–104 (2016).
[Crossref] [PubMed]

S. V. Makarov, A. N. Tsypkin, T. A. Voytova, V. A. Milichko, I. S. Mukhin, A. V. Yulin, S. E. Putilin, M. A. Baranov, A. E. Krasnok, I. A. Morozov, and P. A. Belov, “Self-adjusted all-dielectric metasurfaces for deep ultraviolet femtosecond pulse generation,” Nanoscale 8(41), 17809–17814 (2016).
[Crossref] [PubMed]

J. Y. Kim, H. Kim, B. H. Kim, T. Chang, J. Lim, H. M. Jin, J. H. Mun, Y. J. Choi, K. Chung, J. Shin, S. Fan, and S. O. Kim, “Highly tunable refractive index visible-light metasurface from block copolymer self-assembly,” Nat. Commun. 7, 12911 (2016).
[Crossref] [PubMed]

S. V. Makarov, V. A. Milichko, I. S. Mukhin, D. A. Shishkin, D. A. Zuev, A. M. Mozharov, A. E. Krasnok, and P. A. Belov, “Controllable femtosecond laser-induced dewetting for plasmonic applications,” Laser Photonics Rev. 10(1), 91–99 (2016).
[Crossref]

Y. Z. Ho, B. H. Cheng, W. L. Hsu, C. M. Wang, and D. P. Tsai, “Anomalous reflection from metasurfaces with gradient phase distribution below 2 pi,” Appl. Phys. Express 9(7), 072502 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

L. Wang, S. Kruk, H. Z. Tang, T. Li, I. Kravchenko, D. N. Neshev, and Y. S. Kivshar, “Grayscale transparent metasurface holograms,” Optica 3(12), 1504–1505 (2016).
[Crossref]

W. Mo, X. Wei, K. Wang, Y. Li, and J. Liu, “Ultrathin flexible terahertz polarization converter based on metasurfaces,” Opt. Express 24(12), 13621–13627 (2016).
[Crossref] [PubMed]

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited Article: Broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref] [PubMed]

N. M. Estakhri and A. Alù, “Recent progress in gradient metasurfaces,” J. Opt. Soc. Am. B 33(2), A21 (2016).
[Crossref]

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

A. M. Shaltout, A. V. Kildishev, and V. M. Shalaev, “Evolution of photonic metasurfaces: from static to dynamic,” J. Opt. Soc. Am. B 33(3), 501–510 (2016).
[Crossref]

L. Zhang, S. Mei, K. Huang, and C.-W. Qiu, “Advances in Full Control of Electromagnetic Waves with Metasurfaces,” Adv. Opt. Mate. 4(6), 818–833 (2016).
[Crossref]

J. Xiang, J. Li, H. Li, C. Zhang, Q. Dai, S. Tie, and S. Lan, “Polarization beam splitters, converters and analyzers based on a metasurface composed of regularly arranged silicon nanospheres with controllable coupling strength,” Opt. Express 24(11), 11420–11434 (2016).
[Crossref] [PubMed]

Y. D. Hou, H. M. Leung, C. T. Chan, J. L. Du, H. L. W. Chan, and D. Y. Lei, “Ultrabroadband Optical Superchirality in a 3D Stacked-Patch Plasmonic Metamaterial Designed by Two-Step Glancing Angle Deposition,” Adv. Funct. Mater. 26(43), 7807–7816 (2016).
[Crossref]

S. M. Kamali, A. Arbabi, E. Arbabi, Y. Horie, and A. Faraon, “Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces,” Nat. Commun. 7, 11618 (2016).
[Crossref] [PubMed]

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. H. Yuan, J. H. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109(5), 051103 (2016).
[Crossref]

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules,” Optica 3(6), 628–633 (2016).
[Crossref]

2015 (33)

P. Genevet and F. Capasso, “Holographic optical metasurfaces: a review of current progress,” Rep. Prog. Phys. 78(2), 024401 (2015).
[Crossref] [PubMed]

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photonics Rev. 9(2), 195–213 (2015).
[Crossref]

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-Efficiency Dielectric Huygens’ Surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

P. P. Iyer, N. A. Butakov, and J. A. Schuller, “Reconfigurable Semiconductor Phased-Array Metasurfaces,” ACS Photonics 2(8), 1077–1084 (2015).
[Crossref]

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
[Crossref] [PubMed]

L. Cong, N. Xu, W. Zhang, and R. Singh, “Polarization Control in Terahertz Metasurfaces with the Lowest Order Rotational Symmetry,” Adv. Opt. Mat. 3(9), 1176–1183 (2015).
[Crossref]

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

S.-C. Jiang, X. Xiong, Y.-S. Hu, S.-W. Jiang, Y.-H. Hu, D.-H. Xu, R.-W. Peng, and M. Wang, “High-efficiency generation of circularly polarized light via symmetry-induced anomalous reflection,” Phys. Rev. B 91(12), 125421 (2015).
[Crossref]

D. Wen, F. Yue, S. Kumar, Y. Ma, M. Chen, X. Ren, P. E. Kremer, B. D. Gerardot, M. R. Taghizadeh, G. S. Buller, and X. Chen, “Metasurface for characterization of the polarization state of light,” Opt. Express 23(8), 10272–10281 (2015).
[Crossref] [PubMed]

W. L. Hsu, P. C. Wu, J. W. Chen, T. Y. Chen, B. H. Cheng, W. T. Chen, Y. W. Huang, C. Y. Liao, G. Sun, and D. P. Tsai, “Vertical split-ring resonator based anomalous beam steering with high extinction ratio,” Sci. Rep. 5(1), 11226 (2015).
[Crossref] [PubMed]

T. Galfsky, H. N. S. Krishnamoorthy, W. Newman, E. E. Narimanov, Z. Jacob, and V. M. Menon, “Active hyperbolic metamaterials: enhanced spontaneous emission and light extraction,” Optica 2(1), 62–65 (2015).
[Crossref]

D. Keene and M. Durach, “Hyperbolic resonances of metasurface cavities,” Opt. Express 23(14), 18577–18588 (2015).
[Crossref] [PubMed]

J. S. Gomez-Diaz, M. Tymchenko, and A. Alu, “Hyperbolic metasurfaces: surface plasmons, light-matter interactions, and physical implementation using graphene strips,” Opt. Mater. Express 5(10), 2313–2329 (2015).
[Crossref]

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum Plasmonic Multicolor Meta-Hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[Crossref] [PubMed]

M. J. Rozin, D. A. Rosen, T. J. Dill, and A. R. Tao, “Colloidal metasurfaces displaying near-ideal and tunable light absorbance in the infrared,” Nat. Commun. 6(1), 7325 (2015).
[Crossref] [PubMed]

Z. Zhang, J. Luo, M. Song, and H. Yu, “Large-area, broadband and high-efficiency near-infrared linear polarization manipulating metasurface fabricated by orthogonal interference lithography,” Appl. Phys. Lett. 107(24), 241904 (2015).
[Crossref]

J. Zheng, Z. C. Ye, N. L. Sun, R. Zhang, Z. M. Sheng, H. P. Shieh, and J. Zhang, “Highly anisotropic metasurface: a polarized beam splitter and hologram,” Sci. Rep. 4(1), 6491 (2015).
[Crossref] [PubMed]

W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C. B. Murray, A. Alu, and C. R. Kagan, “Large-Area Nanoimprinted Colloidal Au Nanocrystal-Based Nanoantennas for Ultrathin Polarizing Plasmonic Metasurfaces,” Nano Lett. 15(8), 5254–5260 (2015).
[Crossref] [PubMed]

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, Z. Zhao, and X. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref] [PubMed]

N. Bonod, “Silicon photonics: Large-scale dielectric metasurfaces,” Nat. Mater. 14(7), 664–665 (2015).
[Crossref] [PubMed]

H. T. Miyazaki, T. Kasaya, H. Oosato, Y. Sugimoto, B. Choi, M. Iwanaga, and K. Sakoda, “Ultraviolet-nanoimprinted packaged metasurface thermal emitters for infrared CO2 sensing,” Sci. Technol. Adv. Mater. 16(3), 035005 (2015).
[Crossref] [PubMed]

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale 7(44), 18805–18812 (2015).
[Crossref] [PubMed]

Z. Wu, K. Chen, R. Menz, T. Nagao, and Y. Zheng, “Tunable multiband metasurfaces by moiré nanosphere lithography,” Nanoscale 7(48), 20391–20396 (2015).
[Crossref] [PubMed]

X. Q. Zhou, Y. H. Hou, and J. Q. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5(3), 030701 (2015).
[Crossref]

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical Switching of Infrared Light Using Graphene Integration with Plasmonic Fano Resonant Metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

J. Sautter, I. Staude, M. Decker, E. Rusak, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Active Tuning of All-Dielectric Metasurfaces,” ACS Nano 9(4), 4308–4315 (2015).
[Crossref] [PubMed]

O. Buchnev, N. Podoliak, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electrically Controlled Nanostructured Metasurface Loaded with Liquid Crystal: Toward Multifunctional Photonic Switch,” Adv. Opt. Mate. 3(5), 674–679 (2015).
[Crossref]

2014 (11)

M. Lawrence, N. Xu, X. Zhang, L. Cong, J. Han, W. Zhang, and S. Zhang, “Manifestation of PT Symmetry Breaking in Polarization Space with Terahertz Metasurfaces,” Phys. Rev. Lett. 113(9), 093901 (2014).
[Crossref] [PubMed]

R. Fleury, D. L. Sounas, and A. Alù, “Negative Refraction and Planar Focusing Based on Parity-Time Symmetric Metasurfaces,” Phys. Rev. Lett. 113(2), 023903 (2014).
[Crossref] [PubMed]

A. Nemiroski, M. Gonidec, J. M. Fox, P. Jean-Remy, E. Turnage, and G. M. Whitesides, “Engineering Shadows to Fabricate Optical Metasurfaces,” ACS Nano 8(11), 11061–11070 (2014).
[Crossref] [PubMed]

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref] [PubMed]

L. Zhang, J. Hao, M. Qiu, S. Zouhdi, J. K. Yang, and C. W. Qiu, “Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array,” Nanoscale 6(21), 12303–12309 (2014).
[Crossref] [PubMed]

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref] [PubMed]

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Y. Zhao, X.-X. Liu, and A. Alù, “Recent advances on optical metasurfaces,” J. Opt. 16(12), 123001 (2014).
[Crossref]

2013 (12)

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2013).
[Crossref] [PubMed]

W. Streyer, S. Law, G. Rooney, T. Jacobs, and D. Wasserman, “Strong absorption and selective emission from engineered metals with dielectric coatings,” Opt. Express 21(7), 9113–9122 (2013).
[Crossref] [PubMed]

V. C. Su, P. H. Chen, R. M. Lin, M. L. Lee, Y. H. You, C. I. Ho, Y. C. Chen, W. F. Chen, and C. H. Kuan, “Suppressed quantum-confined Stark effect in InGaN-based LEDs with nano-sized patterned sapphire substrates,” Opt. Express 21(24), 30065–30073 (2013).
[Crossref] [PubMed]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref] [PubMed]

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[Crossref] [PubMed]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

A. Pors, O. Albrektsen, I. P. Radko, and S. I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3(1), 2155 (2013).
[Crossref] [PubMed]

A. Pors and S. I. Bozhevolnyi, “Plasmonic metasurfaces for efficient phase control in reflection,” Opt. Express 21(22), 27438–27451 (2013).
[Crossref] [PubMed]

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13(2), 829–834 (2013).
[Crossref] [PubMed]

2012 (10)

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband Light Bending with Plasmonic Nanoantennas,” Science 335(6067), 4277 (2012).
[Crossref] [PubMed]

R. Blanchard, G. Aoust, P. Genevet, N. F. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale V-shaped antennas for the design of optical phased arrays,” Phys. Rev. B 85(15), 155457 (2012).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

M. L. Tseng, P. C. Wu, S. L. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P. L. Chen, L. Zhou, D. W. Huang, T. J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photonics Rev. 6(5), 702–707 (2012).
[Crossref]

M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast Fabrication of a Ag Nanostructure Substrate Using the Femtosecond Laser for Broad-Band and Tunable Plasmonic Enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, “Linear up-conversion of orbital angular momentum,” Opt. Lett. 37(15), 3270–3272 (2012).
[Crossref] [PubMed]

2011 (2)

M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N. N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express 19(18), 16975–16984 (2011).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

2010 (2)

2008 (1)

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev. 2(1-2), 100–111 (2008).
[Crossref]

2007 (1)

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

2006 (1)

Z. Jakšić, D. Vasiljević-Radović, M. Maksimović, M. Sarajlić, A. Vujanić, and Z. Djurić, “Nanofabrication of negative refractive index metasurfaces,” Microelectron. Eng. 83(4-9), 1786–1791 (2006).
[Crossref]

2005 (1)

X. B. Zou and W. Mathis, “Scheme for optical implementation of orbital angular momentum beam splitter of a light beam and its application in quantum information processing,” Phys. Rev. A 71(4), 042324 (2005).
[Crossref]

2003 (4)

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
[Crossref] [PubMed]

S. Maruo, K. Ikuta, and H. Korogi, “Submicron manipulation tools driven by light in a liquid,” Appl. Phys. Lett. 82(1), 133–135 (2003).
[Crossref]

S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon micro stereolithography,” J. Microelectromech. Syst. 12(5), 533–539 (2003).
[Crossref]

E. F. Kuester, M. A. Mohamed, M. Piket-May, and C. L. Holloway, “Averaged transition conditions for electromagnetic fields at a metafilm,” IEEE Trans. Antenn. Propag. 51(10), 2641–2651 (2003).
[Crossref]

2002 (1)

2001 (2)

Z. Bomzon, V. Kleiner, and E. Hasman, “Pancharatnam--Berry phase in space-variant polarization-state manipulations with subwavelength gratings,” Opt. Lett. 26(18), 1424–1426 (2001).
[Crossref] [PubMed]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices –Micromachines can be created with higher resolution using two-photon absorption,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Abass, A.

Agarwal, R.

S. C. Malek, H. S. Ee, and R. Agarwal, “Strain Multiplexed Metasurface Holograms on a Stretchable Substrate,” Nano Lett. 17(6), 3641–3645 (2017).
[Crossref] [PubMed]

H. S. Ee and R. Agarwal, “Tunable Metasurface and Flat Optical Zoom Lens on a Stretchable Substrate,” Nano Lett. 16(4), 2818–2823 (2016).
[Crossref] [PubMed]

Aieta, F.

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Alaee, R.

Albrektsen, O.

A. Pors, O. Albrektsen, I. P. Radko, and S. I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3(1), 2155 (2013).
[Crossref] [PubMed]

Almeida, E.

O. Avayu, E. Almeida, Y. Prior, and T. Ellenbogen, “Composite functional metasurfaces for multispectral achromatic optics,” Nat. Commun. 8, 14992 (2017).
[Crossref] [PubMed]

E. Almeida, G. Shalem, and Y. Prior, “Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces,” Nat. Commun. 7, 10367 (2016).
[Crossref] [PubMed]

Alu, A.

J. Kim, S. Choudhury, C. DeVault, Y. Zhao, A. V. Kildishev, V. M. Shalaev, A. Alu, and A. Boltasseva, “Controlling the Polarization State of Light with Plasmonic Metal Oxide Metasurface,” ACS Nano 10(10), 9326–9333 (2016).
[Crossref] [PubMed]

J. S. Gomez-Diaz, M. Tymchenko, and A. Alu, “Hyperbolic metasurfaces: surface plasmons, light-matter interactions, and physical implementation using graphene strips,” Opt. Mater. Express 5(10), 2313–2329 (2015).
[Crossref]

W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C. B. Murray, A. Alu, and C. R. Kagan, “Large-Area Nanoimprinted Colloidal Au Nanocrystal-Based Nanoantennas for Ultrathin Polarizing Plasmonic Metasurfaces,” Nano Lett. 15(8), 5254–5260 (2015).
[Crossref] [PubMed]

Alù, A.

N. M. Estakhri and A. Alù, “Recent progress in gradient metasurfaces,” J. Opt. Soc. Am. B 33(2), A21 (2016).
[Crossref]

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Y. Zhao, X.-X. Liu, and A. Alù, “Recent advances on optical metasurfaces,” J. Opt. 16(12), 123001 (2014).
[Crossref]

R. Fleury, D. L. Sounas, and A. Alù, “Negative Refraction and Planar Focusing Based on Parity-Time Symmetric Metasurfaces,” Phys. Rev. Lett. 113(2), 023903 (2014).
[Crossref] [PubMed]

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref] [PubMed]

Andreev, G. O.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Ankonina, G.

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2013).
[Crossref] [PubMed]

Antosiewicz, T. J.

R. Verre, M. Svedendahl, N. O. Länk, Z. J. Yang, G. Zengin, T. J. Antosiewicz, and M. Käll, “Directional Light Extinction and Emission in a Metasurface of Tilted Plasmonic Nanopillars,” Nano Lett. 16(1), 98–104 (2016).
[Crossref] [PubMed]

Aoust, G.

R. Blanchard, G. Aoust, P. Genevet, N. F. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale V-shaped antennas for the design of optical phased arrays,” Phys. Rev. B 85(15), 155457 (2012).
[Crossref]

Arbabi, A.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces,” Optica 4(6), 625–632 (2017).
[Crossref]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules,” Optica 3(6), 628–633 (2016).
[Crossref]

S. M. Kamali, A. Arbabi, E. Arbabi, Y. Horie, and A. Faraon, “Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces,” Nat. Commun. 7, 11618 (2016).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
[Crossref] [PubMed]

Arbabi, E.

Avayu, O.

O. Avayu, E. Almeida, Y. Prior, and T. Ellenbogen, “Composite functional metasurfaces for multispectral achromatic optics,” Nat. Commun. 8, 14992 (2017).
[Crossref] [PubMed]

Bagheri, M.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Bai, B.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Balachandran, B.

S. V. Makarov, V. Milichko, E. V. Ushakova, M. Omelyanovich, A. Cerdan Pasaran, R. Haroldson, B. Balachandran, H. Wang, W. Hu, Y. S. Kivshar, and A. A. Zakhidov, “Multifold Emission Enhancement in Nanoimprinted Hybrid Perovskite Metasurfaces,” ACS Photonics 4(4), 728–735 (2017).
[Crossref]

Balatsky, A. V.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Ball, A. J.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
[Crossref] [PubMed]

Baranov, M. A.

S. V. Makarov, A. N. Tsypkin, T. A. Voytova, V. A. Milichko, I. S. Mukhin, A. V. Yulin, S. E. Putilin, M. A. Baranov, A. E. Krasnok, I. A. Morozov, and P. A. Belov, “Self-adjusted all-dielectric metasurfaces for deep ultraviolet femtosecond pulse generation,” Nanoscale 8(41), 17809–17814 (2016).
[Crossref] [PubMed]

Barnes, W. L.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Basov, D. N.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Belov, P. A.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

S. V. Makarov, A. N. Tsypkin, T. A. Voytova, V. A. Milichko, I. S. Mukhin, A. V. Yulin, S. E. Putilin, M. A. Baranov, A. E. Krasnok, I. A. Morozov, and P. A. Belov, “Self-adjusted all-dielectric metasurfaces for deep ultraviolet femtosecond pulse generation,” Nanoscale 8(41), 17809–17814 (2016).
[Crossref] [PubMed]

S. V. Makarov, V. A. Milichko, I. S. Mukhin, D. A. Shishkin, D. A. Zuev, A. M. Mozharov, A. E. Krasnok, and P. A. Belov, “Controllable femtosecond laser-induced dewetting for plasmonic applications,” Laser Photonics Rev. 10(1), 91–99 (2016).
[Crossref]

Bhaskaran, H.

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref] [PubMed]

Bhaskaran, M.

P. Gutruf, C. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Mechanically Tunable Dielectric Resonator Metasurfaces at Visible Frequencies,” ACS Nano 10(1), 133–141 (2016).
[Crossref] [PubMed]

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Bian, H.

Biener, G.

Blanchard, R.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

R. Blanchard, G. Aoust, P. Genevet, N. F. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale V-shaped antennas for the design of optical phased arrays,” Phys. Rev. B 85(15), 155457 (2012).
[Crossref]

Blank, O.

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2013).
[Crossref] [PubMed]

Bo Li, Y.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

Boltasseva, A.

J. Kim, S. Choudhury, C. DeVault, Y. Zhao, A. V. Kildishev, V. M. Shalaev, A. Alu, and A. Boltasseva, “Controlling the Polarization State of Light with Plasmonic Metal Oxide Metasurface,” ACS Nano 10(10), 9326–9333 (2016).
[Crossref] [PubMed]

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref] [PubMed]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband Light Bending with Plasmonic Nanoantennas,” Science 335(6067), 4277 (2012).
[Crossref] [PubMed]

Bomzon, Z.

Bonod, N.

N. Bonod, “Silicon photonics: Large-scale dielectric metasurfaces,” Nat. Mater. 14(7), 664–665 (2015).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13(2), 829–834 (2013).
[Crossref] [PubMed]

A. Pors and S. I. Bozhevolnyi, “Plasmonic metasurfaces for efficient phase control in reflection,” Opt. Express 21(22), 27438–27451 (2013).
[Crossref] [PubMed]

A. Pors, O. Albrektsen, I. P. Radko, and S. I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3(1), 2155 (2013).
[Crossref] [PubMed]

Brehm, M.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Brener, I.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-Efficiency Dielectric Huygens’ Surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

J. Sautter, I. Staude, M. Decker, E. Rusak, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Active Tuning of All-Dielectric Metasurfaces,” ACS Nano 9(4), 4308–4315 (2015).
[Crossref] [PubMed]

Brongersma, M. L.

J. Park, J. H. Kang, S. J. Kim, X. Liu, and M. L. Brongersma, “Dynamic Reflection Phase and Polarization Control in Metasurfaces,” Nano Lett. 17(1), 407–413 (2017).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref] [PubMed]

Buchnev, O.

O. Buchnev, N. Podoliak, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electrically Controlled Nanostructured Metasurface Loaded with Liquid Crystal: Toward Multifunctional Photonic Switch,” Adv. Opt. Mate. 3(5), 674–679 (2015).
[Crossref]

Buller, G. S.

Burokur, S. N.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Butakov, N. A.

P. P. Iyer, N. A. Butakov, and J. A. Schuller, “Reconfigurable Semiconductor Phased-Array Metasurfaces,” ACS Photonics 2(8), 1077–1084 (2015).
[Crossref]

Bykov, A. Y.

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photonics Rev. 9(2), 195–213 (2015).
[Crossref]

Cai, Y.

S. M. Chen, Y. Cai, G. X. Li, S. Zhang, and K. W. Cheah, “Geometric metasurface fork gratings for vortex-beam generation and manipulation,” Laser Photonics Rev. 10(2), 322–326 (2016).
[Crossref]

Cao, B.

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7, 41893 (2017).
[Crossref] [PubMed]

Capasso, F.

M. Khorasaninejad, Z. Shi, A. Y. Zhu, W. T. Chen, V. Sanjeev, A. Zaidi, and F. Capasso, “Achromatic Metalens over 60 nm Bandwidth in the Visible and Metalens with Reverse Chromatic Dispersion,” Nano Lett. 17(3), 1819–1824 (2017).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, C. Roques-Carmes, I. Mishra, and F. Capasso, “Visible Wavelength Planar Metalenses Based on Titanium Dioxide,” IEEE J. Sel. Top. Quantum Electron. 23(3), 43–58 (2017).
[Crossref]

M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Super-Dispersive Off-Axis Meta-Lenses for Compact High Resolution Spectroscopy,” Nano Lett. 16(6), 3732–3737 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

P. Genevet and F. Capasso, “Holographic optical metasurfaces: a review of current progress,” Rep. Prog. Phys. 78(2), 024401 (2015).
[Crossref] [PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

R. Blanchard, G. Aoust, P. Genevet, N. F. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale V-shaped antennas for the design of optical phased arrays,” Phys. Rev. B 85(15), 155457 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Cerdan Pasaran, A.

S. V. Makarov, V. Milichko, E. V. Ushakova, M. Omelyanovich, A. Cerdan Pasaran, R. Haroldson, B. Balachandran, H. Wang, W. Hu, Y. S. Kivshar, and A. A. Zakhidov, “Multifold Emission Enhancement in Nanoimprinted Hybrid Perovskite Metasurfaces,” ACS Photonics 4(4), 728–735 (2017).
[Crossref]

Chae, B. G.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Chan, C. T.

Y. D. Hou, H. M. Leung, C. T. Chan, J. L. Du, H. L. W. Chan, and D. Y. Lei, “Ultrabroadband Optical Superchirality in a 3D Stacked-Patch Plasmonic Metamaterial Designed by Two-Step Glancing Angle Deposition,” Adv. Funct. Mater. 26(43), 7807–7816 (2016).
[Crossref]

Chan, H. L. W.

Y. D. Hou, H. M. Leung, C. T. Chan, J. L. Du, H. L. W. Chan, and D. Y. Lei, “Ultrabroadband Optical Superchirality in a 3D Stacked-Patch Plasmonic Metamaterial Designed by Two-Step Glancing Angle Deposition,” Adv. Funct. Mater. 26(43), 7807–7816 (2016).
[Crossref]

Chang, C. M.

M. L. Tseng, P. C. Wu, S. L. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P. L. Chen, L. Zhou, D. W. Huang, T. J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photonics Rev. 6(5), 702–707 (2012).
[Crossref]

M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast Fabrication of a Ag Nanostructure Substrate Using the Femtosecond Laser for Broad-Band and Tunable Plasmonic Enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N. N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express 19(18), 16975–16984 (2011).
[Crossref] [PubMed]

Chang, L. C.

C. Nien, L. C. Chang, J. H. Ye, V. C. Su, C. H. Wu, and C. H. Kuan, “Proximity effect correction in electron-beam lithography based on computation of critical-development time with swarm intelligence,” J. Vac. Sci. Technol. B 35, 10 (2017).

L. C. Chang, C. Nien, J. H. Ye, C. H. Chung, V. C. Su, C. H. Wu, and C. H. Kuan, “A comprehensive model for sub-10nm electron-beam patterning through the short-time and cold development,” Nanotechnology 28(42), 425301 (2017).
[Crossref]

Chang, T.

J. Y. Kim, H. Kim, B. H. Kim, T. Chang, J. Lim, H. M. Jin, J. H. Mun, Y. J. Choi, K. Chung, J. Shin, S. Fan, and S. O. Kim, “Highly tunable refractive index visible-light metasurface from block copolymer self-assembly,” Nat. Commun. 7, 12911 (2016).
[Crossref] [PubMed]

Chavel, P.

P. Lalanne and P. Chavel, “Metalenses at visible wavelengths: past, present, perspectives,” Laser Photonics Rev. 11(3), 1600295 (2017).
[Crossref]

Cheah, K. W.

S. M. Chen, Y. Cai, G. X. Li, S. Zhang, and K. W. Cheah, “Geometric metasurface fork gratings for vortex-beam generation and manipulation,” Laser Photonics Rev. 10(2), 322–326 (2016).
[Crossref]

Chen, B. H.

B. H. Chen, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, I. C. Lee, J. W. Chen, Y. H. Chen, Y. C. Lan, C. H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref] [PubMed]

M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N. N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express 19(18), 16975–16984 (2011).
[Crossref] [PubMed]

Chen, H. M.

M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast Fabrication of a Ag Nanostructure Substrate Using the Femtosecond Laser for Broad-Band and Tunable Plasmonic Enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Chen, H. T.

Z. C. Liu, Z. C. Li, Z. Liu, H. Cheng, W. W. Liu, C. C. Tang, C. Z. Gu, J. J. Li, H. T. Chen, S. Q. Chen, and J. G. Tian, “Single-Layer Plasmonic Metasurface Half-Wave Plates with Wavelength-Independent Polarization Conversion Angle,” ACS Photonics 4(8), 2061–2069 (2017).
[Crossref]

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

Chen, J.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-Frequency Dielectric Metasurfaces for Multiwavelength Achromatic and Highly Dispersive Holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Chen, J. W.

P. C. Wu, W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile Polarization Generation with an Aluminum Plasmonic Metasurface,” Nano Lett. 17(1), 445–452 (2017).
[Crossref] [PubMed]

B. H. Chen, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, I. C. Lee, J. W. Chen, Y. H. Chen, Y. C. Lan, C. H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref] [PubMed]

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

W. L. Hsu, P. C. Wu, J. W. Chen, T. Y. Chen, B. H. Cheng, W. T. Chen, Y. W. Huang, C. Y. Liao, G. Sun, and D. P. Tsai, “Vertical split-ring resonator based anomalous beam steering with high extinction ratio,” Sci. Rep. 5(1), 11226 (2015).
[Crossref] [PubMed]

Chen, K.

Z. Wu, K. Chen, R. Menz, T. Nagao, and Y. Zheng, “Tunable multiband metasurfaces by moiré nanosphere lithography,” Nanoscale 7(48), 20391–20396 (2015).
[Crossref] [PubMed]

Chen, M.

Chen, P. H.

Chen, P. L.

M. L. Tseng, P. C. Wu, S. L. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P. L. Chen, L. Zhou, D. W. Huang, T. J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photonics Rev. 6(5), 702–707 (2012).
[Crossref]

Chen, P. Y.

P. Y. Chen and J. Jung, “PT Symmetry and Singularity-Enhanced Sensing Based on Photoexcited Graphene Metasurfaces,” Phys. Rev. Appl. 5(6), 064018 (2016).
[Crossref]

Chen, S. M.

S. M. Chen, Y. Cai, G. X. Li, S. Zhang, and K. W. Cheah, “Geometric metasurface fork gratings for vortex-beam generation and manipulation,” Laser Photonics Rev. 10(2), 322–326 (2016).
[Crossref]

Chen, S. Q.

Z. C. Liu, Z. C. Li, Z. Liu, H. Cheng, W. W. Liu, C. C. Tang, C. Z. Gu, J. J. Li, H. T. Chen, S. Q. Chen, and J. G. Tian, “Single-Layer Plasmonic Metasurface Half-Wave Plates with Wavelength-Independent Polarization Conversion Angle,” ACS Photonics 4(8), 2061–2069 (2017).
[Crossref]

Chen, T. Y.

P. C. Wu, W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile Polarization Generation with an Aluminum Plasmonic Metasurface,” Nano Lett. 17(1), 445–452 (2017).
[Crossref] [PubMed]

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

W. L. Hsu, P. C. Wu, J. W. Chen, T. Y. Chen, B. H. Cheng, W. T. Chen, Y. W. Huang, C. Y. Liao, G. Sun, and D. P. Tsai, “Vertical split-ring resonator based anomalous beam steering with high extinction ratio,” Sci. Rep. 5(1), 11226 (2015).
[Crossref] [PubMed]

Chen, W.

W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C. B. Murray, A. Alu, and C. R. Kagan, “Large-Area Nanoimprinted Colloidal Au Nanocrystal-Based Nanoantennas for Ultrathin Polarizing Plasmonic Metasurfaces,” Nano Lett. 15(8), 5254–5260 (2015).
[Crossref] [PubMed]

Chen, W. F.

Chen, W. T.

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, C. Roques-Carmes, I. Mishra, and F. Capasso, “Visible Wavelength Planar Metalenses Based on Titanium Dioxide,” IEEE J. Sel. Top. Quantum Electron. 23(3), 43–58 (2017).
[Crossref]

P. C. Wu, W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile Polarization Generation with an Aluminum Plasmonic Metasurface,” Nano Lett. 17(1), 445–452 (2017).
[Crossref] [PubMed]

M. Khorasaninejad, Z. Shi, A. Y. Zhu, W. T. Chen, V. Sanjeev, A. Zaidi, and F. Capasso, “Achromatic Metalens over 60 nm Bandwidth in the Visible and Metalens with Reverse Chromatic Dispersion,” Nano Lett. 17(3), 1819–1824 (2017).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Super-Dispersive Off-Axis Meta-Lenses for Compact High Resolution Spectroscopy,” Nano Lett. 16(6), 3732–3737 (2016).
[Crossref] [PubMed]

W. T. Chen, P. Török, M. R. Foreman, C. Y. Liao, W. Y. Tsai, P. R. Wu, and D. P. Tsai, “Integrated plasmonic metasurfaces for spectropolarimetry,” Nanotechnology 27(22), 224002 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum Plasmonic Multicolor Meta-Hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[Crossref] [PubMed]

W. L. Hsu, P. C. Wu, J. W. Chen, T. Y. Chen, B. H. Cheng, W. T. Chen, Y. W. Huang, C. Y. Liao, G. Sun, and D. P. Tsai, “Vertical split-ring resonator based anomalous beam steering with high extinction ratio,” Sci. Rep. 5(1), 11226 (2015).
[Crossref] [PubMed]

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

M. L. Tseng, P. C. Wu, S. L. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P. L. Chen, L. Zhou, D. W. Huang, T. J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photonics Rev. 6(5), 702–707 (2012).
[Crossref]

Chen, X.

F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel Polarization-Controllable Superpositions of Orbital Angular Momentum States,” Adv. Mater. 29(15), 1603838 (2017).
[Crossref] [PubMed]

D. Wen, F. Yue, S. Kumar, Y. Ma, M. Chen, X. Ren, P. E. Kremer, B. D. Gerardot, M. R. Taghizadeh, G. S. Buller, and X. Chen, “Metasurface for characterization of the polarization state of light,” Opt. Express 23(8), 10272–10281 (2015).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Chen, Y. C.

Chen, Y. H.

B. H. Chen, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, I. C. Lee, J. W. Chen, Y. H. Chen, Y. C. Lan, C. H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref] [PubMed]

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Chen, Y. L.

M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast Fabrication of a Ag Nanostructure Substrate Using the Femtosecond Laser for Broad-Band and Tunable Plasmonic Enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Cheng, B. H.

Y. Z. Ho, B. H. Cheng, W. L. Hsu, C. M. Wang, and D. P. Tsai, “Anomalous reflection from metasurfaces with gradient phase distribution below 2 pi,” Appl. Phys. Express 9(7), 072502 (2016).
[Crossref]

W. L. Hsu, P. C. Wu, J. W. Chen, T. Y. Chen, B. H. Cheng, W. T. Chen, Y. W. Huang, C. Y. Liao, G. Sun, and D. P. Tsai, “Vertical split-ring resonator based anomalous beam steering with high extinction ratio,” Sci. Rep. 5(1), 11226 (2015).
[Crossref] [PubMed]

Cheng, H.

Z. C. Liu, Z. C. Li, Z. Liu, H. Cheng, W. W. Liu, C. C. Tang, C. Z. Gu, J. J. Li, H. T. Chen, S. Q. Chen, and J. G. Tian, “Single-Layer Plasmonic Metasurface Half-Wave Plates with Wavelength-Independent Polarization Conversion Angle,” ACS Photonics 4(8), 2061–2069 (2017).
[Crossref]

Cheng, H. W.

Chiang, H. P.

M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast Fabrication of a Ag Nanostructure Substrate Using the Femtosecond Laser for Broad-Band and Tunable Plasmonic Enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

C. H. Chu, C. Da Shiue, H. W. Cheng, M. L. Tseng, H. P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express 18(17), 18383–18393 (2010).
[Crossref] [PubMed]

Chichkov, B. N.

Choi, B.

H. T. Miyazaki, T. Kasaya, H. Oosato, Y. Sugimoto, B. Choi, M. Iwanaga, and K. Sakoda, “Ultraviolet-nanoimprinted packaged metasurface thermal emitters for infrared CO2 sensing,” Sci. Technol. Adv. Mater. 16(3), 035005 (2015).
[Crossref] [PubMed]

Choi, Y. J.

J. Y. Kim, H. Kim, B. H. Kim, T. Chang, J. Lim, H. M. Jin, J. H. Mun, Y. J. Choi, K. Chung, J. Shin, S. Fan, and S. O. Kim, “Highly tunable refractive index visible-light metasurface from block copolymer self-assembly,” Nat. Commun. 7, 12911 (2016).
[Crossref] [PubMed]

Choudhury, S.

J. Kim, S. Choudhury, C. DeVault, Y. Zhao, A. V. Kildishev, V. M. Shalaev, A. Alu, and A. Boltasseva, “Controlling the Polarization State of Light with Plasmonic Metal Oxide Metasurface,” ACS Nano 10(10), 9326–9333 (2016).
[Crossref] [PubMed]

Chowdhury, D. R.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Chu, C. H.

H.-H. Hsiao, C. H. Chu, and D. P. Tsai, “Fundamentals and Applications of Metasurfaces,” Small Methods 1(4), 1600064 (2017).
[Crossref]

B. H. Chen, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, I. C. Lee, J. W. Chen, Y. H. Chen, Y. C. Lan, C. H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref] [PubMed]

P. C. Wu, W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile Polarization Generation with an Aluminum Plasmonic Metasurface,” Nano Lett. 17(1), 445–452 (2017).
[Crossref] [PubMed]

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast Fabrication of a Ag Nanostructure Substrate Using the Femtosecond Laser for Broad-Band and Tunable Plasmonic Enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

M. L. Tseng, P. C. Wu, S. L. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P. L. Chen, L. Zhou, D. W. Huang, T. J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photonics Rev. 6(5), 702–707 (2012).
[Crossref]

M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N. N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express 19(18), 16975–16984 (2011).
[Crossref] [PubMed]

C. H. Chu, C. Da Shiue, H. W. Cheng, M. L. Tseng, H. P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express 18(17), 18383–18393 (2010).
[Crossref] [PubMed]

Chu, N. N.

M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast Fabrication of a Ag Nanostructure Substrate Using the Femtosecond Laser for Broad-Band and Tunable Plasmonic Enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N. N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express 19(18), 16975–16984 (2011).
[Crossref] [PubMed]

Chu, W.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-Frequency Dielectric Metasurfaces for Multiwavelength Achromatic and Highly Dispersive Holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

Chung, C. H.

L. C. Chang, C. Nien, J. H. Ye, C. H. Chung, V. C. Su, C. H. Wu, and C. H. Kuan, “A comprehensive model for sub-10nm electron-beam patterning through the short-time and cold development,” Nanotechnology 28(42), 425301 (2017).
[Crossref]

Chung, K.

J. Y. Kim, H. Kim, B. H. Kim, T. Chang, J. Lim, H. M. Jin, J. H. Mun, Y. J. Choi, K. Chung, J. Shin, S. Fan, and S. O. Kim, “Highly tunable refractive index visible-light metasurface from block copolymer self-assembly,” Nat. Commun. 7, 12911 (2016).
[Crossref] [PubMed]

Cong, L.

L. Cong, N. Xu, W. Zhang, and R. Singh, “Polarization Control in Terahertz Metasurfaces with the Lowest Order Rotational Symmetry,” Adv. Opt. Mat. 3(9), 1176–1183 (2015).
[Crossref]

M. Lawrence, N. Xu, X. Zhang, L. Cong, J. Han, W. Zhang, and S. Zhang, “Manifestation of PT Symmetry Breaking in Polarization Space with Terahertz Metasurfaces,” Phys. Rev. Lett. 113(9), 093901 (2014).
[Crossref] [PubMed]

Cronauer, C.

Cui, J.

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, Z. Zhao, and X. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref] [PubMed]

Da Shiue, C.

Dabidian, N.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical Switching of Infrared Light Using Graphene Integration with Plasmonic Fano Resonant Metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Dai, Q.

Dai, S. W.

X. X. Wu, Y. Meng, L. Wang, J. X. Tian, S. W. Dai, and W. J. Wen, “Anisotropic metasurface with near-unity circular polarization conversion,” Appl. Phys. Lett. 108(18), 183502 (2016).
[Crossref]

Danner, A.

M. Q. Mehmood, S. T. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. H. Zhang, X. H. Ling, H. Liu, J. H. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28, 2533 (2016).

Davies, A. G.

G. Z. Liang, Y. Q. Zeng, X. N. Hu, H. Yu, H. K. Liang, Y. Zhang, L. H. Li, A. G. Davies, E. H. Linfield, and Q. J. Wang, “Monolithic Semiconductor Lasers with Dynamically Tunable Linear-to-Circular Polarization,” ACS Photonics 4(3), 517–524 (2017).
[Crossref]

de Leon, N. P.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

de Lustrac, A.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Decker, M.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-Efficiency Dielectric Huygens’ Surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

J. Sautter, I. Staude, M. Decker, E. Rusak, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Active Tuning of All-Dielectric Metasurfaces,” ACS Nano 9(4), 4308–4315 (2015).
[Crossref] [PubMed]

DeVault, C.

J. Kim, S. Choudhury, C. DeVault, Y. Zhao, A. V. Kildishev, V. M. Shalaev, A. Alu, and A. Boltasseva, “Controlling the Polarization State of Light with Plasmonic Metal Oxide Metasurface,” ACS Nano 10(10), 9326–9333 (2016).
[Crossref] [PubMed]

Devlin, R. C.

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, C. Roques-Carmes, I. Mishra, and F. Capasso, “Visible Wavelength Planar Metalenses Based on Titanium Dioxide,” IEEE J. Sel. Top. Quantum Electron. 23(3), 43–58 (2017).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Dibos, A.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Dill, T. J.

M. J. Rozin, D. A. Rosen, T. J. Dill, and A. R. Tao, “Colloidal metasurfaces displaying near-ideal and tunable light absorbance in the infrared,” Nat. Commun. 6(1), 7325 (2015).
[Crossref] [PubMed]

Ding, D. S.

Ding, J.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

Ding, X.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Djuric, Z.

Z. Jakšić, D. Vasiljević-Radović, M. Maksimović, M. Sarajlić, A. Vujanić, and Z. Djurić, “Nanofabrication of negative refractive index metasurfaces,” Microelectron. Eng. 83(4-9), 1786–1791 (2006).
[Crossref]

Domann, G.

Dominguez, J.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-Efficiency Dielectric Huygens’ Surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Dong, F.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-Frequency Dielectric Metasurfaces for Multiwavelength Achromatic and Highly Dispersive Holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

Dotan, H.

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2013).
[Crossref] [PubMed]

Du, J. L.

Y. D. Hou, H. M. Leung, C. T. Chan, J. L. Du, H. L. W. Chan, and D. Y. Lei, “Ultrabroadband Optical Superchirality in a 3D Stacked-Patch Plasmonic Metamaterial Designed by Two-Step Glancing Angle Deposition,” Adv. Funct. Mater. 26(43), 7807–7816 (2016).
[Crossref]

Dumchin, I.

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2013).
[Crossref] [PubMed]

Durach, M.

Ee, H. S.

S. C. Malek, H. S. Ee, and R. Agarwal, “Strain Multiplexed Metasurface Holograms on a Stretchable Substrate,” Nano Lett. 17(6), 3641–3645 (2017).
[Crossref] [PubMed]

H. S. Ee and R. Agarwal, “Tunable Metasurface and Flat Optical Zoom Lens on a Stretchable Substrate,” Nano Lett. 16(4), 2818–2823 (2016).
[Crossref] [PubMed]

Egbert, A.

Ellenbogen, T.

O. Avayu, E. Almeida, Y. Prior, and T. Ellenbogen, “Composite functional metasurfaces for multispectral achromatic optics,” Nat. Commun. 8, 14992 (2017).
[Crossref] [PubMed]

Emani, N. K.

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref] [PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband Light Bending with Plasmonic Nanoantennas,” Science 335(6067), 4277 (2012).
[Crossref] [PubMed]

Engheta, N.

A. Y. Zhu, A. I. Kuznetsov, B. Luk’yanchuk, N. Engheta, and P. Genevet, “Traditional and emerging materials for optical metasurfaces,” Nanophotonics 6(2), 452–471 (2017).
[Crossref]

Eriksen, R. L.

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13(2), 829–834 (2013).
[Crossref] [PubMed]

Estakhri, N. M.

N. M. Estakhri and A. Alù, “Recent progress in gradient metasurfaces,” J. Opt. Soc. Am. B 33(2), A21 (2016).
[Crossref]

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref] [PubMed]

Evlyukhin, A. B.

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

Fainman, Y.

J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
[Crossref] [PubMed]

Falkner, M.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-Efficiency Dielectric Huygens’ Surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Fan, S.

J. Y. Kim, H. Kim, B. H. Kim, T. Chang, J. Lim, H. M. Jin, J. H. Mun, Y. J. Choi, K. Chung, J. Shin, S. Fan, and S. O. Kim, “Highly tunable refractive index visible-light metasurface from block copolymer self-assembly,” Nat. Commun. 7, 12911 (2016).
[Crossref] [PubMed]

Faraon, A.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces,” Optica 4(6), 625–632 (2017).
[Crossref]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules,” Optica 3(6), 628–633 (2016).
[Crossref]

S. M. Kamali, A. Arbabi, E. Arbabi, Y. Horie, and A. Faraon, “Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces,” Nat. Commun. 7, 11618 (2016).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
[Crossref] [PubMed]

Fedotov, V. A.

O. Buchnev, N. Podoliak, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electrically Controlled Nanostructured Metasurface Loaded with Liquid Crystal: Toward Multifunctional Photonic Switch,” Adv. Opt. Mate. 3(5), 674–679 (2015).
[Crossref]

Ferrari, L.

J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
[Crossref] [PubMed]

Fery, A.

M. Mayer, M. Tebbe, C. Kuttner, M. J. Schnepf, T. A. König, and A. Fery, “Template-assisted colloidal self-assembly of macroscopic magnetic metasurfaces,” Faraday Discuss. 191, 159–176 (2016).
[Crossref] [PubMed]

Fischer, J.

Fleury, R.

R. Fleury, D. L. Sounas, and A. Alù, “Negative Refraction and Planar Focusing Based on Parity-Time Symmetric Metasurfaces,” Phys. Rev. Lett. 113(2), 023903 (2014).
[Crossref] [PubMed]

Foreman, M. R.

W. T. Chen, P. Török, M. R. Foreman, C. Y. Liao, W. Y. Tsai, P. R. Wu, and D. P. Tsai, “Integrated plasmonic metasurfaces for spectropolarimetry,” Nanotechnology 27(22), 224002 (2016).
[Crossref] [PubMed]

Fourkas, J. T.

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev. 2(1-2), 100–111 (2008).
[Crossref]

Fox, J. M.

A. Nemiroski, M. Gonidec, J. M. Fox, P. Jean-Remy, E. Turnage, and G. M. Whitesides, “Engineering Shadows to Fabricate Optical Metasurfaces,” ACS Nano 8(11), 11061–11070 (2014).
[Crossref] [PubMed]

Fröhlich, L.

Fu, Y. H.

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Fullerton, E. E.

J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
[Crossref] [PubMed]

Fumeaux, C.

P. Gutruf, C. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Mechanically Tunable Dielectric Resonator Metasurfaces at Visible Frequencies,” ACS Nano 10(1), 133–141 (2016).
[Crossref] [PubMed]

Gaburro, Z.

R. Blanchard, G. Aoust, P. Genevet, N. F. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale V-shaped antennas for the design of optical phased arrays,” Phys. Rev. B 85(15), 155457 (2012).
[Crossref]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Galfsky, T.

Gang Yu, Z.

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Gao, D.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Gao, P.

L. Liu, X. Zhang, Z. Zhao, M. Pu, P. Gao, Y. Luo, J. Jin, C. Wang, and X. Luo, “Batch Fabrication of Metasurface Holograms Enabled by Plasmonic Cavity Lithography,” Adv. Opt. Mater. 5(21), 1700429 (2017).
[Crossref]

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale 7(44), 18805–18812 (2015).
[Crossref] [PubMed]

Gao, R.

Genevet, P.

A. Y. Zhu, A. I. Kuznetsov, B. Luk’yanchuk, N. Engheta, and P. Genevet, “Traditional and emerging materials for optical metasurfaces,” Nanophotonics 6(2), 452–471 (2017).
[Crossref]

P. Genevet and F. Capasso, “Holographic optical metasurfaces: a review of current progress,” Rep. Prog. Phys. 78(2), 024401 (2015).
[Crossref] [PubMed]

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

R. Blanchard, G. Aoust, P. Genevet, N. F. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale V-shaped antennas for the design of optical phased arrays,” Phys. Rev. B 85(15), 155457 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gerardot, B. D.

F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel Polarization-Controllable Superpositions of Orbital Angular Momentum States,” Adv. Mater. 29(15), 1603838 (2017).
[Crossref] [PubMed]

D. Wen, F. Yue, S. Kumar, Y. Ma, M. Chen, X. Ren, P. E. Kremer, B. D. Gerardot, M. R. Taghizadeh, G. S. Buller, and X. Chen, “Metasurface for characterization of the polarization state of light,” Opt. Express 23(8), 10272–10281 (2015).
[Crossref] [PubMed]

Gholipour, B.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. H. Yuan, J. H. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109(5), 051103 (2016).
[Crossref]

Glybovski, S. B.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Gomez-Diaz, J. S.

Gong, Q.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-Frequency Dielectric Metasurfaces for Multiwavelength Achromatic and Highly Dispersive Holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

Gong, Y.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

Gonidec, M.

M. Gonidec, M. M. Hamedi, A. Nemiroski, L. M. Rubio, C. Torres, and G. M. Whitesides, “Fabrication of Nonperiodic Metasurfaces by Microlens Projection Lithography,” Nano Lett. 16(7), 4125–4132 (2016).
[Crossref] [PubMed]

A. Nemiroski, M. Gonidec, J. M. Fox, P. Jean-Remy, E. Turnage, and G. M. Whitesides, “Engineering Shadows to Fabricate Optical Metasurfaces,” ACS Nano 8(11), 11061–11070 (2014).
[Crossref] [PubMed]

Gopalan, P.

W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C. B. Murray, A. Alu, and C. R. Kagan, “Large-Area Nanoimprinted Colloidal Au Nanocrystal-Based Nanoantennas for Ultrathin Polarizing Plasmonic Metasurfaces,” Nano Lett. 15(8), 5254–5260 (2015).
[Crossref] [PubMed]

Gordon, R.

M. S. Nezami, D. Yoo, G. Hajisalem, S. H. Oh, and R. Gordon, “Gap Plasmon Enhanced Metasurface Third-Harmonic Generation in Transmission Geometry,” ACS Photonics 3(8), 1461–1467 (2016).
[Crossref]

Grbic, A.

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref] [PubMed]

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[Crossref] [PubMed]

Gross, M.

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2013).
[Crossref] [PubMed]

Gu, C. Z.

Z. C. Liu, Z. C. Li, Z. Liu, H. Cheng, W. W. Liu, C. C. Tang, C. Z. Gu, J. J. Li, H. T. Chen, S. Q. Chen, and J. G. Tian, “Single-Layer Plasmonic Metasurface Half-Wave Plates with Wavelength-Independent Polarization Conversion Angle,” ACS Photonics 4(8), 2061–2069 (2017).
[Crossref]

Gu, M.

Z. Yue, G. Xue, J. Liu, Y. Wang, and M. Gu, “Nanometric holograms based on a topological insulator material,” Nat. Commun. 8, 15354 (2017).
[Crossref] [PubMed]

Gu, Y.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

Guo, G. C.

Guo, G. Y.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Guo, P.

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7, 41893 (2017).
[Crossref] [PubMed]

Guo, Y.

Y. Guo, L. Yan, W. Pan, and L. Shao, “Scattering engineering in continuously shaped metasurface: An approach for electromagnetic illusion,” Sci. Rep. 6(1), 30154 (2016).
[Crossref] [PubMed]

Gutruf, P.

P. Gutruf, C. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Mechanically Tunable Dielectric Resonator Metasurfaces at Visible Frequencies,” ACS Nano 10(1), 133–141 (2016).
[Crossref] [PubMed]

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Hajisalem, G.

M. S. Nezami, D. Yoo, G. Hajisalem, S. H. Oh, and R. Gordon, “Gap Plasmon Enhanced Metasurface Third-Harmonic Generation in Transmission Geometry,” ACS Photonics 3(8), 1461–1467 (2016).
[Crossref]

Hamedi, M. M.

M. Gonidec, M. M. Hamedi, A. Nemiroski, L. M. Rubio, C. Torres, and G. M. Whitesides, “Fabrication of Nonperiodic Metasurfaces by Microlens Projection Lithography,” Nano Lett. 16(7), 4125–4132 (2016).
[Crossref] [PubMed]

Han, J.

M. Lawrence, N. Xu, X. Zhang, L. Cong, J. Han, W. Zhang, and S. Zhang, “Manifestation of PT Symmetry Breaking in Polarization Space with Terahertz Metasurfaces,” Phys. Rev. Lett. 113(9), 093901 (2014).
[Crossref] [PubMed]

Hao, J.

L. Zhang, J. Hao, M. Qiu, S. Zouhdi, J. K. Yang, and C. W. Qiu, “Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array,” Nanoscale 6(21), 12303–12309 (2014).
[Crossref] [PubMed]

Haroldson, R.

S. V. Makarov, V. Milichko, E. V. Ushakova, M. Omelyanovich, A. Cerdan Pasaran, R. Haroldson, B. Balachandran, H. Wang, W. Hu, Y. S. Kivshar, and A. A. Zakhidov, “Multifold Emission Enhancement in Nanoimprinted Hybrid Perovskite Metasurfaces,” ACS Photonics 4(4), 728–735 (2017).
[Crossref]

Hashemi, M. R. M.

M. R. M. Hashemi, S. H. Yang, T. Wang, N. Sepúlveda, and M. Jarrahi, “Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces,” Sci. Rep. 6(1), 35439 (2016).
[Crossref] [PubMed]

Hasman, E.

He, Q.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

He, S.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref] [PubMed]

He, Y. J.

M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast Fabrication of a Ag Nanostructure Substrate Using the Femtosecond Laser for Broad-Band and Tunable Plasmonic Enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

High, A. A.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Ho, C. I.

Ho, P. C.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Ho, Y. Z.

Y. Z. Ho, B. H. Cheng, W. L. Hsu, C. M. Wang, and D. P. Tsai, “Anomalous reflection from metasurfaces with gradient phase distribution below 2 pi,” Appl. Phys. Express 9(7), 072502 (2016).
[Crossref]

Holloway, C. L.

E. F. Kuester, M. A. Mohamed, M. Piket-May, and C. L. Holloway, “Averaged transition conditions for electromagnetic fields at a metafilm,” IEEE Trans. Antenn. Propag. 51(10), 2641–2651 (2003).
[Crossref]

Hong, M.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

Hooper, I. R.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Hopkins, B.

S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited Article: Broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

Horie, Y.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces,” Optica 4(6), 625–632 (2017).
[Crossref]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules,” Optica 3(6), 628–633 (2016).
[Crossref]

S. M. Kamali, A. Arbabi, E. Arbabi, Y. Horie, and A. Faraon, “Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces,” Nat. Commun. 7, 11618 (2016).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Hosseini, P.

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref] [PubMed]

Hou, Y. D.

Y. D. Hou, H. M. Leung, C. T. Chan, J. L. Du, H. L. W. Chan, and D. Y. Lei, “Ultrabroadband Optical Superchirality in a 3D Stacked-Patch Plasmonic Metamaterial Designed by Two-Step Glancing Angle Deposition,” Adv. Funct. Mater. 26(43), 7807–7816 (2016).
[Crossref]

Hou, Y. H.

X. Q. Zhou, Y. H. Hou, and J. Q. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5(3), 030701 (2015).
[Crossref]

Houbertz, R.

Hsiao, H. H.

Hsiao, H.-H.

H.-H. Hsiao, C. H. Chu, and D. P. Tsai, “Fundamentals and Applications of Metasurfaces,” Small Methods 1(4), 1600064 (2017).
[Crossref]

Hsiao, M. K.

M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast Fabrication of a Ag Nanostructure Substrate Using the Femtosecond Laser for Broad-Band and Tunable Plasmonic Enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Hsieh, W. T.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Hsu, W. L.

Y. Z. Ho, B. H. Cheng, W. L. Hsu, C. M. Wang, and D. P. Tsai, “Anomalous reflection from metasurfaces with gradient phase distribution below 2 pi,” Appl. Phys. Express 9(7), 072502 (2016).
[Crossref]

W. L. Hsu, P. C. Wu, J. W. Chen, T. Y. Chen, B. H. Cheng, W. T. Chen, Y. W. Huang, C. Y. Liao, G. Sun, and D. P. Tsai, “Vertical split-ring resonator based anomalous beam steering with high extinction ratio,” Sci. Rep. 5(1), 11226 (2015).
[Crossref] [PubMed]

Hu, J.

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7, 41893 (2017).
[Crossref] [PubMed]

Hu, W.

S. V. Makarov, V. Milichko, E. V. Ushakova, M. Omelyanovich, A. Cerdan Pasaran, R. Haroldson, B. Balachandran, H. Wang, W. Hu, Y. S. Kivshar, and A. A. Zakhidov, “Multifold Emission Enhancement in Nanoimprinted Hybrid Perovskite Metasurfaces,” ACS Photonics 4(4), 728–735 (2017).
[Crossref]

Hu, X. N.

G. Z. Liang, Y. Q. Zeng, X. N. Hu, H. Yu, H. K. Liang, Y. Zhang, L. H. Li, A. G. Davies, E. H. Linfield, and Q. J. Wang, “Monolithic Semiconductor Lasers with Dynamically Tunable Linear-to-Circular Polarization,” ACS Photonics 4(3), 517–524 (2017).
[Crossref]

Hu, Y.-H.

S.-C. Jiang, X. Xiong, Y.-S. Hu, S.-W. Jiang, Y.-H. Hu, D.-H. Xu, R.-W. Peng, and M. Wang, “High-efficiency generation of circularly polarized light via symmetry-induced anomalous reflection,” Phys. Rev. B 91(12), 125421 (2015).
[Crossref]

Hu, Y.-S.

S.-C. Jiang, X. Xiong, Y.-S. Hu, S.-W. Jiang, Y.-H. Hu, D.-H. Xu, R.-W. Peng, and M. Wang, “High-efficiency generation of circularly polarized light via symmetry-induced anomalous reflection,” Phys. Rev. B 91(12), 125421 (2015).
[Crossref]

Huang, C.

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, Z. Zhao, and X. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref] [PubMed]

Huang, D. W.

M. L. Tseng, P. C. Wu, S. L. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P. L. Chen, L. Zhou, D. W. Huang, T. J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photonics Rev. 6(5), 702–707 (2012).
[Crossref]

M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast Fabrication of a Ag Nanostructure Substrate Using the Femtosecond Laser for Broad-Band and Tunable Plasmonic Enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Huang, H. W.

M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast Fabrication of a Ag Nanostructure Substrate Using the Femtosecond Laser for Broad-Band and Tunable Plasmonic Enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Huang, K.

M. Q. Mehmood, S. T. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. H. Zhang, X. H. Ling, H. Liu, J. H. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28, 2533 (2016).

L. Zhang, S. Mei, K. Huang, and C.-W. Qiu, “Advances in Full Control of Electromagnetic Waves with Metasurfaces,” Adv. Opt. Mate. 4(6), 818–833 (2016).
[Crossref]

Huang, L.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Huang, Y. W.

P. C. Wu, W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile Polarization Generation with an Aluminum Plasmonic Metasurface,” Nano Lett. 17(1), 445–452 (2017).
[Crossref] [PubMed]

W. L. Hsu, P. C. Wu, J. W. Chen, T. Y. Chen, B. H. Cheng, W. T. Chen, Y. W. Huang, C. Y. Liao, G. Sun, and D. P. Tsai, “Vertical split-ring resonator based anomalous beam steering with high extinction ratio,” Sci. Rep. 5(1), 11226 (2015).
[Crossref] [PubMed]

M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast Fabrication of a Ag Nanostructure Substrate Using the Femtosecond Laser for Broad-Band and Tunable Plasmonic Enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Huang, Y.-W.

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum Plasmonic Multicolor Meta-Hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[Crossref] [PubMed]

Hung Chu, C.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

Hussain, S.

M. Q. Mehmood, S. T. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. H. Zhang, X. H. Ling, H. Liu, J. H. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28, 2533 (2016).

Ikuta, K.

S. Maruo, K. Ikuta, and H. Korogi, “Submicron manipulation tools driven by light in a liquid,” Appl. Phys. Lett. 82(1), 133–135 (2003).
[Crossref]

S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon micro stereolithography,” J. Microelectromech. Syst. 12(5), 533–539 (2003).
[Crossref]

Iwanaga, M.

H. T. Miyazaki, T. Kasaya, H. Oosato, Y. Sugimoto, B. Choi, M. Iwanaga, and K. Sakoda, “Ultraviolet-nanoimprinted packaged metasurface thermal emitters for infrared CO2 sensing,” Sci. Technol. Adv. Mater. 16(3), 035005 (2015).
[Crossref] [PubMed]

Iyer, P. P.

P. P. Iyer, N. A. Butakov, and J. A. Schuller, “Reconfigurable Semiconductor Phased-Array Metasurfaces,” ACS Photonics 2(8), 1077–1084 (2015).
[Crossref]

Jacob, Z.

Jacobs, T.

Jahani, S.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

Jakšic, Z.

Z. Jakšić, D. Vasiljević-Radović, M. Maksimović, M. Sarajlić, A. Vujanić, and Z. Djurić, “Nanofabrication of negative refractive index metasurfaces,” Microelectron. Eng. 83(4-9), 1786–1791 (2006).
[Crossref]

Jang, J.

T. Lee, J. Jang, H. Jeong, and J. Rho, “Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications,” Nano Convergence 5(1), 1 (2018).
[Crossref] [PubMed]

Jarrahi, M.

M. R. M. Hashemi, S. H. Yang, T. Wang, N. Sepúlveda, and M. Jarrahi, “Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces,” Sci. Rep. 6(1), 35439 (2016).
[Crossref] [PubMed]

Jean-Remy, P.

A. Nemiroski, M. Gonidec, J. M. Fox, P. Jean-Remy, E. Turnage, and G. M. Whitesides, “Engineering Shadows to Fabricate Optical Metasurfaces,” ACS Nano 8(11), 11061–11070 (2014).
[Crossref] [PubMed]

Jeong, H.

T. Lee, J. Jang, H. Jeong, and J. Rho, “Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications,” Nano Convergence 5(1), 1 (2018).
[Crossref] [PubMed]

Ji, W.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

Jian, L.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

Jiang, M.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

Jiang, S.-C.

S.-C. Jiang, X. Xiong, Y.-S. Hu, S.-W. Jiang, Y.-H. Hu, D.-H. Xu, R.-W. Peng, and M. Wang, “High-efficiency generation of circularly polarized light via symmetry-induced anomalous reflection,” Phys. Rev. B 91(12), 125421 (2015).
[Crossref]

Jiang, S.-W.

S.-C. Jiang, X. Xiong, Y.-S. Hu, S.-W. Jiang, Y.-H. Hu, D.-H. Xu, R.-W. Peng, and M. Wang, “High-efficiency generation of circularly polarized light via symmetry-induced anomalous reflection,” Phys. Rev. B 91(12), 125421 (2015).
[Crossref]

Jin, G.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Jin, H. M.

J. Y. Kim, H. Kim, B. H. Kim, T. Chang, J. Lim, H. M. Jin, J. H. Mun, Y. J. Choi, K. Chung, J. Shin, S. Fan, and S. O. Kim, “Highly tunable refractive index visible-light metasurface from block copolymer self-assembly,” Nat. Commun. 7, 12911 (2016).
[Crossref] [PubMed]

Jin, J.

L. Liu, X. Zhang, Z. Zhao, M. Pu, P. Gao, Y. Luo, J. Jin, C. Wang, and X. Luo, “Batch Fabrication of Metasurface Holograms Enabled by Plasmonic Cavity Lithography,” Adv. Opt. Mater. 5(21), 1700429 (2017).
[Crossref]

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale 7(44), 18805–18812 (2015).
[Crossref] [PubMed]

Juan, T. K.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Jun Cui, T.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

Jung, J.

P. Y. Chen and J. Jung, “PT Symmetry and Singularity-Enhanced Sensing Based on Photoexcited Graphene Metasurfaces,” Phys. Rev. Appl. 5(6), 064018 (2016).
[Crossref]

Kaczmarek, M.

O. Buchnev, N. Podoliak, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electrically Controlled Nanostructured Metasurface Loaded with Liquid Crystal: Toward Multifunctional Photonic Switch,” Adv. Opt. Mate. 3(5), 674–679 (2015).
[Crossref]

Kagan, C. R.

W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C. B. Murray, A. Alu, and C. R. Kagan, “Large-Area Nanoimprinted Colloidal Au Nanocrystal-Based Nanoantennas for Ultrathin Polarizing Plasmonic Metasurfaces,” Nano Lett. 15(8), 5254–5260 (2015).
[Crossref] [PubMed]

Käll, M.

R. Verre, M. Svedendahl, N. O. Länk, Z. J. Yang, G. Zengin, T. J. Antosiewicz, and M. Käll, “Directional Light Extinction and Emission in a Metasurface of Tilted Plasmonic Nanopillars,” Nano Lett. 16(1), 98–104 (2016).
[Crossref] [PubMed]

Kamali, S. M.

Kang, J. H.

J. Park, J. H. Kang, S. J. Kim, X. Liu, and M. L. Brongersma, “Dynamic Reflection Phase and Polarization Control in Metasurfaces,” Nano Lett. 17(1), 407–413 (2017).
[Crossref] [PubMed]

Kanté, B.

J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
[Crossref] [PubMed]

Karvounis, A.

A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109(5), 051103 (2016).
[Crossref]

Kasaya, T.

H. T. Miyazaki, T. Kasaya, H. Oosato, Y. Sugimoto, B. Choi, M. Iwanaga, and K. Sakoda, “Ultraviolet-nanoimprinted packaged metasurface thermal emitters for infrared CO2 sensing,” Sci. Technol. Adv. Mater. 16(3), 035005 (2015).
[Crossref] [PubMed]

Kats, M. A.

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

R. Blanchard, G. Aoust, P. Genevet, N. F. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale V-shaped antennas for the design of optical phased arrays,” Phys. Rev. B 85(15), 155457 (2012).
[Crossref]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kawata, S.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices –Micromachines can be created with higher resolution using two-photon absorption,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Keene, D.

Keilmann, F.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Kfir, O.

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2013).
[Crossref] [PubMed]

Khanikaev, A. B.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical Switching of Infrared Light Using Graphene Integration with Plasmonic Fano Resonant Metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Kholmanov, I.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical Switching of Infrared Light Using Graphene Integration with Plasmonic Fano Resonant Metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Khorasaninejad, M.

M. Khorasaninejad, Z. Shi, A. Y. Zhu, W. T. Chen, V. Sanjeev, A. Zaidi, and F. Capasso, “Achromatic Metalens over 60 nm Bandwidth in the Visible and Metalens with Reverse Chromatic Dispersion,” Nano Lett. 17(3), 1819–1824 (2017).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, C. Roques-Carmes, I. Mishra, and F. Capasso, “Visible Wavelength Planar Metalenses Based on Titanium Dioxide,” IEEE J. Sel. Top. Quantum Electron. 23(3), 43–58 (2017).
[Crossref]

M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Super-Dispersive Off-Axis Meta-Lenses for Compact High Resolution Spectroscopy,” Nano Lett. 16(6), 3732–3737 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Kildishev, A. V.

J. Kim, S. Choudhury, C. DeVault, Y. Zhao, A. V. Kildishev, V. M. Shalaev, A. Alu, and A. Boltasseva, “Controlling the Polarization State of Light with Plasmonic Metal Oxide Metasurface,” ACS Nano 10(10), 9326–9333 (2016).
[Crossref] [PubMed]

A. M. Shaltout, A. V. Kildishev, and V. M. Shalaev, “Evolution of photonic metasurfaces: from static to dynamic,” J. Opt. Soc. Am. B 33(3), 501–510 (2016).
[Crossref]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband Light Bending with Plasmonic Nanoantennas,” Science 335(6067), 4277 (2012).
[Crossref] [PubMed]

Kim, B. H.

J. Y. Kim, H. Kim, B. H. Kim, T. Chang, J. Lim, H. M. Jin, J. H. Mun, Y. J. Choi, K. Chung, J. Shin, S. Fan, and S. O. Kim, “Highly tunable refractive index visible-light metasurface from block copolymer self-assembly,” Nat. Commun. 7, 12911 (2016).
[Crossref] [PubMed]

Kim, B. J.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Kim, H.

J. Y. Kim, H. Kim, B. H. Kim, T. Chang, J. Lim, H. M. Jin, J. H. Mun, Y. J. Choi, K. Chung, J. Shin, S. Fan, and S. O. Kim, “Highly tunable refractive index visible-light metasurface from block copolymer self-assembly,” Nat. Commun. 7, 12911 (2016).
[Crossref] [PubMed]

Kim, H. T.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Kim, J.

J. Kim, S. Choudhury, C. DeVault, Y. Zhao, A. V. Kildishev, V. M. Shalaev, A. Alu, and A. Boltasseva, “Controlling the Polarization State of Light with Plasmonic Metal Oxide Metasurface,” ACS Nano 10(10), 9326–9333 (2016).
[Crossref] [PubMed]

Kim, J. Y.

J. Y. Kim, H. Kim, B. H. Kim, T. Chang, J. Lim, H. M. Jin, J. H. Mun, Y. J. Choi, K. Chung, J. Shin, S. Fan, and S. O. Kim, “Highly tunable refractive index visible-light metasurface from block copolymer self-assembly,” Nat. Commun. 7, 12911 (2016).
[Crossref] [PubMed]

Kim, S. J.

J. Park, J. H. Kang, S. J. Kim, X. Liu, and M. L. Brongersma, “Dynamic Reflection Phase and Polarization Control in Metasurfaces,” Nano Lett. 17(1), 407–413 (2017).
[Crossref] [PubMed]

Kim, S. O.

J. Y. Kim, H. Kim, B. H. Kim, T. Chang, J. Lim, H. M. Jin, J. H. Mun, Y. J. Choi, K. Chung, J. Shin, S. Fan, and S. O. Kim, “Highly tunable refractive index visible-light metasurface from block copolymer self-assembly,” Nat. Commun. 7, 12911 (2016).
[Crossref] [PubMed]

Kivshar, Y. S.

S. V. Makarov, V. Milichko, E. V. Ushakova, M. Omelyanovich, A. Cerdan Pasaran, R. Haroldson, B. Balachandran, H. Wang, W. Hu, Y. S. Kivshar, and A. A. Zakhidov, “Multifold Emission Enhancement in Nanoimprinted Hybrid Perovskite Metasurfaces,” ACS Photonics 4(4), 728–735 (2017).
[Crossref]

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref] [PubMed]

S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited Article: Broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

L. Wang, S. Kruk, H. Z. Tang, T. Li, I. Kravchenko, D. N. Neshev, and Y. S. Kivshar, “Grayscale transparent metasurface holograms,” Optica 3(12), 1504–1505 (2016).
[Crossref]

D. Smirnova and Y. S. Kivshar, “Multipolar nonlinear nanophotonics,” Optica 3(11), 1241–1255 (2016).
[Crossref]

J. Sautter, I. Staude, M. Decker, E. Rusak, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Active Tuning of All-Dielectric Metasurfaces,” ACS Nano 9(4), 4308–4315 (2015).
[Crossref] [PubMed]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-Efficiency Dielectric Huygens’ Surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photonics Rev. 9(2), 195–213 (2015).
[Crossref]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Kleiner, V.

König, T. A.

M. Mayer, M. Tebbe, C. Kuttner, M. J. Schnepf, T. A. König, and A. Fery, “Template-assisted colloidal self-assembly of macroscopic magnetic metasurfaces,” Faraday Discuss. 191, 159–176 (2016).
[Crossref] [PubMed]

Korogi, H.

S. Maruo, K. Ikuta, and H. Korogi, “Submicron manipulation tools driven by light in a liquid,” Appl. Phys. Lett. 82(1), 133–135 (2003).
[Crossref]

S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon micro stereolithography,” J. Microelectromech. Syst. 12(5), 533–539 (2003).
[Crossref]

Krasnok, A. E.

S. V. Makarov, V. A. Milichko, I. S. Mukhin, D. A. Shishkin, D. A. Zuev, A. M. Mozharov, A. E. Krasnok, and P. A. Belov, “Controllable femtosecond laser-induced dewetting for plasmonic applications,” Laser Photonics Rev. 10(1), 91–99 (2016).
[Crossref]

S. V. Makarov, A. N. Tsypkin, T. A. Voytova, V. A. Milichko, I. S. Mukhin, A. V. Yulin, S. E. Putilin, M. A. Baranov, A. E. Krasnok, I. A. Morozov, and P. A. Belov, “Self-adjusted all-dielectric metasurfaces for deep ultraviolet femtosecond pulse generation,” Nanoscale 8(41), 17809–17814 (2016).
[Crossref] [PubMed]

Kravchenko, I.

Kravchenko, I. I.

S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited Article: Broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

Kremer, P. E.

Krishnamoorthy, H. N. S.

Krishnamurthy, S.

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Kruk, S.

S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited Article: Broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

L. Wang, S. Kruk, H. Z. Tang, T. Li, I. Kravchenko, D. N. Neshev, and Y. S. Kivshar, “Grayscale transparent metasurface holograms,” Optica 3(12), 1504–1505 (2016).
[Crossref]

Kuan, C. H.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

B. H. Chen, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, I. C. Lee, J. W. Chen, Y. H. Chen, Y. C. Lan, C. H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref] [PubMed]

L. C. Chang, C. Nien, J. H. Ye, C. H. Chung, V. C. Su, C. H. Wu, and C. H. Kuan, “A comprehensive model for sub-10nm electron-beam patterning through the short-time and cold development,” Nanotechnology 28(42), 425301 (2017).
[Crossref]

C. Nien, L. C. Chang, J. H. Ye, V. C. Su, C. H. Wu, and C. H. Kuan, “Proximity effect correction in electron-beam lithography based on computation of critical-development time with swarm intelligence,” J. Vac. Sci. Technol. B 35, 10 (2017).

V. C. Su, P. H. Chen, R. M. Lin, M. L. Lee, Y. H. You, C. I. Ho, Y. C. Chen, W. F. Chen, and C. H. Kuan, “Suppressed quantum-confined Stark effect in InGaN-based LEDs with nano-sized patterned sapphire substrates,” Opt. Express 21(24), 30065–30073 (2013).
[Crossref] [PubMed]

Kuester, E. F.

E. F. Kuester, M. A. Mohamed, M. Piket-May, and C. L. Holloway, “Averaged transition conditions for electromagnetic fields at a metafilm,” IEEE Trans. Antenn. Propag. 51(10), 2641–2651 (2003).
[Crossref]

Kumar, S.

Kung, W. T.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Kuttner, C.

M. Mayer, M. Tebbe, C. Kuttner, M. J. Schnepf, T. A. König, and A. Fery, “Template-assisted colloidal self-assembly of macroscopic magnetic metasurfaces,” Faraday Discuss. 191, 159–176 (2016).
[Crossref] [PubMed]

Kuznetsov, A. I.

A. Y. Zhu, A. I. Kuznetsov, B. Luk’yanchuk, N. Engheta, and P. Genevet, “Traditional and emerging materials for optical metasurfaces,” Nanophotonics 6(2), 452–471 (2017).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref] [PubMed]

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Lai, Y. C.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

B. H. Chen, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, I. C. Lee, J. W. Chen, Y. H. Chen, Y. C. Lan, C. H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref] [PubMed]

Lalanne, P.

P. Lalanne and P. Chavel, “Metalenses at visible wavelengths: past, present, perspectives,” Laser Photonics Rev. 11(3), 1600295 (2017).
[Crossref]

Lan, C.

Lan, S.

Lan, Y. C.

B. H. Chen, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, I. C. Lee, J. W. Chen, Y. H. Chen, Y. C. Lan, C. H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref] [PubMed]

Länk, N. O.

R. Verre, M. Svedendahl, N. O. Länk, Z. J. Yang, G. Zengin, T. J. Antosiewicz, and M. Käll, “Directional Light Extinction and Emission in a Metasurface of Tilted Plasmonic Nanopillars,” Nano Lett. 16(1), 98–104 (2016).
[Crossref] [PubMed]

Law, S.

Lawrence, M.

M. Lawrence, N. Xu, X. Zhang, L. Cong, J. Han, W. Zhang, and S. Zhang, “Manifestation of PT Symmetry Breaking in Polarization Space with Terahertz Metasurfaces,” Phys. Rev. Lett. 113(9), 093901 (2014).
[Crossref] [PubMed]

Lee, I. C.

B. H. Chen, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, I. C. Lee, J. W. Chen, Y. H. Chen, Y. C. Lan, C. H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref] [PubMed]

Lee, M. L.

Lee, T.

T. Lee, J. Jang, H. Jeong, and J. Rho, “Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications,” Nano Convergence 5(1), 1 (2018).
[Crossref] [PubMed]

Lei, D. Y.

F. R. Tan, N. Wang, D. Y. Lei, W. X. Yu, and X. M. Zhang, “Plasmonic Black Absorbers for Enhanced Photocurrent of Visible-Light Photocatalysis,” Adv. Opt. Mater. 5, 7 (2017).

Y. D. Hou, H. M. Leung, C. T. Chan, J. L. Du, H. L. W. Chan, and D. Y. Lei, “Ultrabroadband Optical Superchirality in a 3D Stacked-Patch Plasmonic Metamaterial Designed by Two-Step Glancing Angle Deposition,” Adv. Funct. Mater. 26(43), 7807–7816 (2016).
[Crossref]

Leung, H. M.

Y. D. Hou, H. M. Leung, C. T. Chan, J. L. Du, H. L. W. Chan, and D. Y. Lei, “Ultrabroadband Optical Superchirality in a 3D Stacked-Patch Plasmonic Metamaterial Designed by Two-Step Glancing Angle Deposition,” Adv. Funct. Mater. 26(43), 7807–7816 (2016).
[Crossref]

Li, G.

F. Walter, G. Li, C. Meier, S. Zhang, and T. Zentgraf, “Ultrathin Nonlinear Metasurface for Optical Image Encoding,” Nano Lett. 17(5), 3171–3175 (2017).
[Crossref] [PubMed]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Li, G. X.

S. M. Chen, Y. Cai, G. X. Li, S. Zhang, and K. W. Cheah, “Geometric metasurface fork gratings for vortex-beam generation and manipulation,” Laser Photonics Rev. 10(2), 322–326 (2016).
[Crossref]

Li, H.

Li, J.

Li, J. J.

Z. C. Liu, Z. C. Li, Z. Liu, H. Cheng, W. W. Liu, C. C. Tang, C. Z. Gu, J. J. Li, H. T. Chen, S. Q. Chen, and J. G. Tian, “Single-Layer Plasmonic Metasurface Half-Wave Plates with Wavelength-Independent Polarization Conversion Angle,” ACS Photonics 4(8), 2061–2069 (2017).
[Crossref]

Li, L.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

Li, L. H.

G. Z. Liang, Y. Q. Zeng, X. N. Hu, H. Yu, H. K. Liang, Y. Zhang, L. H. Li, A. G. Davies, E. H. Linfield, and Q. J. Wang, “Monolithic Semiconductor Lasers with Dynamically Tunable Linear-to-Circular Polarization,” ACS Photonics 4(3), 517–524 (2017).
[Crossref]

Li, Q.-T.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-Frequency Dielectric Metasurfaces for Multiwavelength Achromatic and Highly Dispersive Holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

Li, T.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

L. Wang, S. Kruk, H. Z. Tang, T. Li, I. Kravchenko, D. N. Neshev, and Y. S. Kivshar, “Grayscale transparent metasurface holograms,” Optica 3(12), 1504–1505 (2016).
[Crossref]

Li, X.

W. Ye, X. Li, J. Liu, and S. Zhang, “Phenomenological modeling of nonlinear holograms based on metallic geometric metasurfaces,” Opt. Express 24(22), 25805–25815 (2016).
[Crossref] [PubMed]

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref] [PubMed]

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, Z. Zhao, and X. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref] [PubMed]

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale 7(44), 18805–18812 (2015).
[Crossref] [PubMed]

Li, Y.

Li, Z. C.

Z. C. Liu, Z. C. Li, Z. Liu, H. Cheng, W. W. Liu, C. C. Tang, C. Z. Gu, J. J. Li, H. T. Chen, S. Q. Chen, and J. G. Tian, “Single-Layer Plasmonic Metasurface Half-Wave Plates with Wavelength-Independent Polarization Conversion Angle,” ACS Photonics 4(8), 2061–2069 (2017).
[Crossref]

Liang, G. Z.

G. Z. Liang, Y. Q. Zeng, X. N. Hu, H. Yu, H. K. Liang, Y. Zhang, L. H. Li, A. G. Davies, E. H. Linfield, and Q. J. Wang, “Monolithic Semiconductor Lasers with Dynamically Tunable Linear-to-Circular Polarization,” ACS Photonics 4(3), 517–524 (2017).
[Crossref]

Liang, H. K.

G. Z. Liang, Y. Q. Zeng, X. N. Hu, H. Yu, H. K. Liang, Y. Zhang, L. H. Li, A. G. Davies, E. H. Linfield, and Q. J. Wang, “Monolithic Semiconductor Lasers with Dynamically Tunable Linear-to-Circular Polarization,” ACS Photonics 4(3), 517–524 (2017).
[Crossref]

Liao, C. Y.

P. C. Wu, W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile Polarization Generation with an Aluminum Plasmonic Metasurface,” Nano Lett. 17(1), 445–452 (2017).
[Crossref] [PubMed]

W. T. Chen, P. Török, M. R. Foreman, C. Y. Liao, W. Y. Tsai, P. R. Wu, and D. P. Tsai, “Integrated plasmonic metasurfaces for spectropolarimetry,” Nanotechnology 27(22), 224002 (2016).
[Crossref] [PubMed]

W. L. Hsu, P. C. Wu, J. W. Chen, T. Y. Chen, B. H. Cheng, W. T. Chen, Y. W. Huang, C. Y. Liao, G. Sun, and D. P. Tsai, “Vertical split-ring resonator based anomalous beam steering with high extinction ratio,” Sci. Rep. 5(1), 11226 (2015).
[Crossref] [PubMed]

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Lim, J.

J. Y. Kim, H. Kim, B. H. Kim, T. Chang, J. Lim, H. M. Jin, J. H. Mun, Y. J. Choi, K. Chung, J. Shin, S. Fan, and S. O. Kim, “Highly tunable refractive index visible-light metasurface from block copolymer self-assembly,” Nat. Commun. 7, 12911 (2016).
[Crossref] [PubMed]

Lin, J. Q.

X. Q. Zhou, Y. H. Hou, and J. Q. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5(3), 030701 (2015).
[Crossref]

Lin, R. M.

Lin, W. C.

M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast Fabrication of a Ag Nanostructure Substrate Using the Femtosecond Laser for Broad-Band and Tunable Plasmonic Enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N. N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express 19(18), 16975–16984 (2011).
[Crossref] [PubMed]

Lin, Y.

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7, 41893 (2017).
[Crossref] [PubMed]

Linfield, E. H.

G. Z. Liang, Y. Q. Zeng, X. N. Hu, H. Yu, H. K. Liang, Y. Zhang, L. H. Li, A. G. Davies, E. H. Linfield, and Q. J. Wang, “Monolithic Semiconductor Lasers with Dynamically Tunable Linear-to-Circular Polarization,” ACS Photonics 4(3), 517–524 (2017).
[Crossref]

Ling, X. H.

M. Q. Mehmood, S. T. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. H. Zhang, X. H. Ling, H. Liu, J. H. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28, 2533 (2016).

Lipson, R. H.

C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photonics Rev. 4(4), 568–580 (2010).
[Crossref]

Liu, A. Q.

Liu, H.

M. Q. Mehmood, S. T. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. H. Zhang, X. H. Ling, H. Liu, J. H. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28, 2533 (2016).

Y. Yao, H. Liu, Y. Wang, Y. Li, B. Song, R. P. Wang, M. L. Povinelli, and W. Wu, “Nanoimprint-defined, large-area meta-surfaces for unidirectional optical transmission with superior extinction in the visible-to-infrared range,” Opt. Express 24(14), 15362–15372 (2016).
[Crossref] [PubMed]

Liu, J.

Z. Yue, G. Xue, J. Liu, Y. Wang, and M. Gu, “Nanometric holograms based on a topological insulator material,” Nat. Commun. 8, 15354 (2017).
[Crossref] [PubMed]

W. Mo, X. Wei, K. Wang, Y. Li, and J. Liu, “Ultrathin flexible terahertz polarization converter based on metasurfaces,” Opt. Express 24(12), 13621–13627 (2016).
[Crossref] [PubMed]

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref] [PubMed]

W. Ye, X. Li, J. Liu, and S. Zhang, “Phenomenological modeling of nonlinear holograms based on metallic geometric metasurfaces,” Opt. Express 24(22), 25805–25815 (2016).
[Crossref] [PubMed]

Liu, K.

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale 7(44), 18805–18812 (2015).
[Crossref] [PubMed]

Liu, L.

L. Liu, X. Zhang, Z. Zhao, M. Pu, P. Gao, Y. Luo, J. Jin, C. Wang, and X. Luo, “Batch Fabrication of Metasurface Holograms Enabled by Plasmonic Cavity Lithography,” Adv. Opt. Mater. 5(21), 1700429 (2017).
[Crossref]

Liu, R. S.

M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast Fabrication of a Ag Nanostructure Substrate Using the Femtosecond Laser for Broad-Band and Tunable Plasmonic Enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Liu, S.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

Liu, W. W.

Z. C. Liu, Z. C. Li, Z. Liu, H. Cheng, W. W. Liu, C. C. Tang, C. Z. Gu, J. J. Li, H. T. Chen, S. Q. Chen, and J. G. Tian, “Single-Layer Plasmonic Metasurface Half-Wave Plates with Wavelength-Independent Polarization Conversion Angle,” ACS Photonics 4(8), 2061–2069 (2017).
[Crossref]

Liu, X.

J. Park, J. H. Kang, S. J. Kim, X. Liu, and M. L. Brongersma, “Dynamic Reflection Phase and Polarization Control in Metasurfaces,” Nano Lett. 17(1), 407–413 (2017).
[Crossref] [PubMed]

Liu, X.-X.

Y. Zhao, X.-X. Liu, and A. Alù, “Recent advances on optical metasurfaces,” J. Opt. 16(12), 123001 (2014).
[Crossref]

Liu, Z.

J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
[Crossref] [PubMed]

Z. C. Liu, Z. C. Li, Z. Liu, H. Cheng, W. W. Liu, C. C. Tang, C. Z. Gu, J. J. Li, H. T. Chen, S. Q. Chen, and J. G. Tian, “Single-Layer Plasmonic Metasurface Half-Wave Plates with Wavelength-Independent Polarization Conversion Angle,” ACS Photonics 4(8), 2061–2069 (2017).
[Crossref]

Liu, Z. C.

Z. C. Liu, Z. C. Li, Z. Liu, H. Cheng, W. W. Liu, C. C. Tang, C. Z. Gu, J. J. Li, H. T. Chen, S. Q. Chen, and J. G. Tian, “Single-Layer Plasmonic Metasurface Half-Wave Plates with Wavelength-Independent Polarization Conversion Angle,” ACS Photonics 4(8), 2061–2069 (2017).
[Crossref]

Lu, C.

C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photonics Rev. 4(4), 568–580 (2010).
[Crossref]

Lu, S. H.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

Luk’yanchuk, B.

A. Y. Zhu, A. I. Kuznetsov, B. Luk’yanchuk, N. Engheta, and P. Genevet, “Traditional and emerging materials for optical metasurfaces,” Nanophotonics 6(2), 452–471 (2017).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref] [PubMed]

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Lukin, M. D.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Luo, J.

Z. Zhang, J. Luo, M. Song, and H. Yu, “Large-area, broadband and high-efficiency near-infrared linear polarization manipulating metasurface fabricated by orthogonal interference lithography,” Appl. Phys. Lett. 107(24), 241904 (2015).
[Crossref]

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale 7(44), 18805–18812 (2015).
[Crossref] [PubMed]

Luo, X.

L. Liu, X. Zhang, Z. Zhao, M. Pu, P. Gao, Y. Luo, J. Jin, C. Wang, and X. Luo, “Batch Fabrication of Metasurface Holograms Enabled by Plasmonic Cavity Lithography,” Adv. Opt. Mater. 5(21), 1700429 (2017).
[Crossref]

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale 7(44), 18805–18812 (2015).
[Crossref] [PubMed]

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, Z. Zhao, and X. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref] [PubMed]

Luo, Y.

L. Liu, X. Zhang, Z. Zhao, M. Pu, P. Gao, Y. Luo, J. Jin, C. Wang, and X. Luo, “Batch Fabrication of Metasurface Holograms Enabled by Plasmonic Cavity Lithography,” Adv. Opt. Mater. 5(21), 1700429 (2017).
[Crossref]

Ma, X.

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, Z. Zhao, and X. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref] [PubMed]

Ma, Y.

MacDonald, K. F.

A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109(5), 051103 (2016).
[Crossref]

Magnuson, C.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical Switching of Infrared Light Using Graphene Integration with Plasmonic Fano Resonant Metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Makarov, S. V.

S. V. Makarov, V. Milichko, E. V. Ushakova, M. Omelyanovich, A. Cerdan Pasaran, R. Haroldson, B. Balachandran, H. Wang, W. Hu, Y. S. Kivshar, and A. A. Zakhidov, “Multifold Emission Enhancement in Nanoimprinted Hybrid Perovskite Metasurfaces,” ACS Photonics 4(4), 728–735 (2017).
[Crossref]

S. V. Makarov, A. N. Tsypkin, T. A. Voytova, V. A. Milichko, I. S. Mukhin, A. V. Yulin, S. E. Putilin, M. A. Baranov, A. E. Krasnok, I. A. Morozov, and P. A. Belov, “Self-adjusted all-dielectric metasurfaces for deep ultraviolet femtosecond pulse generation,” Nanoscale 8(41), 17809–17814 (2016).
[Crossref] [PubMed]

S. V. Makarov, V. A. Milichko, I. S. Mukhin, D. A. Shishkin, D. A. Zuev, A. M. Mozharov, A. E. Krasnok, and P. A. Belov, “Controllable femtosecond laser-induced dewetting for plasmonic applications,” Laser Photonics Rev. 10(1), 91–99 (2016).
[Crossref]

Maksimovic, M.

Z. Jakšić, D. Vasiljević-Radović, M. Maksimović, M. Sarajlić, A. Vujanić, and Z. Djurić, “Nanofabrication of negative refractive index metasurfaces,” Microelectron. Eng. 83(4-9), 1786–1791 (2006).
[Crossref]

Malek, S. C.

S. C. Malek, H. S. Ee, and R. Agarwal, “Strain Multiplexed Metasurface Holograms on a Stretchable Substrate,” Nano Lett. 17(6), 3641–3645 (2017).
[Crossref] [PubMed]

Mansuripur, M.

Maple, M. B.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Maruo, S.

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev. 2(1-2), 100–111 (2008).
[Crossref]

S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon micro stereolithography,” J. Microelectromech. Syst. 12(5), 533–539 (2003).
[Crossref]

S. Maruo, K. Ikuta, and H. Korogi, “Submicron manipulation tools driven by light in a liquid,” Appl. Phys. Lett. 82(1), 133–135 (2003).
[Crossref]

Mathis, W.

X. B. Zou and W. Mathis, “Scheme for optical implementation of orbital angular momentum beam splitter of a light beam and its application in quantum information processing,” Phys. Rev. A 71(4), 042324 (2005).
[Crossref]

Mayer, M.

M. Mayer, M. Tebbe, C. Kuttner, M. J. Schnepf, T. A. König, and A. Fery, “Template-assisted colloidal self-assembly of macroscopic magnetic metasurfaces,” Faraday Discuss. 191, 159–176 (2016).
[Crossref] [PubMed]

Mehmood, M. Q.

M. Q. Mehmood, S. T. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. H. Zhang, X. H. Ling, H. Liu, J. H. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28, 2533 (2016).

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

Mei, S.

L. Zhang, S. Mei, K. Huang, and C.-W. Qiu, “Advances in Full Control of Electromagnetic Waves with Metasurfaces,” Adv. Opt. Mate. 4(6), 818–833 (2016).
[Crossref]

Mei, S. T.

M. Q. Mehmood, S. T. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. H. Zhang, X. H. Ling, H. Liu, J. H. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28, 2533 (2016).

Meier, C.

F. Walter, G. Li, C. Meier, S. Zhang, and T. Zentgraf, “Ultrathin Nonlinear Metasurface for Optical Image Encoding,” Nano Lett. 17(5), 3171–3175 (2017).
[Crossref] [PubMed]

Meinzer, N.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Meng, Y.

X. X. Wu, Y. Meng, L. Wang, J. X. Tian, S. W. Dai, and W. J. Wen, “Anisotropic metasurface with near-unity circular polarization conversion,” Appl. Phys. Lett. 108(18), 183502 (2016).
[Crossref]

Menon, V. M.

Menz, R.

Z. Wu, K. Chen, R. Menz, T. Nagao, and Y. Zheng, “Tunable multiband metasurfaces by moiré nanosphere lithography,” Nanoscale 7(48), 20391–20396 (2015).
[Crossref] [PubMed]

Milichko, V.

S. V. Makarov, V. Milichko, E. V. Ushakova, M. Omelyanovich, A. Cerdan Pasaran, R. Haroldson, B. Balachandran, H. Wang, W. Hu, Y. S. Kivshar, and A. A. Zakhidov, “Multifold Emission Enhancement in Nanoimprinted Hybrid Perovskite Metasurfaces,” ACS Photonics 4(4), 728–735 (2017).
[Crossref]

Milichko, V. A.

S. V. Makarov, A. N. Tsypkin, T. A. Voytova, V. A. Milichko, I. S. Mukhin, A. V. Yulin, S. E. Putilin, M. A. Baranov, A. E. Krasnok, I. A. Morozov, and P. A. Belov, “Self-adjusted all-dielectric metasurfaces for deep ultraviolet femtosecond pulse generation,” Nanoscale 8(41), 17809–17814 (2016).
[Crossref] [PubMed]

S. V. Makarov, V. A. Milichko, I. S. Mukhin, D. A. Shishkin, D. A. Zuev, A. M. Mozharov, A. E. Krasnok, and P. A. Belov, “Controllable femtosecond laser-induced dewetting for plasmonic applications,” Laser Photonics Rev. 10(1), 91–99 (2016).
[Crossref]

Minovich, A. E.

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photonics Rev. 9(2), 195–213 (2015).
[Crossref]

Miroshnichenko, A.

S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited Article: Broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

Miroshnichenko, A. E.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref] [PubMed]

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photonics Rev. 9(2), 195–213 (2015).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Mishra, I.

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, C. Roques-Carmes, I. Mishra, and F. Capasso, “Visible Wavelength Planar Metalenses Based on Titanium Dioxide,” IEEE J. Sel. Top. Quantum Electron. 23(3), 43–58 (2017).
[Crossref]

Miyazaki, H. T.

H. T. Miyazaki, T. Kasaya, H. Oosato, Y. Sugimoto, B. Choi, M. Iwanaga, and K. Sakoda, “Ultraviolet-nanoimprinted packaged metasurface thermal emitters for infrared CO2 sensing,” Sci. Technol. Adv. Mater. 16(3), 035005 (2015).
[Crossref] [PubMed]

Mo, W.

Mohamed, M. A.

E. F. Kuester, M. A. Mohamed, M. Piket-May, and C. L. Holloway, “Averaged transition conditions for electromagnetic fields at a metafilm,” IEEE Trans. Antenn. Propag. 51(10), 2641–2651 (2003).
[Crossref]

Moitra, P.

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Monticone, F.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref] [PubMed]

Montoya, S. A.

J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
[Crossref] [PubMed]

Morozov, I. A.

S. V. Makarov, A. N. Tsypkin, T. A. Voytova, V. A. Milichko, I. S. Mukhin, A. V. Yulin, S. E. Putilin, M. A. Baranov, A. E. Krasnok, I. A. Morozov, and P. A. Belov, “Self-adjusted all-dielectric metasurfaces for deep ultraviolet femtosecond pulse generation,” Nanoscale 8(41), 17809–17814 (2016).
[Crossref] [PubMed]

Mousavi, S. H.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical Switching of Infrared Light Using Graphene Integration with Plasmonic Fano Resonant Metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Mozharov, A. M.

S. V. Makarov, V. A. Milichko, I. S. Mukhin, D. A. Shishkin, D. A. Zuev, A. M. Mozharov, A. E. Krasnok, and P. A. Belov, “Controllable femtosecond laser-induced dewetting for plasmonic applications,” Laser Photonics Rev. 10(1), 91–99 (2016).
[Crossref]

Mühlenbernd, H.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Mukhin, I. S.

S. V. Makarov, V. A. Milichko, I. S. Mukhin, D. A. Shishkin, D. A. Zuev, A. M. Mozharov, A. E. Krasnok, and P. A. Belov, “Controllable femtosecond laser-induced dewetting for plasmonic applications,” Laser Photonics Rev. 10(1), 91–99 (2016).
[Crossref]

S. V. Makarov, A. N. Tsypkin, T. A. Voytova, V. A. Milichko, I. S. Mukhin, A. V. Yulin, S. E. Putilin, M. A. Baranov, A. E. Krasnok, I. A. Morozov, and P. A. Belov, “Self-adjusted all-dielectric metasurfaces for deep ultraviolet femtosecond pulse generation,” Nanoscale 8(41), 17809–17814 (2016).
[Crossref] [PubMed]

Mun, J. H.

J. Y. Kim, H. Kim, B. H. Kim, T. Chang, J. Lim, H. M. Jin, J. H. Mun, Y. J. Choi, K. Chung, J. Shin, S. Fan, and S. O. Kim, “Highly tunable refractive index visible-light metasurface from block copolymer self-assembly,” Nat. Commun. 7, 12911 (2016).
[Crossref] [PubMed]

Murray, C. B.

W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C. B. Murray, A. Alu, and C. R. Kagan, “Large-Area Nanoimprinted Colloidal Au Nanocrystal-Based Nanoantennas for Ultrathin Polarizing Plasmonic Metasurfaces,” Nano Lett. 15(8), 5254–5260 (2015).
[Crossref] [PubMed]

Murzina, T. V.

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photonics Rev. 9(2), 195–213 (2015).
[Crossref]

Nagao, T.

Z. Wu, K. Chen, R. Menz, T. Nagao, and Y. Zheng, “Tunable multiband metasurfaces by moiré nanosphere lithography,” Nanoscale 7(48), 20391–20396 (2015).
[Crossref] [PubMed]

Narimanov, E. E.

Nemiroski, A.

M. Gonidec, M. M. Hamedi, A. Nemiroski, L. M. Rubio, C. Torres, and G. M. Whitesides, “Fabrication of Nonperiodic Metasurfaces by Microlens Projection Lithography,” Nano Lett. 16(7), 4125–4132 (2016).
[Crossref] [PubMed]

A. Nemiroski, M. Gonidec, J. M. Fox, P. Jean-Remy, E. Turnage, and G. M. Whitesides, “Engineering Shadows to Fabricate Optical Metasurfaces,” ACS Nano 8(11), 11061–11070 (2014).
[Crossref] [PubMed]

Neshev, D. N.

S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited Article: Broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

L. Wang, S. Kruk, H. Z. Tang, T. Li, I. Kravchenko, D. N. Neshev, and Y. S. Kivshar, “Grayscale transparent metasurface holograms,” Optica 3(12), 1504–1505 (2016).
[Crossref]

J. Sautter, I. Staude, M. Decker, E. Rusak, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Active Tuning of All-Dielectric Metasurfaces,” ACS Nano 9(4), 4308–4315 (2015).
[Crossref] [PubMed]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-Efficiency Dielectric Huygens’ Surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photonics Rev. 9(2), 195–213 (2015).
[Crossref]

Newman, W.

Nezami, M. S.

M. S. Nezami, D. Yoo, G. Hajisalem, S. H. Oh, and R. Gordon, “Gap Plasmon Enhanced Metasurface Third-Harmonic Generation in Transmission Geometry,” ACS Photonics 3(8), 1461–1467 (2016).
[Crossref]

Ni, X.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband Light Bending with Plasmonic Nanoantennas,” Science 335(6067), 4277 (2012).
[Crossref] [PubMed]

Nielsen, M. G.

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13(2), 829–834 (2013).
[Crossref] [PubMed]

Nien, C.

C. Nien, L. C. Chang, J. H. Ye, V. C. Su, C. H. Wu, and C. H. Kuan, “Proximity effect correction in electron-beam lithography based on computation of critical-development time with swarm intelligence,” J. Vac. Sci. Technol. B 35, 10 (2017).

L. C. Chang, C. Nien, J. H. Ye, C. H. Chung, V. C. Su, C. H. Wu, and C. H. Kuan, “A comprehensive model for sub-10nm electron-beam patterning through the short-time and cold development,” Nanotechnology 28(42), 425301 (2017).
[Crossref]

Nili, H.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Oh, J.

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, C. Roques-Carmes, I. Mishra, and F. Capasso, “Visible Wavelength Planar Metalenses Based on Titanium Dioxide,” IEEE J. Sel. Top. Quantum Electron. 23(3), 43–58 (2017).
[Crossref]

M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Super-Dispersive Off-Axis Meta-Lenses for Compact High Resolution Spectroscopy,” Nano Lett. 16(6), 3732–3737 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Oh, S. H.

M. S. Nezami, D. Yoo, G. Hajisalem, S. H. Oh, and R. Gordon, “Gap Plasmon Enhanced Metasurface Third-Harmonic Generation in Transmission Geometry,” ACS Photonics 3(8), 1461–1467 (2016).
[Crossref]

Omelyanovich, M.

S. V. Makarov, V. Milichko, E. V. Ushakova, M. Omelyanovich, A. Cerdan Pasaran, R. Haroldson, B. Balachandran, H. Wang, W. Hu, Y. S. Kivshar, and A. A. Zakhidov, “Multifold Emission Enhancement in Nanoimprinted Hybrid Perovskite Metasurfaces,” ACS Photonics 4(4), 728–735 (2017).
[Crossref]

Oosato, H.

H. T. Miyazaki, T. Kasaya, H. Oosato, Y. Sugimoto, B. Choi, M. Iwanaga, and K. Sakoda, “Ultraviolet-nanoimprinted packaged metasurface thermal emitters for infrared CO2 sensing,” Sci. Technol. Adv. Mater. 16(3), 035005 (2015).
[Crossref] [PubMed]

Ostendorf, A.

Pan, W.

Y. Guo, L. Yan, W. Pan, and L. Shao, “Scattering engineering in continuously shaped metasurface: An approach for electromagnetic illusion,” Sci. Rep. 6(1), 30154 (2016).
[Crossref] [PubMed]

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, Z. Zhao, and X. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref] [PubMed]

Paniagua-Domínguez, R.

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015).
[Crossref]

Park, H.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Park, J.

J. Park, J. H. Kang, S. J. Kim, X. Liu, and M. L. Brongersma, “Dynamic Reflection Phase and Polarization Control in Metasurfaces,” Nano Lett. 17(1), 407–413 (2017).
[Crossref] [PubMed]

Peng, R.-W.

S.-C. Jiang, X. Xiong, Y.-S. Hu, S.-W. Jiang, Y.-H. Hu, D.-H. Xu, R.-W. Peng, and M. Wang, “High-efficiency generation of circularly polarized light via symmetry-induced anomalous reflection,” Phys. Rev. B 91(12), 125421 (2015).
[Crossref]

Perczel, J.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Pertsch, T.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-Efficiency Dielectric Huygens’ Surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Pfeiffer, C.

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref] [PubMed]

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[Crossref] [PubMed]

Piket-May, M.

E. F. Kuester, M. A. Mohamed, M. Piket-May, and C. L. Holloway, “Averaged transition conditions for electromagnetic fields at a metafilm,” IEEE Trans. Antenn. Propag. 51(10), 2641–2651 (2003).
[Crossref]

Podoliak, N.

O. Buchnev, N. Podoliak, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electrically Controlled Nanostructured Metasurface Loaded with Liquid Crystal: Toward Multifunctional Photonic Switch,” Adv. Opt. Mate. 3(5), 674–679 (2015).
[Crossref]

Polking, M.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Popall, M.

Pors, A.

A. Pors, O. Albrektsen, I. P. Radko, and S. I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3(1), 2155 (2013).
[Crossref] [PubMed]

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13(2), 829–834 (2013).
[Crossref] [PubMed]

A. Pors and S. I. Bozhevolnyi, “Plasmonic metasurfaces for efficient phase control in reflection,” Opt. Express 21(22), 27438–27451 (2013).
[Crossref] [PubMed]

Povinelli, M. L.

Prior, Y.

O. Avayu, E. Almeida, Y. Prior, and T. Ellenbogen, “Composite functional metasurfaces for multispectral achromatic optics,” Nat. Commun. 8, 14992 (2017).
[Crossref] [PubMed]

E. Almeida, G. Shalem, and Y. Prior, “Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces,” Nat. Commun. 7, 10367 (2016).
[Crossref] [PubMed]

Pu, M.

L. Liu, X. Zhang, Z. Zhao, M. Pu, P. Gao, Y. Luo, J. Jin, C. Wang, and X. Luo, “Batch Fabrication of Metasurface Holograms Enabled by Plasmonic Cavity Lithography,” Adv. Opt. Mater. 5(21), 1700429 (2017).
[Crossref]

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale 7(44), 18805–18812 (2015).
[Crossref] [PubMed]

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, Z. Zhao, and X. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref] [PubMed]

Putilin, S. E.

S. V. Makarov, A. N. Tsypkin, T. A. Voytova, V. A. Milichko, I. S. Mukhin, A. V. Yulin, S. E. Putilin, M. A. Baranov, A. E. Krasnok, I. A. Morozov, and P. A. Belov, “Self-adjusted all-dielectric metasurfaces for deep ultraviolet femtosecond pulse generation,” Nanoscale 8(41), 17809–17814 (2016).
[Crossref] [PubMed]

Qazilbash, M. M.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Qiu, C. W.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

M. Q. Mehmood, S. T. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. H. Zhang, X. H. Ling, H. Liu, J. H. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28, 2533 (2016).

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref] [PubMed]

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

L. Zhang, J. Hao, M. Qiu, S. Zouhdi, J. K. Yang, and C. W. Qiu, “Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array,” Nanoscale 6(21), 12303–12309 (2014).
[Crossref] [PubMed]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Qiu, C.-W.

L. Zhang, S. Mei, K. Huang, and C.-W. Qiu, “Advances in Full Control of Electromagnetic Waves with Metasurfaces,” Adv. Opt. Mate. 4(6), 818–833 (2016).
[Crossref]

Qiu, M.

L. Zhang, J. Hao, M. Qiu, S. Zouhdi, J. K. Yang, and C. W. Qiu, “Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array,” Nanoscale 6(21), 12303–12309 (2014).
[Crossref] [PubMed]

Radko, I. P.

A. Pors, O. Albrektsen, I. P. Radko, and S. I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3(1), 2155 (2013).
[Crossref] [PubMed]

Reineke, B.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref] [PubMed]

Reinhardt, C.

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

Ren, X.

Rho, J.

T. Lee, J. Jang, H. Jeong, and J. Rho, “Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications,” Nano Convergence 5(1), 1 (2018).
[Crossref] [PubMed]

Riley, C. T.

J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
[Crossref] [PubMed]

Rockstuhl, C.

Rogers, E. T. F.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. H. Yuan, J. H. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Rooney, G.

Roques-Carmes, C.

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, C. Roques-Carmes, I. Mishra, and F. Capasso, “Visible Wavelength Planar Metalenses Based on Titanium Dioxide,” IEEE J. Sel. Top. Quantum Electron. 23(3), 43–58 (2017).
[Crossref]

Rosen, D. A.

M. J. Rozin, D. A. Rosen, T. J. Dill, and A. R. Tao, “Colloidal metasurfaces displaying near-ideal and tunable light absorbance in the infrared,” Nat. Commun. 6(1), 7325 (2015).
[Crossref] [PubMed]

Rothschild, A.

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2013).
[Crossref] [PubMed]

Rousso, D.

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

Rozin, M. J.

M. J. Rozin, D. A. Rosen, T. J. Dill, and A. R. Tao, “Colloidal metasurfaces displaying near-ideal and tunable light absorbance in the infrared,” Nat. Commun. 6(1), 7325 (2015).
[Crossref] [PubMed]

Rubio, L. M.

M. Gonidec, M. M. Hamedi, A. Nemiroski, L. M. Rubio, C. Torres, and G. M. Whitesides, “Fabrication of Nonperiodic Metasurfaces by Microlens Projection Lithography,” Nano Lett. 16(7), 4125–4132 (2016).
[Crossref] [PubMed]

Ruoff, R. S.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical Switching of Infrared Light Using Graphene Integration with Plasmonic Fano Resonant Metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Rusak, E.

J. Sautter, I. Staude, M. Decker, E. Rusak, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Active Tuning of All-Dielectric Metasurfaces,” ACS Nano 9(4), 4308–4315 (2015).
[Crossref] [PubMed]

Sakoda, K.

H. T. Miyazaki, T. Kasaya, H. Oosato, Y. Sugimoto, B. Choi, M. Iwanaga, and K. Sakoda, “Ultraviolet-nanoimprinted packaged metasurface thermal emitters for infrared CO2 sensing,” Sci. Technol. Adv. Mater. 16(3), 035005 (2015).
[Crossref] [PubMed]

Sanjeev, V.

M. Khorasaninejad, Z. Shi, A. Y. Zhu, W. T. Chen, V. Sanjeev, A. Zaidi, and F. Capasso, “Achromatic Metalens over 60 nm Bandwidth in the Visible and Metalens with Reverse Chromatic Dispersion,” Nano Lett. 17(3), 1819–1824 (2017).
[Crossref] [PubMed]

Sarajlic, M.

Z. Jakšić, D. Vasiljević-Radović, M. Maksimović, M. Sarajlić, A. Vujanić, and Z. Djurić, “Nanofabrication of negative refractive index metasurfaces,” Microelectron. Eng. 83(4-9), 1786–1791 (2006).
[Crossref]

Sautter, J.

J. Sautter, I. Staude, M. Decker, E. Rusak, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Active Tuning of All-Dielectric Metasurfaces,” ACS Nano 9(4), 4308–4315 (2015).
[Crossref] [PubMed]

Schnepf, M. J.

M. Mayer, M. Tebbe, C. Kuttner, M. J. Schnepf, T. A. König, and A. Fery, “Template-assisted colloidal self-assembly of macroscopic magnetic metasurfaces,” Faraday Discuss. 191, 159–176 (2016).
[Crossref] [PubMed]

Schuller, J. A.

P. P. Iyer, N. A. Butakov, and J. A. Schuller, “Reconfigurable Semiconductor Phased-Array Metasurfaces,” ACS Photonics 2(8), 1077–1084 (2015).
[Crossref]

Schulz, J.

Sepúlveda, N.

M. R. M. Hashemi, S. H. Yang, T. Wang, N. Sepúlveda, and M. Jarrahi, “Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces,” Sci. Rep. 6(1), 35439 (2016).
[Crossref] [PubMed]

Serbin, J.

Shah, C. M.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Shahin, S.

J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
[Crossref] [PubMed]

Shalaev, V. M.

A. M. Shaltout, A. V. Kildishev, and V. M. Shalaev, “Evolution of photonic metasurfaces: from static to dynamic,” J. Opt. Soc. Am. B 33(3), 501–510 (2016).
[Crossref]

J. Kim, S. Choudhury, C. DeVault, Y. Zhao, A. V. Kildishev, V. M. Shalaev, A. Alu, and A. Boltasseva, “Controlling the Polarization State of Light with Plasmonic Metal Oxide Metasurface,” ACS Nano 10(10), 9326–9333 (2016).
[Crossref] [PubMed]

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref] [PubMed]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband Light Bending with Plasmonic Nanoantennas,” Science 335(6067), 4277 (2012).
[Crossref] [PubMed]

Shalem, G.

E. Almeida, G. Shalem, and Y. Prior, “Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces,” Nat. Commun. 7, 10367 (2016).
[Crossref] [PubMed]

Shaltout, A. M.

A. M. Shaltout, A. V. Kildishev, and V. M. Shalaev, “Evolution of photonic metasurfaces: from static to dynamic,” J. Opt. Soc. Am. B 33(3), 501–510 (2016).
[Crossref]

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref] [PubMed]

Shao, L.

Y. Guo, L. Yan, W. Pan, and L. Shao, “Scattering engineering in continuously shaped metasurface: An approach for electromagnetic illusion,” Sci. Rep. 6(1), 30154 (2016).
[Crossref] [PubMed]

Sharlin, E.

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2013).
[Crossref] [PubMed]

Sheng, Z. M.

J. Zheng, Z. C. Ye, N. L. Sun, R. Zhang, Z. M. Sheng, H. P. Shieh, and J. Zhang, “Highly anisotropic metasurface: a polarized beam splitter and hologram,” Sci. Rep. 4(1), 6491 (2015).
[Crossref] [PubMed]

Shi, B. S.

Shi, Z.

M. Khorasaninejad, Z. Shi, A. Y. Zhu, W. T. Chen, V. Sanjeev, A. Zaidi, and F. Capasso, “Achromatic Metalens over 60 nm Bandwidth in the Visible and Metalens with Reverse Chromatic Dispersion,” Nano Lett. 17(3), 1819–1824 (2017).
[Crossref] [PubMed]

Shieh, H. P.

J. Zheng, Z. C. Ye, N. L. Sun, R. Zhang, Z. M. Sheng, H. P. Shieh, and J. Zhang, “Highly anisotropic metasurface: a polarized beam splitter and hologram,” Sci. Rep. 4(1), 6491 (2015).
[Crossref] [PubMed]

Shin, J.

J. Y. Kim, H. Kim, B. H. Kim, T. Chang, J. Lim, H. M. Jin, J. H. Mun, Y. J. Choi, K. Chung, J. Shin, S. Fan, and S. O. Kim, “Highly tunable refractive index visible-light metasurface from block copolymer self-assembly,” Nat. Commun. 7, 12911 (2016).
[Crossref] [PubMed]

Shishkin, D. A.

S. V. Makarov, V. A. Milichko, I. S. Mukhin, D. A. Shishkin, D. A. Zuev, A. M. Mozharov, A. E. Krasnok, and P. A. Belov, “Controllable femtosecond laser-induced dewetting for plasmonic applications,” Laser Photonics Rev. 10(1), 91–99 (2016).
[Crossref]

Shvets, G.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical Switching of Infrared Light Using Graphene Integration with Plasmonic Fano Resonant Metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Siew, S. Y.

M. Q. Mehmood, S. T. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. H. Zhang, X. H. Ling, H. Liu, J. H. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28, 2533 (2016).

Simovski, C. R.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Singh, R.

L. Cong, N. Xu, W. Zhang, and R. Singh, “Polarization Control in Terahertz Metasurfaces with the Lowest Order Rotational Symmetry,” Adv. Opt. Mat. 3(9), 1176–1183 (2015).
[Crossref]

Slovick, B. A.

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Smalley, J. S. T.

J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
[Crossref] [PubMed]

Smirnova, D.

Song, B.

Song, M.

Z. Zhang, J. Luo, M. Song, and H. Yu, “Large-area, broadband and high-efficiency near-infrared linear polarization manipulating metasurface fabricated by orthogonal interference lithography,” Appl. Phys. Lett. 107(24), 241904 (2015).
[Crossref]

Song, Z.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-Frequency Dielectric Metasurfaces for Multiwavelength Achromatic and Highly Dispersive Holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

Sounas, D. L.

R. Fleury, D. L. Sounas, and A. Alù, “Negative Refraction and Planar Focusing Based on Parity-Time Symmetric Metasurfaces,” Phys. Rev. Lett. 113(2), 023903 (2014).
[Crossref] [PubMed]

Sriram, S.

P. Gutruf, C. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Mechanically Tunable Dielectric Resonator Metasurfaces at Visible Frequencies,” ACS Nano 10(1), 133–141 (2016).
[Crossref] [PubMed]

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Srivastava, A.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

Staude, I.

J. Sautter, I. Staude, M. Decker, E. Rusak, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Active Tuning of All-Dielectric Metasurfaces,” ACS Nano 9(4), 4308–4315 (2015).
[Crossref] [PubMed]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-Efficiency Dielectric Huygens’ Surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Streyer, W.

Su, V. C.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

C. Nien, L. C. Chang, J. H. Ye, V. C. Su, C. H. Wu, and C. H. Kuan, “Proximity effect correction in electron-beam lithography based on computation of critical-development time with swarm intelligence,” J. Vac. Sci. Technol. B 35, 10 (2017).

L. C. Chang, C. Nien, J. H. Ye, C. H. Chung, V. C. Su, C. H. Wu, and C. H. Kuan, “A comprehensive model for sub-10nm electron-beam patterning through the short-time and cold development,” Nanotechnology 28(42), 425301 (2017).
[Crossref]

B. H. Chen, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, I. C. Lee, J. W. Chen, Y. H. Chen, Y. C. Lan, C. H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref] [PubMed]

V. C. Su, P. H. Chen, R. M. Lin, M. L. Lee, Y. H. You, C. I. Ho, Y. C. Chen, W. F. Chen, and C. H. Kuan, “Suppressed quantum-confined Stark effect in InGaN-based LEDs with nano-sized patterned sapphire substrates,” Opt. Express 21(24), 30065–30073 (2013).
[Crossref] [PubMed]

Sugimoto, Y.

H. T. Miyazaki, T. Kasaya, H. Oosato, Y. Sugimoto, B. Choi, M. Iwanaga, and K. Sakoda, “Ultraviolet-nanoimprinted packaged metasurface thermal emitters for infrared CO2 sensing,” Sci. Technol. Adv. Mater. 16(3), 035005 (2015).
[Crossref] [PubMed]

Sun, C.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-Frequency Dielectric Metasurfaces for Multiwavelength Achromatic and Highly Dispersive Holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

Sun, G.

P. C. Wu, W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile Polarization Generation with an Aluminum Plasmonic Metasurface,” Nano Lett. 17(1), 445–452 (2017).
[Crossref] [PubMed]

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum Plasmonic Multicolor Meta-Hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[Crossref] [PubMed]

W. L. Hsu, P. C. Wu, J. W. Chen, T. Y. Chen, B. H. Cheng, W. T. Chen, Y. W. Huang, C. Y. Liao, G. Sun, and D. P. Tsai, “Vertical split-ring resonator based anomalous beam steering with high extinction ratio,” Sci. Rep. 5(1), 11226 (2015).
[Crossref] [PubMed]

M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast Fabrication of a Ag Nanostructure Substrate Using the Femtosecond Laser for Broad-Band and Tunable Plasmonic Enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Sun, H. B.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices –Micromachines can be created with higher resolution using two-photon absorption,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Sun, N. L.

J. Zheng, Z. C. Ye, N. L. Sun, R. Zhang, Z. M. Sheng, H. P. Shieh, and J. Zhang, “Highly anisotropic metasurface: a polarized beam splitter and hologram,” Sci. Rep. 4(1), 6491 (2015).
[Crossref] [PubMed]

Sun, S.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Sun, S. L.

M. L. Tseng, P. C. Wu, S. L. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P. L. Chen, L. Zhou, D. W. Huang, T. J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photonics Rev. 6(5), 702–707 (2012).
[Crossref]

Svedendahl, M.

R. Verre, M. Svedendahl, N. O. Länk, Z. J. Yang, G. Zengin, T. J. Antosiewicz, and M. Käll, “Directional Light Extinction and Emission in a Metasurface of Tilted Plasmonic Nanopillars,” Nano Lett. 16(1), 98–104 (2016).
[Crossref] [PubMed]

Taghizadeh, M. R.

Takada, K.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices –Micromachines can be created with higher resolution using two-photon absorption,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Tan, F. R.

F. R. Tan, N. Wang, D. Y. Lei, W. X. Yu, and X. M. Zhang, “Plasmonic Black Absorbers for Enhanced Photocurrent of Visible-Light Photocatalysis,” Adv. Opt. Mater. 5, 7 (2017).

Tan, Q.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Tanaka, T.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices –Micromachines can be created with higher resolution using two-photon absorption,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Tang, C. C.

Z. C. Liu, Z. C. Li, Z. Liu, H. Cheng, W. W. Liu, C. C. Tang, C. Z. Gu, J. J. Li, H. T. Chen, S. Q. Chen, and J. G. Tian, “Single-Layer Plasmonic Metasurface Half-Wave Plates with Wavelength-Independent Polarization Conversion Angle,” ACS Photonics 4(8), 2061–2069 (2017).
[Crossref]

Tang, H. Z.

Tao, A. R.

M. J. Rozin, D. A. Rosen, T. J. Dill, and A. R. Tao, “Colloidal metasurfaces displaying near-ideal and tunable light absorbance in the infrared,” Nat. Commun. 6(1), 7325 (2015).
[Crossref] [PubMed]

Tatar, K.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical Switching of Infrared Light Using Graphene Integration with Plasmonic Fano Resonant Metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Taylor, A. J.

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

Tebbe, M.

M. Mayer, M. Tebbe, C. Kuttner, M. J. Schnepf, T. A. König, and A. Fery, “Template-assisted colloidal self-assembly of macroscopic magnetic metasurfaces,” Faraday Discuss. 191, 159–176 (2016).
[Crossref] [PubMed]

Teng, J. H.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. H. Yuan, J. H. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

M. Q. Mehmood, S. T. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. H. Zhang, X. H. Ling, H. Liu, J. H. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28, 2533 (2016).

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Tian, J. G.

Z. C. Liu, Z. C. Li, Z. Liu, H. Cheng, W. W. Liu, C. C. Tang, C. Z. Gu, J. J. Li, H. T. Chen, S. Q. Chen, and J. G. Tian, “Single-Layer Plasmonic Metasurface Half-Wave Plates with Wavelength-Independent Polarization Conversion Angle,” ACS Photonics 4(8), 2061–2069 (2017).
[Crossref]

Tian, J. X.

X. X. Wu, Y. Meng, L. Wang, J. X. Tian, S. W. Dai, and W. J. Wen, “Anisotropic metasurface with near-unity circular polarization conversion,” Appl. Phys. Lett. 108(18), 183502 (2016).
[Crossref]

Tie, S.

Török, P.

W. T. Chen, P. Török, M. R. Foreman, C. Y. Liao, W. Y. Tsai, P. R. Wu, and D. P. Tsai, “Integrated plasmonic metasurfaces for spectropolarimetry,” Nanotechnology 27(22), 224002 (2016).
[Crossref] [PubMed]

Torres, C.

M. Gonidec, M. M. Hamedi, A. Nemiroski, L. M. Rubio, C. Torres, and G. M. Whitesides, “Fabrication of Nonperiodic Metasurfaces by Microlens Projection Lithography,” Nano Lett. 16(7), 4125–4132 (2016).
[Crossref] [PubMed]

Trendafilov, S.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical Switching of Infrared Light Using Graphene Integration with Plasmonic Fano Resonant Metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Tretyakov, S. A.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Tsai, D. P.

H.-H. Hsiao, C. H. Chu, and D. P. Tsai, “Fundamentals and Applications of Metasurfaces,” Small Methods 1(4), 1600064 (2017).
[Crossref]

B. H. Chen, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, I. C. Lee, J. W. Chen, Y. H. Chen, Y. C. Lan, C. H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref] [PubMed]

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

P. C. Wu, W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile Polarization Generation with an Aluminum Plasmonic Metasurface,” Nano Lett. 17(1), 445–452 (2017).
[Crossref] [PubMed]

W. T. Chen, P. Török, M. R. Foreman, C. Y. Liao, W. Y. Tsai, P. R. Wu, and D. P. Tsai, “Integrated plasmonic metasurfaces for spectropolarimetry,” Nanotechnology 27(22), 224002 (2016).
[Crossref] [PubMed]

Y. Z. Ho, B. H. Cheng, W. L. Hsu, C. M. Wang, and D. P. Tsai, “Anomalous reflection from metasurfaces with gradient phase distribution below 2 pi,” Appl. Phys. Express 9(7), 072502 (2016).
[Crossref]

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum Plasmonic Multicolor Meta-Hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[Crossref] [PubMed]

W. L. Hsu, P. C. Wu, J. W. Chen, T. Y. Chen, B. H. Cheng, W. T. Chen, Y. W. Huang, C. Y. Liao, G. Sun, and D. P. Tsai, “Vertical split-ring resonator based anomalous beam steering with high extinction ratio,” Sci. Rep. 5(1), 11226 (2015).
[Crossref] [PubMed]

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

M. L. Tseng, P. C. Wu, S. L. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P. L. Chen, L. Zhou, D. W. Huang, T. J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photonics Rev. 6(5), 702–707 (2012).
[Crossref]

M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast Fabrication of a Ag Nanostructure Substrate Using the Femtosecond Laser for Broad-Band and Tunable Plasmonic Enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N. N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express 19(18), 16975–16984 (2011).
[Crossref] [PubMed]

C. H. Chu, C. Da Shiue, H. W. Cheng, M. L. Tseng, H. P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express 18(17), 18383–18393 (2010).
[Crossref] [PubMed]

Tsai, W. Y.

P. C. Wu, W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile Polarization Generation with an Aluminum Plasmonic Metasurface,” Nano Lett. 17(1), 445–452 (2017).
[Crossref] [PubMed]

W. T. Chen, P. Török, M. R. Foreman, C. Y. Liao, W. Y. Tsai, P. R. Wu, and D. P. Tsai, “Integrated plasmonic metasurfaces for spectropolarimetry,” Nanotechnology 27(22), 224002 (2016).
[Crossref] [PubMed]

Tsai, W.-Y.

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum Plasmonic Multicolor Meta-Hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[Crossref] [PubMed]

Tseng, M. L.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast Fabrication of a Ag Nanostructure Substrate Using the Femtosecond Laser for Broad-Band and Tunable Plasmonic Enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

M. L. Tseng, P. C. Wu, S. L. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P. L. Chen, L. Zhou, D. W. Huang, T. J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photonics Rev. 6(5), 702–707 (2012).
[Crossref]

M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N. N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express 19(18), 16975–16984 (2011).
[Crossref] [PubMed]

C. H. Chu, C. Da Shiue, H. W. Cheng, M. L. Tseng, H. P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express 18(17), 18383–18393 (2010).
[Crossref] [PubMed]

Tsypkin, A. N.

S. V. Makarov, A. N. Tsypkin, T. A. Voytova, V. A. Milichko, I. S. Mukhin, A. V. Yulin, S. E. Putilin, M. A. Baranov, A. E. Krasnok, I. A. Morozov, and P. A. Belov, “Self-adjusted all-dielectric metasurfaces for deep ultraviolet femtosecond pulse generation,” Nanoscale 8(41), 17809–17814 (2016).
[Crossref] [PubMed]

Turnage, E.

A. Nemiroski, M. Gonidec, J. M. Fox, P. Jean-Remy, E. Turnage, and G. M. Whitesides, “Engineering Shadows to Fabricate Optical Metasurfaces,” ACS Nano 8(11), 11061–11070 (2014).
[Crossref] [PubMed]

Tymchenko, M.

W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C. B. Murray, A. Alu, and C. R. Kagan, “Large-Area Nanoimprinted Colloidal Au Nanocrystal-Based Nanoantennas for Ultrathin Polarizing Plasmonic Metasurfaces,” Nano Lett. 15(8), 5254–5260 (2015).
[Crossref] [PubMed]

J. S. Gomez-Diaz, M. Tymchenko, and A. Alu, “Hyperbolic metasurfaces: surface plasmons, light-matter interactions, and physical implementation using graphene strips,” Opt. Mater. Express 5(10), 2313–2329 (2015).
[Crossref]

Ushakova, E. V.

S. V. Makarov, V. Milichko, E. V. Ushakova, M. Omelyanovich, A. Cerdan Pasaran, R. Haroldson, B. Balachandran, H. Wang, W. Hu, Y. S. Kivshar, and A. A. Zakhidov, “Multifold Emission Enhancement in Nanoimprinted Hybrid Perovskite Metasurfaces,” ACS Photonics 4(4), 728–735 (2017).
[Crossref]

Valentine, J.

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Vallini, F.

J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
[Crossref] [PubMed]

Vasiljevic-Radovic, D.

Z. Jakšić, D. Vasiljević-Radović, M. Maksimović, M. Sarajlić, A. Vujanić, and Z. Djurić, “Nanofabrication of negative refractive index metasurfaces,” Microelectron. Eng. 83(4-9), 1786–1791 (2006).
[Crossref]

Venkatesan, T.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

Verre, R.

R. Verre, M. Svedendahl, N. O. Länk, Z. J. Yang, G. Zengin, T. J. Antosiewicz, and M. Käll, “Directional Light Extinction and Emission in a Metasurface of Tilted Plasmonic Nanopillars,” Nano Lett. 16(1), 98–104 (2016).
[Crossref] [PubMed]

Voytova, T. A.

S. V. Makarov, A. N. Tsypkin, T. A. Voytova, V. A. Milichko, I. S. Mukhin, A. V. Yulin, S. E. Putilin, M. A. Baranov, A. E. Krasnok, I. A. Morozov, and P. A. Belov, “Self-adjusted all-dielectric metasurfaces for deep ultraviolet femtosecond pulse generation,” Nanoscale 8(41), 17809–17814 (2016).
[Crossref] [PubMed]

Vujanic, A.

Z. Jakšić, D. Vasiljević-Radović, M. Maksimović, M. Sarajlić, A. Vujanić, and Z. Djurić, “Nanofabrication of negative refractive index metasurfaces,” Microelectron. Eng. 83(4-9), 1786–1791 (2006).
[Crossref]

Walia, S.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Walter, F.

F. Walter, G. Li, C. Meier, S. Zhang, and T. Zentgraf, “Ultrathin Nonlinear Metasurface for Optical Image Encoding,” Nano Lett. 17(5), 3171–3175 (2017).
[Crossref] [PubMed]

Wan, X.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

Wang, B.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-Frequency Dielectric Metasurfaces for Multiwavelength Achromatic and Highly Dispersive Holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

Wang, C.

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7, 41893 (2017).
[Crossref] [PubMed]

L. Liu, X. Zhang, Z. Zhao, M. Pu, P. Gao, Y. Luo, J. Jin, C. Wang, and X. Luo, “Batch Fabrication of Metasurface Holograms Enabled by Plasmonic Cavity Lithography,” Adv. Opt. Mater. 5(21), 1700429 (2017).
[Crossref]

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale 7(44), 18805–18812 (2015).
[Crossref] [PubMed]

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, Z. Zhao, and X. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref] [PubMed]

Wang, C. M.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. H. Yuan, J. H. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Y. Z. Ho, B. H. Cheng, W. L. Hsu, C. M. Wang, and D. P. Tsai, “Anomalous reflection from metasurfaces with gradient phase distribution below 2 pi,” Appl. Phys. Express 9(7), 072502 (2016).
[Crossref]

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Wang, C.-M.

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum Plasmonic Multicolor Meta-Hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[Crossref] [PubMed]

Wang, D.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

Wang, H.

S. V. Makarov, V. Milichko, E. V. Ushakova, M. Omelyanovich, A. Cerdan Pasaran, R. Haroldson, B. Balachandran, H. Wang, W. Hu, Y. S. Kivshar, and A. A. Zakhidov, “Multifold Emission Enhancement in Nanoimprinted Hybrid Perovskite Metasurfaces,” ACS Photonics 4(4), 728–735 (2017).
[Crossref]

Wang, H. C.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Wang, K.

Wang, L.

X. X. Wu, Y. Meng, L. Wang, J. X. Tian, S. W. Dai, and W. J. Wen, “Anisotropic metasurface with near-unity circular polarization conversion,” Appl. Phys. Lett. 108(18), 183502 (2016).
[Crossref]

L. Wang, S. Kruk, H. Z. Tang, T. Li, I. Kravchenko, D. N. Neshev, and Y. S. Kivshar, “Grayscale transparent metasurface holograms,” Optica 3(12), 1504–1505 (2016).
[Crossref]

Wang, M.

S.-C. Jiang, X. Xiong, Y.-S. Hu, S.-W. Jiang, Y.-H. Hu, D.-H. Xu, R.-W. Peng, and M. Wang, “High-efficiency generation of circularly polarized light via symmetry-induced anomalous reflection,” Phys. Rev. B 91(12), 125421 (2015).
[Crossref]

Wang, N.

F. R. Tan, N. Wang, D. Y. Lei, W. X. Yu, and X. M. Zhang, “Plasmonic Black Absorbers for Enhanced Photocurrent of Visible-Light Photocatalysis,” Adv. Opt. Mater. 5, 7 (2017).

Wang, Q.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. H. Yuan, J. H. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Wang, Q. J.

G. Z. Liang, Y. Q. Zeng, X. N. Hu, H. Yu, H. K. Liang, Y. Zhang, L. H. Li, A. G. Davies, E. H. Linfield, and Q. J. Wang, “Monolithic Semiconductor Lasers with Dynamically Tunable Linear-to-Circular Polarization,” ACS Photonics 4(3), 517–524 (2017).
[Crossref]

Wang, R. P.

Wang, S.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

Wang, T.

M. R. M. Hashemi, S. H. Yang, T. Wang, N. Sepúlveda, and M. Jarrahi, “Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces,” Sci. Rep. 6(1), 35439 (2016).
[Crossref] [PubMed]

Wang, W.

F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel Polarization-Controllable Superpositions of Orbital Angular Momentum States,” Adv. Mater. 29(15), 1603838 (2017).
[Crossref] [PubMed]

Wang, Y.

Z. Yue, G. Xue, J. Liu, Y. Wang, and M. Gu, “Nanometric holograms based on a topological insulator material,” Nat. Commun. 8, 15354 (2017).
[Crossref] [PubMed]

Y. Yao, H. Liu, Y. Wang, Y. Li, B. Song, R. P. Wang, M. L. Povinelli, and W. Wu, “Nanoimprint-defined, large-area meta-surfaces for unidirectional optical transmission with superior extinction in the visible-to-infrared range,” Opt. Express 24(14), 15362–15372 (2016).
[Crossref] [PubMed]

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref] [PubMed]

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, Z. Zhao, and X. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref] [PubMed]

Wasserman, D.

Wegener, M.

Wei, X.

Wen, D.

F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel Polarization-Controllable Superpositions of Orbital Angular Momentum States,” Adv. Mater. 29(15), 1603838 (2017).
[Crossref] [PubMed]

D. Wen, F. Yue, S. Kumar, Y. Ma, M. Chen, X. Ren, P. E. Kremer, B. D. Gerardot, M. R. Taghizadeh, G. S. Buller, and X. Chen, “Metasurface for characterization of the polarization state of light,” Opt. Express 23(8), 10272–10281 (2015).
[Crossref] [PubMed]

Wen, W. J.

X. X. Wu, Y. Meng, L. Wang, J. X. Tian, S. W. Dai, and W. J. Wen, “Anisotropic metasurface with near-unity circular polarization conversion,” Appl. Phys. Lett. 108(18), 183502 (2016).
[Crossref]

Whitesides, G. M.

M. Gonidec, M. M. Hamedi, A. Nemiroski, L. M. Rubio, C. Torres, and G. M. Whitesides, “Fabrication of Nonperiodic Metasurfaces by Microlens Projection Lithography,” Nano Lett. 16(7), 4125–4132 (2016).
[Crossref] [PubMed]

A. Nemiroski, M. Gonidec, J. M. Fox, P. Jean-Remy, E. Turnage, and G. M. Whitesides, “Engineering Shadows to Fabricate Optical Metasurfaces,” ACS Nano 8(11), 11061–11070 (2014).
[Crossref] [PubMed]

Wickberg, A.

Wild, D. S.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Withayachumnankul, W.

P. Gutruf, C. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Mechanically Tunable Dielectric Resonator Metasurfaces at Visible Frequencies,” ACS Nano 10(1), 133–141 (2016).
[Crossref] [PubMed]

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Wright, C. D.

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref] [PubMed]

Wu, C. H.

L. C. Chang, C. Nien, J. H. Ye, C. H. Chung, V. C. Su, C. H. Wu, and C. H. Kuan, “A comprehensive model for sub-10nm electron-beam patterning through the short-time and cold development,” Nanotechnology 28(42), 425301 (2017).
[Crossref]

C. Nien, L. C. Chang, J. H. Ye, V. C. Su, C. H. Wu, and C. H. Kuan, “Proximity effect correction in electron-beam lithography based on computation of critical-development time with swarm intelligence,” J. Vac. Sci. Technol. B 35, 10 (2017).

Wu, H. J.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Wu, P. C.

P. C. Wu, W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile Polarization Generation with an Aluminum Plasmonic Metasurface,” Nano Lett. 17(1), 445–452 (2017).
[Crossref] [PubMed]

B. H. Chen, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, I. C. Lee, J. W. Chen, Y. H. Chen, Y. C. Lan, C. H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref] [PubMed]

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum Plasmonic Multicolor Meta-Hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[Crossref] [PubMed]

W. L. Hsu, P. C. Wu, J. W. Chen, T. Y. Chen, B. H. Cheng, W. T. Chen, Y. W. Huang, C. Y. Liao, G. Sun, and D. P. Tsai, “Vertical split-ring resonator based anomalous beam steering with high extinction ratio,” Sci. Rep. 5(1), 11226 (2015).
[Crossref] [PubMed]

M. L. Tseng, P. C. Wu, S. L. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P. L. Chen, L. Zhou, D. W. Huang, T. J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photonics Rev. 6(5), 702–707 (2012).
[Crossref]

Wu, P. R.

W. T. Chen, P. Török, M. R. Foreman, C. Y. Liao, W. Y. Tsai, P. R. Wu, and D. P. Tsai, “Integrated plasmonic metasurfaces for spectropolarimetry,” Nanotechnology 27(22), 224002 (2016).
[Crossref] [PubMed]

Wu, Q.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Wu, W.

Wu, X. X.

X. X. Wu, Y. Meng, L. Wang, J. X. Tian, S. W. Dai, and W. J. Wen, “Anisotropic metasurface with near-unity circular polarization conversion,” Appl. Phys. Lett. 108(18), 183502 (2016).
[Crossref]

Wu, Y.

W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C. B. Murray, A. Alu, and C. R. Kagan, “Large-Area Nanoimprinted Colloidal Au Nanocrystal-Based Nanoantennas for Ultrathin Polarizing Plasmonic Metasurfaces,” Nano Lett. 15(8), 5254–5260 (2015).
[Crossref] [PubMed]

Wu, Z.

Z. Wu, K. Chen, R. Menz, T. Nagao, and Y. Zheng, “Tunable multiband metasurfaces by moiré nanosphere lithography,” Nanoscale 7(48), 20391–20396 (2015).
[Crossref] [PubMed]

Xiang, J.

Xiao, S.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Xiao, Y.-F.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-Frequency Dielectric Metasurfaces for Multiwavelength Achromatic and Highly Dispersive Holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

Xiong, X.

S.-C. Jiang, X. Xiong, Y.-S. Hu, S.-W. Jiang, Y.-H. Hu, D.-H. Xu, R.-W. Peng, and M. Wang, “High-efficiency generation of circularly polarized light via symmetry-induced anomalous reflection,” Phys. Rev. B 91(12), 125421 (2015).
[Crossref]

Xu, B.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

Xu, D.-H.

S.-C. Jiang, X. Xiong, Y.-S. Hu, S.-W. Jiang, Y.-H. Hu, D.-H. Xu, R.-W. Peng, and M. Wang, “High-efficiency generation of circularly polarized light via symmetry-induced anomalous reflection,” Phys. Rev. B 91(12), 125421 (2015).
[Crossref]

Xu, L.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-Frequency Dielectric Metasurfaces for Multiwavelength Achromatic and Highly Dispersive Holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

Xu, N.

L. Cong, N. Xu, W. Zhang, and R. Singh, “Polarization Control in Terahertz Metasurfaces with the Lowest Order Rotational Symmetry,” Adv. Opt. Mat. 3(9), 1176–1183 (2015).
[Crossref]

M. Lawrence, N. Xu, X. Zhang, L. Cong, J. Han, W. Zhang, and S. Zhang, “Manifestation of PT Symmetry Breaking in Polarization Space with Terahertz Metasurfaces,” Phys. Rev. Lett. 113(9), 093901 (2014).
[Crossref] [PubMed]

Xue, G.

Z. Yue, G. Xue, J. Liu, Y. Wang, and M. Gu, “Nanometric holograms based on a topological insulator material,” Nat. Commun. 8, 15354 (2017).
[Crossref] [PubMed]

Yan, L.

Y. Guo, L. Yan, W. Pan, and L. Shao, “Scattering engineering in continuously shaped metasurface: An approach for electromagnetic illusion,” Sci. Rep. 6(1), 30154 (2016).
[Crossref] [PubMed]

Yang, D.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-Frequency Dielectric Metasurfaces for Multiwavelength Achromatic and Highly Dispersive Holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

Yang, J. K.

L. Zhang, J. Hao, M. Qiu, S. Zouhdi, J. K. Yang, and C. W. Qiu, “Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array,” Nanoscale 6(21), 12303–12309 (2014).
[Crossref] [PubMed]

Yang, K. Y.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Yang, S. H.

M. R. M. Hashemi, S. H. Yang, T. Wang, N. Sepúlveda, and M. Jarrahi, “Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces,” Sci. Rep. 6(1), 35439 (2016).
[Crossref] [PubMed]

Yang, Z. J.

R. Verre, M. Svedendahl, N. O. Länk, Z. J. Yang, G. Zengin, T. J. Antosiewicz, and M. Käll, “Directional Light Extinction and Emission in a Metasurface of Tilted Plasmonic Nanopillars,” Nano Lett. 16(1), 98–104 (2016).
[Crossref] [PubMed]

Yao, Y.

Yao, Y. H.

Y. H. Yao and W. Wu, “All-Dielectric Heterogeneous Metasurface as an Efficient Ultra-Broadband Reflector,” Adv. Opt. Mater. 5(14), 1700090 (2017).
[Crossref]

Ye, J. H.

C. Nien, L. C. Chang, J. H. Ye, V. C. Su, C. H. Wu, and C. H. Kuan, “Proximity effect correction in electron-beam lithography based on computation of critical-development time with swarm intelligence,” J. Vac. Sci. Technol. B 35, 10 (2017).

L. C. Chang, C. Nien, J. H. Ye, C. H. Chung, V. C. Su, C. H. Wu, and C. H. Kuan, “A comprehensive model for sub-10nm electron-beam patterning through the short-time and cold development,” Nanotechnology 28(42), 425301 (2017).
[Crossref]

Ye, W.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref] [PubMed]

W. Ye, X. Li, J. Liu, and S. Zhang, “Phenomenological modeling of nonlinear holograms based on metallic geometric metasurfaces,” Opt. Express 24(22), 25805–25815 (2016).
[Crossref] [PubMed]

Ye, X.

W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C. B. Murray, A. Alu, and C. R. Kagan, “Large-Area Nanoimprinted Colloidal Au Nanocrystal-Based Nanoantennas for Ultrathin Polarizing Plasmonic Metasurfaces,” Nano Lett. 15(8), 5254–5260 (2015).
[Crossref] [PubMed]

Ye, Z. C.

J. Zheng, Z. C. Ye, N. L. Sun, R. Zhang, Z. M. Sheng, H. P. Shieh, and J. Zhang, “Highly anisotropic metasurface: a polarized beam splitter and hologram,” Sci. Rep. 4(1), 6491 (2015).
[Crossref] [PubMed]

Yen, T. J.

M. L. Tseng, P. C. Wu, S. L. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P. L. Chen, L. Zhou, D. W. Huang, T. J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photonics Rev. 6(5), 702–707 (2012).
[Crossref]

Yoo, D.

M. S. Nezami, D. Yoo, G. Hajisalem, S. H. Oh, and R. Gordon, “Gap Plasmon Enhanced Metasurface Third-Harmonic Generation in Transmission Geometry,” ACS Photonics 3(8), 1461–1467 (2016).
[Crossref]

You, Y. H.

Yu, H.

G. Z. Liang, Y. Q. Zeng, X. N. Hu, H. Yu, H. K. Liang, Y. Zhang, L. H. Li, A. G. Davies, E. H. Linfield, and Q. J. Wang, “Monolithic Semiconductor Lasers with Dynamically Tunable Linear-to-Circular Polarization,” ACS Photonics 4(3), 517–524 (2017).
[Crossref]

Z. Zhang, J. Luo, M. Song, and H. Yu, “Large-area, broadband and high-efficiency near-infrared linear polarization manipulating metasurface fabricated by orthogonal interference lithography,” Appl. Phys. Lett. 107(24), 241904 (2015).
[Crossref]

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale 7(44), 18805–18812 (2015).
[Crossref] [PubMed]

Yu, N.

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Yu, N. F.

R. Blanchard, G. Aoust, P. Genevet, N. F. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale V-shaped antennas for the design of optical phased arrays,” Phys. Rev. B 85(15), 155457 (2012).
[Crossref]

Yu, W. X.

F. R. Tan, N. Wang, D. Y. Lei, W. X. Yu, and X. M. Zhang, “Plasmonic Black Absorbers for Enhanced Photocurrent of Visible-Light Photocatalysis,” Adv. Opt. Mater. 5, 7 (2017).

Yu, Y. F.

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Yuan, G. H.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. H. Yuan, J. H. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Yue, F.

F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel Polarization-Controllable Superpositions of Orbital Angular Momentum States,” Adv. Mater. 29(15), 1603838 (2017).
[Crossref] [PubMed]

D. Wen, F. Yue, S. Kumar, Y. Ma, M. Chen, X. Ren, P. E. Kremer, B. D. Gerardot, M. R. Taghizadeh, G. S. Buller, and X. Chen, “Metasurface for characterization of the polarization state of light,” Opt. Express 23(8), 10272–10281 (2015).
[Crossref] [PubMed]

Yue, Z.

Z. Yue, G. Xue, J. Liu, Y. Wang, and M. Gu, “Nanometric holograms based on a topological insulator material,” Nat. Commun. 8, 15354 (2017).
[Crossref] [PubMed]

Yulin, A. V.

S. V. Makarov, A. N. Tsypkin, T. A. Voytova, V. A. Milichko, I. S. Mukhin, A. V. Yulin, S. E. Putilin, M. A. Baranov, A. E. Krasnok, I. A. Morozov, and P. A. Belov, “Self-adjusted all-dielectric metasurfaces for deep ultraviolet femtosecond pulse generation,” Nanoscale 8(41), 17809–17814 (2016).
[Crossref] [PubMed]

Yun, S. J.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Zaidi, A.

M. Khorasaninejad, Z. Shi, A. Y. Zhu, W. T. Chen, V. Sanjeev, A. Zaidi, and F. Capasso, “Achromatic Metalens over 60 nm Bandwidth in the Visible and Metalens with Reverse Chromatic Dispersion,” Nano Lett. 17(3), 1819–1824 (2017).
[Crossref] [PubMed]

Zakhidov, A. A.

S. V. Makarov, V. Milichko, E. V. Ushakova, M. Omelyanovich, A. Cerdan Pasaran, R. Haroldson, B. Balachandran, H. Wang, W. Hu, Y. S. Kivshar, and A. A. Zakhidov, “Multifold Emission Enhancement in Nanoimprinted Hybrid Perovskite Metasurfaces,” ACS Photonics 4(4), 728–735 (2017).
[Crossref]

Zeng, B.

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale 7(44), 18805–18812 (2015).
[Crossref] [PubMed]

Zeng, Y. Q.

G. Z. Liang, Y. Q. Zeng, X. N. Hu, H. Yu, H. K. Liang, Y. Zhang, L. H. Li, A. G. Davies, E. H. Linfield, and Q. J. Wang, “Monolithic Semiconductor Lasers with Dynamically Tunable Linear-to-Circular Polarization,” ACS Photonics 4(3), 517–524 (2017).
[Crossref]

Zengin, G.

R. Verre, M. Svedendahl, N. O. Länk, Z. J. Yang, G. Zengin, T. J. Antosiewicz, and M. Käll, “Directional Light Extinction and Emission in a Metasurface of Tilted Plasmonic Nanopillars,” Nano Lett. 16(1), 98–104 (2016).
[Crossref] [PubMed]

Zentgraf, T.

F. Walter, G. Li, C. Meier, S. Zhang, and T. Zentgraf, “Ultrathin Nonlinear Metasurface for Optical Image Encoding,” Nano Lett. 17(5), 3171–3175 (2017).
[Crossref] [PubMed]

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Zeuner, F.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref] [PubMed]

Zhang, C.

Zhang, G.

Zhang, J.

J. Zheng, Z. C. Ye, N. L. Sun, R. Zhang, Z. M. Sheng, H. P. Shieh, and J. Zhang, “Highly anisotropic metasurface: a polarized beam splitter and hologram,” Sci. Rep. 4(1), 6491 (2015).
[Crossref] [PubMed]

Zhang, K.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Zhang, L.

L. Zhang, S. Mei, K. Huang, and C.-W. Qiu, “Advances in Full Control of Electromagnetic Waves with Metasurfaces,” Adv. Opt. Mate. 4(6), 818–833 (2016).
[Crossref]

M. Q. Mehmood, S. T. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. H. Zhang, X. H. Ling, H. Liu, J. H. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28, 2533 (2016).

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

L. Zhang, J. Hao, M. Qiu, S. Zouhdi, J. K. Yang, and C. W. Qiu, “Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array,” Nanoscale 6(21), 12303–12309 (2014).
[Crossref] [PubMed]

Zhang, M.

W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C. B. Murray, A. Alu, and C. R. Kagan, “Large-Area Nanoimprinted Colloidal Au Nanocrystal-Based Nanoantennas for Ultrathin Polarizing Plasmonic Metasurfaces,” Nano Lett. 15(8), 5254–5260 (2015).
[Crossref] [PubMed]

Zhang, R.

J. Zheng, Z. C. Ye, N. L. Sun, R. Zhang, Z. M. Sheng, H. P. Shieh, and J. Zhang, “Highly anisotropic metasurface: a polarized beam splitter and hologram,” Sci. Rep. 4(1), 6491 (2015).
[Crossref] [PubMed]

Zhang, S.

F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel Polarization-Controllable Superpositions of Orbital Angular Momentum States,” Adv. Mater. 29(15), 1603838 (2017).
[Crossref] [PubMed]

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

F. Walter, G. Li, C. Meier, S. Zhang, and T. Zentgraf, “Ultrathin Nonlinear Metasurface for Optical Image Encoding,” Nano Lett. 17(5), 3171–3175 (2017).
[Crossref] [PubMed]

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref] [PubMed]

W. Ye, X. Li, J. Liu, and S. Zhang, “Phenomenological modeling of nonlinear holograms based on metallic geometric metasurfaces,” Opt. Express 24(22), 25805–25815 (2016).
[Crossref] [PubMed]

S. M. Chen, Y. Cai, G. X. Li, S. Zhang, and K. W. Cheah, “Geometric metasurface fork gratings for vortex-beam generation and manipulation,” Laser Photonics Rev. 10(2), 322–326 (2016).
[Crossref]

M. Q. Mehmood, S. T. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. H. Zhang, X. H. Ling, H. Liu, J. H. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28, 2533 (2016).

M. Lawrence, N. Xu, X. Zhang, L. Cong, J. Han, W. Zhang, and S. Zhang, “Manifestation of PT Symmetry Breaking in Polarization Space with Terahertz Metasurfaces,” Phys. Rev. Lett. 113(9), 093901 (2014).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Zhang, T. H.

M. Q. Mehmood, S. T. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. H. Zhang, X. H. Ling, H. Liu, J. H. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28, 2533 (2016).

Zhang, W.

L. Cong, N. Xu, W. Zhang, and R. Singh, “Polarization Control in Terahertz Metasurfaces with the Lowest Order Rotational Symmetry,” Adv. Opt. Mat. 3(9), 1176–1183 (2015).
[Crossref]

M. Lawrence, N. Xu, X. Zhang, L. Cong, J. Han, W. Zhang, and S. Zhang, “Manifestation of PT Symmetry Breaking in Polarization Space with Terahertz Metasurfaces,” Phys. Rev. Lett. 113(9), 093901 (2014).
[Crossref] [PubMed]

Zhang, X.

L. Liu, X. Zhang, Z. Zhao, M. Pu, P. Gao, Y. Luo, J. Jin, C. Wang, and X. Luo, “Batch Fabrication of Metasurface Holograms Enabled by Plasmonic Cavity Lithography,” Adv. Opt. Mater. 5(21), 1700429 (2017).
[Crossref]

M. Lawrence, N. Xu, X. Zhang, L. Cong, J. Han, W. Zhang, and S. Zhang, “Manifestation of PT Symmetry Breaking in Polarization Space with Terahertz Metasurfaces,” Phys. Rev. Lett. 113(9), 093901 (2014).
[Crossref] [PubMed]

Zhang, X. M.

F. R. Tan, N. Wang, D. Y. Lei, W. X. Yu, and X. M. Zhang, “Plasmonic Black Absorbers for Enhanced Photocurrent of Visible-Light Photocatalysis,” Adv. Opt. Mater. 5, 7 (2017).

Zhang, Y.

G. Z. Liang, Y. Q. Zeng, X. N. Hu, H. Yu, H. K. Liang, Y. Zhang, L. H. Li, A. G. Davies, E. H. Linfield, and Q. J. Wang, “Monolithic Semiconductor Lasers with Dynamically Tunable Linear-to-Circular Polarization,” ACS Photonics 4(3), 517–524 (2017).
[Crossref]

Zhang, Z.

Z. Zhang, J. Luo, M. Song, and H. Yu, “Large-area, broadband and high-efficiency near-infrared linear polarization manipulating metasurface fabricated by orthogonal interference lithography,” Appl. Phys. Lett. 107(24), 241904 (2015).
[Crossref]

Zhao, B.

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, Z. Zhao, and X. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref] [PubMed]

Zhao, X.

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7, 41893 (2017).
[Crossref] [PubMed]

Zhao, Y.

J. Kim, S. Choudhury, C. DeVault, Y. Zhao, A. V. Kildishev, V. M. Shalaev, A. Alu, and A. Boltasseva, “Controlling the Polarization State of Light with Plasmonic Metal Oxide Metasurface,” ACS Nano 10(10), 9326–9333 (2016).
[Crossref] [PubMed]

Y. Zhao, X.-X. Liu, and A. Alù, “Recent advances on optical metasurfaces,” J. Opt. 16(12), 123001 (2014).
[Crossref]

Zhao, Z.

L. Liu, X. Zhang, Z. Zhao, M. Pu, P. Gao, Y. Luo, J. Jin, C. Wang, and X. Luo, “Batch Fabrication of Metasurface Holograms Enabled by Plasmonic Cavity Lithography,” Adv. Opt. Mater. 5(21), 1700429 (2017).
[Crossref]

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale 7(44), 18805–18812 (2015).
[Crossref] [PubMed]

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, Z. Zhao, and X. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref] [PubMed]

Zheludev, N. I.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. H. Yuan, J. H. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109(5), 051103 (2016).
[Crossref]

O. Buchnev, N. Podoliak, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electrically Controlled Nanostructured Metasurface Loaded with Liquid Crystal: Toward Multifunctional Photonic Switch,” Adv. Opt. Mate. 3(5), 674–679 (2015).
[Crossref]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Zheng, J.

J. Zheng, Z. C. Ye, N. L. Sun, R. Zhang, Z. M. Sheng, H. P. Shieh, and J. Zhang, “Highly anisotropic metasurface: a polarized beam splitter and hologram,” Sci. Rep. 4(1), 6491 (2015).
[Crossref] [PubMed]

Zheng, Y.

Z. Wu, K. Chen, R. Menz, T. Nagao, and Y. Zheng, “Tunable multiband metasurfaces by moiré nanosphere lithography,” Nanoscale 7(48), 20391–20396 (2015).
[Crossref] [PubMed]

Zhou, J.

Zhou, L.

M. L. Tseng, P. C. Wu, S. L. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P. L. Chen, L. Zhou, D. W. Huang, T. J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photonics Rev. 6(5), 702–707 (2012).
[Crossref]

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Zhou, X. Q.

X. Q. Zhou, Y. H. Hou, and J. Q. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5(3), 030701 (2015).
[Crossref]

Zhou, Z. Y.

Zhu, A.

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7, 41893 (2017).
[Crossref] [PubMed]

Zhu, A. Y.

M. Khorasaninejad, Z. Shi, A. Y. Zhu, W. T. Chen, V. Sanjeev, A. Zaidi, and F. Capasso, “Achromatic Metalens over 60 nm Bandwidth in the Visible and Metalens with Reverse Chromatic Dispersion,” Nano Lett. 17(3), 1819–1824 (2017).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, C. Roques-Carmes, I. Mishra, and F. Capasso, “Visible Wavelength Planar Metalenses Based on Titanium Dioxide,” IEEE J. Sel. Top. Quantum Electron. 23(3), 43–58 (2017).
[Crossref]

A. Y. Zhu, A. I. Kuznetsov, B. Luk’yanchuk, N. Engheta, and P. Genevet, “Traditional and emerging materials for optical metasurfaces,” Nanophotonics 6(2), 452–471 (2017).
[Crossref]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015).
[Crossref]

Zhu, S.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

Zhu, X.

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7, 41893 (2017).
[Crossref] [PubMed]

Zou, C.

P. Gutruf, C. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Mechanically Tunable Dielectric Resonator Metasurfaces at Visible Frequencies,” ACS Nano 10(1), 133–141 (2016).
[Crossref] [PubMed]

Zou, X. B.

D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, “Linear up-conversion of orbital angular momentum,” Opt. Lett. 37(15), 3270–3272 (2012).
[Crossref] [PubMed]

X. B. Zou and W. Mathis, “Scheme for optical implementation of orbital angular momentum beam splitter of a light beam and its application in quantum information processing,” Phys. Rev. A 71(4), 042324 (2005).
[Crossref]

Zouhdi, S.

L. Zhang, J. Hao, M. Qiu, S. Zouhdi, J. K. Yang, and C. W. Qiu, “Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array,” Nanoscale 6(21), 12303–12309 (2014).
[Crossref] [PubMed]

Zuev, D. A.

S. V. Makarov, V. A. Milichko, I. S. Mukhin, D. A. Shishkin, D. A. Zuev, A. M. Mozharov, A. E. Krasnok, and P. A. Belov, “Controllable femtosecond laser-induced dewetting for plasmonic applications,” Laser Photonics Rev. 10(1), 91–99 (2016).
[Crossref]

Zywietz, U.

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

ACS Nano (5)

A. Nemiroski, M. Gonidec, J. M. Fox, P. Jean-Remy, E. Turnage, and G. M. Whitesides, “Engineering Shadows to Fabricate Optical Metasurfaces,” ACS Nano 8(11), 11061–11070 (2014).
[Crossref] [PubMed]

M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast Fabrication of a Ag Nanostructure Substrate Using the Femtosecond Laser for Broad-Band and Tunable Plasmonic Enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

J. Kim, S. Choudhury, C. DeVault, Y. Zhao, A. V. Kildishev, V. M. Shalaev, A. Alu, and A. Boltasseva, “Controlling the Polarization State of Light with Plasmonic Metal Oxide Metasurface,” ACS Nano 10(10), 9326–9333 (2016).
[Crossref] [PubMed]

P. Gutruf, C. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Mechanically Tunable Dielectric Resonator Metasurfaces at Visible Frequencies,” ACS Nano 10(1), 133–141 (2016).
[Crossref] [PubMed]

J. Sautter, I. Staude, M. Decker, E. Rusak, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Active Tuning of All-Dielectric Metasurfaces,” ACS Nano 9(4), 4308–4315 (2015).
[Crossref] [PubMed]

ACS Photonics (6)

M. S. Nezami, D. Yoo, G. Hajisalem, S. H. Oh, and R. Gordon, “Gap Plasmon Enhanced Metasurface Third-Harmonic Generation in Transmission Geometry,” ACS Photonics 3(8), 1461–1467 (2016).
[Crossref]

G. Z. Liang, Y. Q. Zeng, X. N. Hu, H. Yu, H. K. Liang, Y. Zhang, L. H. Li, A. G. Davies, E. H. Linfield, and Q. J. Wang, “Monolithic Semiconductor Lasers with Dynamically Tunable Linear-to-Circular Polarization,” ACS Photonics 4(3), 517–524 (2017).
[Crossref]

Z. C. Liu, Z. C. Li, Z. Liu, H. Cheng, W. W. Liu, C. C. Tang, C. Z. Gu, J. J. Li, H. T. Chen, S. Q. Chen, and J. G. Tian, “Single-Layer Plasmonic Metasurface Half-Wave Plates with Wavelength-Independent Polarization Conversion Angle,” ACS Photonics 4(8), 2061–2069 (2017).
[Crossref]

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical Switching of Infrared Light Using Graphene Integration with Plasmonic Fano Resonant Metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

S. V. Makarov, V. Milichko, E. V. Ushakova, M. Omelyanovich, A. Cerdan Pasaran, R. Haroldson, B. Balachandran, H. Wang, W. Hu, Y. S. Kivshar, and A. A. Zakhidov, “Multifold Emission Enhancement in Nanoimprinted Hybrid Perovskite Metasurfaces,” ACS Photonics 4(4), 728–735 (2017).
[Crossref]

P. P. Iyer, N. A. Butakov, and J. A. Schuller, “Reconfigurable Semiconductor Phased-Array Metasurfaces,” ACS Photonics 2(8), 1077–1084 (2015).
[Crossref]

Adv. Funct. Mater. (1)

Y. D. Hou, H. M. Leung, C. T. Chan, J. L. Du, H. L. W. Chan, and D. Y. Lei, “Ultrabroadband Optical Superchirality in a 3D Stacked-Patch Plasmonic Metamaterial Designed by Two-Step Glancing Angle Deposition,” Adv. Funct. Mater. 26(43), 7807–7816 (2016).
[Crossref]

Adv. Mater. (3)

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel Polarization-Controllable Superpositions of Orbital Angular Momentum States,” Adv. Mater. 29(15), 1603838 (2017).
[Crossref] [PubMed]

M. Q. Mehmood, S. T. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. H. Zhang, X. H. Ling, H. Liu, J. H. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28, 2533 (2016).

Adv. Opt. Mat. (1)

L. Cong, N. Xu, W. Zhang, and R. Singh, “Polarization Control in Terahertz Metasurfaces with the Lowest Order Rotational Symmetry,” Adv. Opt. Mat. 3(9), 1176–1183 (2015).
[Crossref]

Adv. Opt. Mate. (2)

L. Zhang, S. Mei, K. Huang, and C.-W. Qiu, “Advances in Full Control of Electromagnetic Waves with Metasurfaces,” Adv. Opt. Mate. 4(6), 818–833 (2016).
[Crossref]

O. Buchnev, N. Podoliak, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electrically Controlled Nanostructured Metasurface Loaded with Liquid Crystal: Toward Multifunctional Photonic Switch,” Adv. Opt. Mate. 3(5), 674–679 (2015).
[Crossref]

Adv. Opt. Mater. (4)

Y. H. Yao and W. Wu, “All-Dielectric Heterogeneous Metasurface as an Efficient Ultra-Broadband Reflector,” Adv. Opt. Mater. 5(14), 1700090 (2017).
[Crossref]

L. Liu, X. Zhang, Z. Zhao, M. Pu, P. Gao, Y. Luo, J. Jin, C. Wang, and X. Luo, “Batch Fabrication of Metasurface Holograms Enabled by Plasmonic Cavity Lithography,” Adv. Opt. Mater. 5(21), 1700429 (2017).
[Crossref]

F. R. Tan, N. Wang, D. Y. Lei, W. X. Yu, and X. M. Zhang, “Plasmonic Black Absorbers for Enhanced Photocurrent of Visible-Light Photocatalysis,” Adv. Opt. Mater. 5, 7 (2017).

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-Efficiency Dielectric Huygens’ Surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

AIP Adv. (1)

X. Q. Zhou, Y. H. Hou, and J. Q. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5(3), 030701 (2015).
[Crossref]

APL Photonics (1)

S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited Article: Broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

Appl. Phys. Express (1)

Y. Z. Ho, B. H. Cheng, W. L. Hsu, C. M. Wang, and D. P. Tsai, “Anomalous reflection from metasurfaces with gradient phase distribution below 2 pi,” Appl. Phys. Express 9(7), 072502 (2016).
[Crossref]

Appl. Phys. Lett. (5)

S. Maruo, K. Ikuta, and H. Korogi, “Submicron manipulation tools driven by light in a liquid,” Appl. Phys. Lett. 82(1), 133–135 (2003).
[Crossref]

Z. Zhang, J. Luo, M. Song, and H. Yu, “Large-area, broadband and high-efficiency near-infrared linear polarization manipulating metasurface fabricated by orthogonal interference lithography,” Appl. Phys. Lett. 107(24), 241904 (2015).
[Crossref]

A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109(5), 051103 (2016).
[Crossref]

X. X. Wu, Y. Meng, L. Wang, J. X. Tian, S. W. Dai, and W. J. Wen, “Anisotropic metasurface with near-unity circular polarization conversion,” Appl. Phys. Lett. 108(18), 183502 (2016).
[Crossref]

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Appl. Phys. Rev. (1)

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Faraday Discuss. (1)

M. Mayer, M. Tebbe, C. Kuttner, M. J. Schnepf, T. A. König, and A. Fery, “Template-assisted colloidal self-assembly of macroscopic magnetic metasurfaces,” Faraday Discuss. 191, 159–176 (2016).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, C. Roques-Carmes, I. Mishra, and F. Capasso, “Visible Wavelength Planar Metalenses Based on Titanium Dioxide,” IEEE J. Sel. Top. Quantum Electron. 23(3), 43–58 (2017).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

E. F. Kuester, M. A. Mohamed, M. Piket-May, and C. L. Holloway, “Averaged transition conditions for electromagnetic fields at a metafilm,” IEEE Trans. Antenn. Propag. 51(10), 2641–2651 (2003).
[Crossref]

J. Microelectromech. Syst. (1)

S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon micro stereolithography,” J. Microelectromech. Syst. 12(5), 533–539 (2003).
[Crossref]

J. Opt. (1)

Y. Zhao, X.-X. Liu, and A. Alù, “Recent advances on optical metasurfaces,” J. Opt. 16(12), 123001 (2014).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Vac. Sci. Technol. B (1)

C. Nien, L. C. Chang, J. H. Ye, V. C. Su, C. H. Wu, and C. H. Kuan, “Proximity effect correction in electron-beam lithography based on computation of critical-development time with swarm intelligence,” J. Vac. Sci. Technol. B 35, 10 (2017).

Laser Photonics Rev. (9)

P. Lalanne and P. Chavel, “Metalenses at visible wavelengths: past, present, perspectives,” Laser Photonics Rev. 11(3), 1600295 (2017).
[Crossref]

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photonics Rev. 9(2), 195–213 (2015).
[Crossref]

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015).
[Crossref]

M. L. Tseng, P. C. Wu, S. L. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P. L. Chen, L. Zhou, D. W. Huang, T. J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photonics Rev. 6(5), 702–707 (2012).
[Crossref]

S. V. Makarov, V. A. Milichko, I. S. Mukhin, D. A. Shishkin, D. A. Zuev, A. M. Mozharov, A. E. Krasnok, and P. A. Belov, “Controllable femtosecond laser-induced dewetting for plasmonic applications,” Laser Photonics Rev. 10(1), 91–99 (2016).
[Crossref]

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev. 2(1-2), 100–111 (2008).
[Crossref]

C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photonics Rev. 4(4), 568–580 (2010).
[Crossref]

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

S. M. Chen, Y. Cai, G. X. Li, S. Zhang, and K. W. Cheah, “Geometric metasurface fork gratings for vortex-beam generation and manipulation,” Laser Photonics Rev. 10(2), 322–326 (2016).
[Crossref]

Microelectron. Eng. (1)

Z. Jakšić, D. Vasiljević-Radović, M. Maksimović, M. Sarajlić, A. Vujanić, and Z. Djurić, “Nanofabrication of negative refractive index metasurfaces,” Microelectron. Eng. 83(4-9), 1786–1791 (2006).
[Crossref]

Nano Convergence (1)

T. Lee, J. Jang, H. Jeong, and J. Rho, “Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications,” Nano Convergence 5(1), 1 (2018).
[Crossref] [PubMed]

Nano Lett. (19)

B. H. Chen, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, I. C. Lee, J. W. Chen, Y. H. Chen, Y. C. Lan, C. H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref] [PubMed]

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13(2), 829–834 (2013).
[Crossref] [PubMed]

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C. B. Murray, A. Alu, and C. R. Kagan, “Large-Area Nanoimprinted Colloidal Au Nanocrystal-Based Nanoantennas for Ultrathin Polarizing Plasmonic Metasurfaces,” Nano Lett. 15(8), 5254–5260 (2015).
[Crossref] [PubMed]

M. Gonidec, M. M. Hamedi, A. Nemiroski, L. M. Rubio, C. Torres, and G. M. Whitesides, “Fabrication of Nonperiodic Metasurfaces by Microlens Projection Lithography,” Nano Lett. 16(7), 4125–4132 (2016).
[Crossref] [PubMed]

R. Verre, M. Svedendahl, N. O. Länk, Z. J. Yang, G. Zengin, T. J. Antosiewicz, and M. Käll, “Directional Light Extinction and Emission in a Metasurface of Tilted Plasmonic Nanopillars,” Nano Lett. 16(1), 98–104 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, Z. Shi, A. Y. Zhu, W. T. Chen, V. Sanjeev, A. Zaidi, and F. Capasso, “Achromatic Metalens over 60 nm Bandwidth in the Visible and Metalens with Reverse Chromatic Dispersion,” Nano Lett. 17(3), 1819–1824 (2017).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Super-Dispersive Off-Axis Meta-Lenses for Compact High Resolution Spectroscopy,” Nano Lett. 16(6), 3732–3737 (2016).
[Crossref] [PubMed]

S. C. Malek, H. S. Ee, and R. Agarwal, “Strain Multiplexed Metasurface Holograms on a Stretchable Substrate,” Nano Lett. 17(6), 3641–3645 (2017).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum Plasmonic Multicolor Meta-Hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[Crossref] [PubMed]

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-Frequency Dielectric Metasurfaces for Multiwavelength Achromatic and Highly Dispersive Holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

F. Walter, G. Li, C. Meier, S. Zhang, and T. Zentgraf, “Ultrathin Nonlinear Metasurface for Optical Image Encoding,” Nano Lett. 17(5), 3171–3175 (2017).
[Crossref] [PubMed]

J. Park, J. H. Kang, S. J. Kim, X. Liu, and M. L. Brongersma, “Dynamic Reflection Phase and Polarization Control in Metasurfaces,” Nano Lett. 17(1), 407–413 (2017).
[Crossref] [PubMed]

P. C. Wu, W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile Polarization Generation with an Aluminum Plasmonic Metasurface,” Nano Lett. 17(1), 445–452 (2017).
[Crossref] [PubMed]

H. S. Ee and R. Agarwal, “Tunable Metasurface and Flat Optical Zoom Lens on a Stretchable Substrate,” Nano Lett. 16(4), 2818–2823 (2016).
[Crossref] [PubMed]

Nanophotonics (1)

A. Y. Zhu, A. I. Kuznetsov, B. Luk’yanchuk, N. Engheta, and P. Genevet, “Traditional and emerging materials for optical metasurfaces,” Nanophotonics 6(2), 452–471 (2017).
[Crossref]

Nanoscale (4)

L. Zhang, J. Hao, M. Qiu, S. Zouhdi, J. K. Yang, and C. W. Qiu, “Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array,” Nanoscale 6(21), 12303–12309 (2014).
[Crossref] [PubMed]

Z. Wu, K. Chen, R. Menz, T. Nagao, and Y. Zheng, “Tunable multiband metasurfaces by moiré nanosphere lithography,” Nanoscale 7(48), 20391–20396 (2015).
[Crossref] [PubMed]

S. V. Makarov, A. N. Tsypkin, T. A. Voytova, V. A. Milichko, I. S. Mukhin, A. V. Yulin, S. E. Putilin, M. A. Baranov, A. E. Krasnok, I. A. Morozov, and P. A. Belov, “Self-adjusted all-dielectric metasurfaces for deep ultraviolet femtosecond pulse generation,” Nanoscale 8(41), 17809–17814 (2016).
[Crossref] [PubMed]

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale 7(44), 18805–18812 (2015).
[Crossref] [PubMed]

Nanotechnology (2)

W. T. Chen, P. Török, M. R. Foreman, C. Y. Liao, W. Y. Tsai, P. R. Wu, and D. P. Tsai, “Integrated plasmonic metasurfaces for spectropolarimetry,” Nanotechnology 27(22), 224002 (2016).
[Crossref] [PubMed]

L. C. Chang, C. Nien, J. H. Ye, C. H. Chung, V. C. Su, C. H. Wu, and C. H. Kuan, “A comprehensive model for sub-10nm electron-beam patterning through the short-time and cold development,” Nanotechnology 28(42), 425301 (2017).
[Crossref]

Nat. Commun. (15)

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

Z. Yue, G. Xue, J. Liu, Y. Wang, and M. Gu, “Nanometric holograms based on a topological insulator material,” Nat. Commun. 8, 15354 (2017).
[Crossref] [PubMed]

J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
[Crossref] [PubMed]

S. M. Kamali, A. Arbabi, E. Arbabi, Y. Horie, and A. Faraon, “Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces,” Nat. Commun. 7, 11618 (2016).
[Crossref] [PubMed]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref] [PubMed]

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

O. Avayu, E. Almeida, Y. Prior, and T. Ellenbogen, “Composite functional metasurfaces for multispectral achromatic optics,” Nat. Commun. 8, 14992 (2017).
[Crossref] [PubMed]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

J. Y. Kim, H. Kim, B. H. Kim, T. Chang, J. Lim, H. M. Jin, J. H. Mun, Y. J. Choi, K. Chung, J. Shin, S. Fan, and S. O. Kim, “Highly tunable refractive index visible-light metasurface from block copolymer self-assembly,” Nat. Commun. 7, 12911 (2016).
[Crossref] [PubMed]

M. J. Rozin, D. A. Rosen, T. J. Dill, and A. R. Tao, “Colloidal metasurfaces displaying near-ideal and tunable light absorbance in the infrared,” Nat. Commun. 6(1), 7325 (2015).
[Crossref] [PubMed]

E. Almeida, G. Shalem, and Y. Prior, “Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces,” Nat. Commun. 7, 10367 (2016).
[Crossref] [PubMed]

Nat. Mater. (5)

N. Bonod, “Silicon photonics: Large-scale dielectric metasurfaces,” Nat. Mater. 14(7), 664–665 (2015).
[Crossref] [PubMed]

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2013).
[Crossref] [PubMed]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Nat. Photonics (2)

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. H. Yuan, J. H. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Nature (3)

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref] [PubMed]

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices –Micromachines can be created with higher resolution using two-photon absorption,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Opt. Express (13)

Y. Yao, H. Liu, Y. Wang, Y. Li, B. Song, R. P. Wang, M. L. Povinelli, and W. Wu, “Nanoimprint-defined, large-area meta-surfaces for unidirectional optical transmission with superior extinction in the visible-to-infrared range,” Opt. Express 24(14), 15362–15372 (2016).
[Crossref] [PubMed]

M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N. N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express 19(18), 16975–16984 (2011).
[Crossref] [PubMed]

G. Zhang, C. Lan, H. Bian, R. Gao, and J. Zhou, “Flexible, all-dielectric metasurface fabricated via nanosphere lithography and its applications in sensing,” Opt. Express 25(18), 22038–22045 (2017).
[Crossref] [PubMed]

C. H. Chu, C. Da Shiue, H. W. Cheng, M. L. Tseng, H. P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express 18(17), 18383–18393 (2010).
[Crossref] [PubMed]

W. Ye, X. Li, J. Liu, and S. Zhang, “Phenomenological modeling of nonlinear holograms based on metallic geometric metasurfaces,” Opt. Express 24(22), 25805–25815 (2016).
[Crossref] [PubMed]

D. Keene and M. Durach, “Hyperbolic resonances of metasurface cavities,” Opt. Express 23(14), 18577–18588 (2015).
[Crossref] [PubMed]

W. Mo, X. Wei, K. Wang, Y. Li, and J. Liu, “Ultrathin flexible terahertz polarization converter based on metasurfaces,” Opt. Express 24(12), 13621–13627 (2016).
[Crossref] [PubMed]

A. Pors and S. I. Bozhevolnyi, “Plasmonic metasurfaces for efficient phase control in reflection,” Opt. Express 21(22), 27438–27451 (2013).
[Crossref] [PubMed]

D. Wen, F. Yue, S. Kumar, Y. Ma, M. Chen, X. Ren, P. E. Kremer, B. D. Gerardot, M. R. Taghizadeh, G. S. Buller, and X. Chen, “Metasurface for characterization of the polarization state of light,” Opt. Express 23(8), 10272–10281 (2015).
[Crossref] [PubMed]

W. Streyer, S. Law, G. Rooney, T. Jacobs, and D. Wasserman, “Strong absorption and selective emission from engineered metals with dielectric coatings,” Opt. Express 21(7), 9113–9122 (2013).
[Crossref] [PubMed]

J. Xiang, J. Li, H. Li, C. Zhang, Q. Dai, S. Tie, and S. Lan, “Polarization beam splitters, converters and analyzers based on a metasurface composed of regularly arranged silicon nanospheres with controllable coupling strength,” Opt. Express 24(11), 11420–11434 (2016).
[Crossref] [PubMed]

V. C. Su, P. H. Chen, R. M. Lin, M. L. Lee, Y. H. You, C. I. Ho, Y. C. Chen, W. F. Chen, and C. H. Kuan, “Suppressed quantum-confined Stark effect in InGaN-based LEDs with nano-sized patterned sapphire substrates,” Opt. Express 21(24), 30065–30073 (2013).
[Crossref] [PubMed]

H. H. Hsiao, A. Abass, J. Fischer, R. Alaee, A. Wickberg, M. Wegener, and C. Rockstuhl, “Enhancement of second-harmonic generation in nonlinear nanolaminate metamaterials by nanophotonic resonances,” Opt. Express 24(9), 9651–9659 (2016).
[Crossref] [PubMed]

Opt. Lett. (4)

Opt. Mater. Express (1)

Optica (5)

Phys. Rep. (1)

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Phys. Rev. A (1)

X. B. Zou and W. Mathis, “Scheme for optical implementation of orbital angular momentum beam splitter of a light beam and its application in quantum information processing,” Phys. Rev. A 71(4), 042324 (2005).
[Crossref]

Phys. Rev. Appl. (1)

P. Y. Chen and J. Jung, “PT Symmetry and Singularity-Enhanced Sensing Based on Photoexcited Graphene Metasurfaces,” Phys. Rev. Appl. 5(6), 064018 (2016).
[Crossref]

Phys. Rev. B (2)

R. Blanchard, G. Aoust, P. Genevet, N. F. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale V-shaped antennas for the design of optical phased arrays,” Phys. Rev. B 85(15), 155457 (2012).
[Crossref]

S.-C. Jiang, X. Xiong, Y.-S. Hu, S.-W. Jiang, Y.-H. Hu, D.-H. Xu, R.-W. Peng, and M. Wang, “High-efficiency generation of circularly polarized light via symmetry-induced anomalous reflection,” Phys. Rev. B 91(12), 125421 (2015).
[Crossref]

Phys. Rev. Lett. (4)

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref] [PubMed]

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[Crossref] [PubMed]

M. Lawrence, N. Xu, X. Zhang, L. Cong, J. Han, W. Zhang, and S. Zhang, “Manifestation of PT Symmetry Breaking in Polarization Space with Terahertz Metasurfaces,” Phys. Rev. Lett. 113(9), 093901 (2014).
[Crossref] [PubMed]

R. Fleury, D. L. Sounas, and A. Alù, “Negative Refraction and Planar Focusing Based on Parity-Time Symmetric Metasurfaces,” Phys. Rev. Lett. 113(2), 023903 (2014).
[Crossref] [PubMed]

Rep. Prog. Phys. (2)

P. Genevet and F. Capasso, “Holographic optical metasurfaces: a review of current progress,” Rep. Prog. Phys. 78(2), 024401 (2015).
[Crossref] [PubMed]

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

Sci. Rep. (8)

W. L. Hsu, P. C. Wu, J. W. Chen, T. Y. Chen, B. H. Cheng, W. T. Chen, Y. W. Huang, C. Y. Liao, G. Sun, and D. P. Tsai, “Vertical split-ring resonator based anomalous beam steering with high extinction ratio,” Sci. Rep. 5(1), 11226 (2015).
[Crossref] [PubMed]

A. Pors, O. Albrektsen, I. P. Radko, and S. I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3(1), 2155 (2013).
[Crossref] [PubMed]

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7, 41893 (2017).
[Crossref] [PubMed]

M. R. M. Hashemi, S. H. Yang, T. Wang, N. Sepúlveda, and M. Jarrahi, “Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces,” Sci. Rep. 6(1), 35439 (2016).
[Crossref] [PubMed]

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, Z. Zhao, and X. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref] [PubMed]

Y. Guo, L. Yan, W. Pan, and L. Shao, “Scattering engineering in continuously shaped metasurface: An approach for electromagnetic illusion,” Sci. Rep. 6(1), 30154 (2016).
[Crossref] [PubMed]

J. Zheng, Z. C. Ye, N. L. Sun, R. Zhang, Z. M. Sheng, H. P. Shieh, and J. Zhang, “Highly anisotropic metasurface: a polarized beam splitter and hologram,” Sci. Rep. 4(1), 6491 (2015).
[Crossref] [PubMed]

Sci. Technol. Adv. Mater. (1)

H. T. Miyazaki, T. Kasaya, H. Oosato, Y. Sugimoto, B. Choi, M. Iwanaga, and K. Sakoda, “Ultraviolet-nanoimprinted packaged metasurface thermal emitters for infrared CO2 sensing,” Sci. Technol. Adv. Mater. 16(3), 035005 (2015).
[Crossref] [PubMed]

Science (7)

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband Light Bending with Plasmonic Nanoantennas,” Science 335(6067), 4277 (2012).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref] [PubMed]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Small Methods (1)

H.-H. Hsiao, C. H. Chu, and D. P. Tsai, “Fundamentals and Applications of Metasurfaces,” Small Methods 1(4), 1600064 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 The schematics of fabrication technologies for optical metasurfaces.
Fig. 2
Fig. 2 (a) Schematic of the fabrication process for the bottom-up EBL method. A gold (Au) mirror is first deposited on a Si substrate by e-gun evaporator. A silicon dioxide (SiO2) dielectric spacer is then deposited using plasma-enhanced chemical vapor deposition (PECVD). A resist layer is then spin-coated on the prepared substrate and baked on a hot plate. Subsequently, an Espacer layer is spin-coated on the resist layer. Espacer is an organic polymer with high conductivity to reduce the positional error during the e-beam exposure process. The structural profile of metasurfaces is defined by the e-beam exposure and development process. The final sample will be obtained after the Au deposition and lift-off process. (b) Zoom-in SEM image of the fabricated achromatic converging meta-device which successfully eliminated the chromatic aberration over a continuous wavelength region from 1200 to 1680 nm for circularly-polarized incidence in a reflection scheme. (c) Schematic illustrating the fabrication process of the top-down EBL method. An undoped GaN layer is first grown on a c-plane sapphire substrate by metal−organic chemical vapor deposition (MOCVD). A SiO2 hard mask layer is then deposited using PECVD. A resist layer is spin-coated on the prepared substrate and then baked on a hot plate. The structural profile of the metasurface is defined by the e-beam exposure and the development process. After that, a Cr layer as an etching hard mask is coated on the substrate by e-gun evaporator and followed by a lift-off process. The patterns are transferred to the SiO2 layer by reactive ion etching (RIE). The substrate with the patterned SiO2 hard mask layer is etched by inductively coupled-plasma reactive ion etching (ICP-RIE) using BCl3/Cl2 chemistry. The final sample is obtained after the removal of the patterned SiO2 hard mask layer with the buffered oxide etch (BOE) solution. (d) The SEM image of the on-axis focusing GaN-based metalens, designed with diameter of 100 μm and focal length of 300 μm. The metalens works in a transmission window with extremely high operation efficiency of 91.6% at visible light. (b) Reprinted with permission from [68]. Copyright 2017, Springer Nature. (d) Reprinted with permission from [69]. Copyright 2017, American Chemical Society.
Fig. 3
Fig. 3 (a) and (b) are SEM images of the FIB-fabricated metasurfaces. (a) A metasurface hologram of the letter ‘P’ with the 5-μm scale bar. The inset is a zoomed-in view (scale bar, 500 nm). The hologram is designed for the operational wavelength of 676 nm, and the thickness of the sample is only about 1/23 the size of the wavelength. (b) A planar chiral metasurface to produce optical vortex from a circularly polarized light. Optical vortex can enhance data capacity for its extra degree of freedom of angular momentum. The metasurface has the ability to focus the incident light into a tiny point, which greatly increases the power intensity of the generated optical vortex and has potential application in highly integrated optical communication systems. (c) The morphology characterization of the negative refractive index metasurfaces obtained by AFM, which is fabricated with a scanner movement nanolithography on the thin silver film. The double split ring resonators with additional capacitive gaps can compensate for the inertial inductance. (d) Photograph of the fabricated metasurface using LDW in print circuit board (PCB) technology. (e) SEM image of a metasurface fabricated by orthogonal LIL capable of manipulating linear polarization. The near-infrared reflective linear polarization converter is composed of ellipse-shaped plasmonic planar resonators. A polarization conversion ratio in power larger than 91.1% is achieved from 730 to 1870 nm. (f) SEM image of the metasurface hologram film based on bilayered metallic nanowire gratings at different scales, produced by LIL. The bilayered metallic gratings behave as an ideal polarized beam splitter, producing strong negative reflection for transverse-magnetic (TM) light and efficient reflection for transverse-electric (TE) light. (a) Reprinted with permission from [73]. Copyright 2013, Springer Nature. (b) Reprinted with permission from [74]. Copyright 2015, Springer Nature. (c) Reprinted with permission from [75]. Copyright 2006, Elsevier B.V. (d) Reprinted with permission from [76]. Copyright 2016, Springer Nature. (e) Reprinted with permission from [77]. Copyright 2015, AIP Publishing LLC. (f) Reprinted with permission from [78]. Copyright 2014, Springer Nature.
Fig. 4
Fig. 4 (a) Schematic of the imaging reflective plasmonic lithography structure with a silver lens. The reflective lens amplifies and compensates evanescent waves, resulting in the production of nano resist patterns. (b) Corresponding SEM image of the anisotropically arrayed nano-slot metasurface using the reflective plasmonic lithography after RIE and ion beam etching processes. Zoomed area has a scale bar of 200 nm. The metasurface can focus a helicity-dependent plane wave into a spot. (c) Schematic of plasmonic cavity lithography system consisting of a Cr mask and a Ag/PR/Ag plasmonic cavity with an air separation layer sandwiched between them to avoid contamination and damage of mask patterns. The cavity can effectively amplify the evanescent waves and modulate the electric field components on imaging plane, resulting in greatly improved resolution and fidelity compared to near field and superlens lithography. (d) SEM image of the corresponding metasurface hologram by hydrogen fluoride (HF) wet etching and ion beam dry etching. The metasurface hologram exhibits a target object in the form of character “E”. (a) and (b) are reprinted with permission from [80]. Copyright 2015, Royal Society of Chemistry. (c) and (d) are reprinted with permission from [81]. Copyright 2017, John Wiley and Sons.
Fig. 5
Fig. 5 (a)-(d) SEM images of thermal-NIL-fabricated metasurfaces. (a) Metasurface quarter-wave plate constructed from an orthogonal array of nanorods of two different sizes on a glass substrate. It operates in the wide bandwidth of near-to-mid infrared and provides high polarization conversion efficiency. (b) and (c) Nanostripe and nanohole structures of perovskite metasurfaces, respectively. Insets show cross sections of the metasurfaces (scale bars are 300 nm). The metasurfaces exhibit a significant enhancement of both linear and nonlinear photoluminescence (up to 70 times) combined with advanced stability. It may pave the way toward highly efficient planar optoelectronic metadevices. (d) the heterogeneous all-dielectric metasurfaces as an ultra-broadband reflector. The over etching into the substrate is intentional since any residual a-Si will degrade optical efficiency. (e) and (f) SEM images of UV-NIL-defined metasurfaces. (e) The dual-band metasurface thermal emitters integrated with a resistive membrane heater. The heater pattern is seen on the right-hand side. This is because the bottom of the resist does not reach the substrate after the dry etching in the blank area outside the heater. Therefore, the metasurface is patterned only on the heater. (f) The metasurface with stacked subwavelength gratings. The metasurface has high-contrast and diode-like asymmetric optical transmittance in the visible-to-infrared wavelength range for TM-polarized light. (a) Reprinted with permission from [82]. Copyright 2015, American Chemical Society. (b) and (c) are reprinted with permission from [83]. Copyright 2017, American Chemical Society. (d) Reprinted with permission from [84]. Copyright 2017, John Wiley and Sons. (e) Reprinted with permission from [85]. Copyright 2015, National Institute for Materials Science. (f) Reprinted with permission from [86]. Copyright 2016, Optical Society of America.
Fig. 6
Fig. 6 (a) Schematic of a large-scale colloidal self-assembly process. (b) SEM image of a dielectric metasurface acting as a near-perfect mirror in the telecommunications spectral window, based on NL with the PS spheres as a hard mask for the subsequent reactive ion etching of silicon. The optical measurements show an almost perfect reflectivity of 99.7% at 1530 nm with a good spectral tolerance. (c) The SEM images of Si-cylinder metasurface formed with NL and RIE. The inset in (c) is the 60° tilted view of a specially chosen defective area to better illustrate the spatial morphology. Scale bars represent 1 μm. The regularly arrayed Si cylinders with hexagonal lattice fabricated on PET flexible substrate are exploited to detect applied strain and surface dielectric environment by measuring transmission spectra. (d) Schematic of the main fabricating procedure for the flexible, all-dielectric metasurface. A thin layer of Si is deposited on PET substrate by electron beam evaporation. After that, a monolayer of PS spheres is self-assembled at the air/water interface. The size of PS spheres is further reduced with an isotropic oxygen plasma etching. The etched monolayer works as a hard mask for the subsequent etching. Finally, the sample is immersed in chloroform coupled with sonication to remove all remaining PS spheres. (e) Schematic of the multi-angled deposition for metasurface realization with the definition of free parameters relative to the crystal axis. It also shows an example composed of three different types of features: (Case 1) an interconnected line, (Case 2) an asymmetric bar, and (Case 3) a symmetric bar. (f) Left panel: the duplication of feature types from (Case 1) to (Case 3) at intervals of φ = 60 with the composition of six angles of projection. Right panel: images collected with SEM images of the fabricated versions of these patterns (Ag on Si). Inset: The six angles by which the features are reproduced. (g) Top panel: the fabrication schematic of moiré metasurfaces by the NL technique. θ indicates the angle of in-plane rotation between the two layers of self-assembled PS spheres. Bottom panel: SEM images of two representative moiré metasurfaces with θ ∼12° and θ ∼19°. The scale bars are 2 μm. (a) and (b) are reprinted with permission from [87]. Copyright 2015, Springer Nature. (c) and (d) are reprinted with permission from [88]. Copyright 2017, Optical Society of America. (e) and (f) are reprinted with permission from [89]. Copyright 2014, American Chemical Society. (g) Reprinted with permission from [90]. Copyright 2015, Royal Society of Chemistry.
Fig. 7
Fig. 7 (a) SEM image of a laser-induced self-organized Si metasurface. Insert: schematic sketch of the laser-induced nanostructuring on the Si film in upper left, and zoom-in of the metasurface in upper right. (b) Schematic of metal nanoparticle ensemble preparation by BCP self-assembly, substrate transfer and pattern shrinkage. (c) SEM images of hexagonal Au nanoparticle arrays as-prepared from BCP self-assembly. The precise manipulation of the distance between block copolymer nanopatterns via pattern shrinkage can increase the effective refractive index up to 5.10. The effective refractive index remains above 3.0 over more than 1000 nm wavelength bandwidth. (d) Photo of the Langmuir–Blodgett trough apparatus as a robust and scalable assembly method that is used to form the metasurface constructed of close-packed Ag nano-cube array. The deposition process follows the assembly of Ag nano-cube array at an air–water interface. The array can be subsequently transferred onto substrates of different kinds including those of flexible and non-planar. (e) SEM image showing closely-packed Ag nanocubes after deposition. A measured spacing of 3 nm occurs due to polymer grafts at the Ag surface. Scale bar is 1 μm. (f) Left panel: schematic template-assisted self-assembly process by dip coating the wrinkled templates in a highly concentrated Au nanorod solution. Right panel: the AFM image of the self-assembled array of Au nanorods in the wrinkle template. (a) Reprinted with permission from [91]. Copyright 2016, Royal Society of Chemistry. (b) and (c) are reprinted with permission from [92]. Copyright 2016, Springer Nature. (d) and (e) are reprinted with permission from [93]. Copyright 2015, Springer Nature. (f) Reprinted with permission from [94]. Copyright 2016, Royal Society of Chemistry.
Fig. 8
Fig. 8 (a) Schematic diagram of the process flow for the microlens projection lithography. Detailed description can be found in [95] (b) Left panel: a non-periodic metasurface composed of T-shaped nano-patterns that was first patterned in Au on silicon and then etched to yield micro-pillars using dry etching. Right panel: the zoomed-in view of T-shaped nano-patterns. The scale bars of the left and right panels are 20 and 5 μm, respectively. (c) Schematic illustration showing the fabrication process for tilted nano-pillars using hole-mask colloidal lithography and off-normal deposition. (d) SEM images for the fabricated samples with different tilting angles. The scale bar is 500 nm. (a) and (b) are reprinted with permission from [95]. Copyright 2016, American Chemical Society. (c) and (d) are reprinted with permission from [96]. Copyright 2016, American Chemical Society.
Fig. 9
Fig. 9 (a) Schematic of a novel method based on femtosecond LIFT for high-throughput and efficient fabrication of nano-structures. With the precise control of laser raster path applied on sputtered multilayer thin films, the laser-ablated materials can be transferred to another substrate leaving a fabricated multilayer structure on the original substrate. SEM images of (b) the fabricated multilayer split-ring resonator arrays on donor and (c) the corresponding transferred structures on receiver. (d) Close-up SEM image of recorded marks showing the void at the center of the mark and a ring surrounding the void. The laser ablation fabrication is realized in a 50-nm-thick phase-change film on a 130-nm-thick ZnS-SiO2 dielectric layer deposited on a glass substrate. (e) SEM image of a single Au nanoparticle on a SiO2 substrate fabricated by the laser-induced dewetting process of a 30-nm-thick Au film. Scale bar is 500 nm. (f) Illustration of multiphoton polymerization generated by a focused laser beam. A photopolymer absorbs two near-infrared photons simultaneously in a single quantum event whose collective energy corresponds to the UV region of the spectrum. The rate of two-photon absorption is proportional to the square of the light intensity, so that the near-infrared light is strongly absorbed only at the focal point within the photopolymer. SEM images of 3D microstructures with multi-photon polymerization for (g) a photonic crystal structure and (h) Venus. (a)-(c) are reprinted with permission from [97]. Copyright 2012, John Wiley and Sons. (d) Reprinted with permission from [98]. Copyright 2010, Optical Society of America. (e) Reprinted with permission from [99]. Copyright 2016, John Wiley and Sons. (f) Reprinted with permission from [100]. Copyright 2008, John Wiley and Sons. (g) and (h) are reprinted with permission from [101]. Copyright 2003, Optical Society of America.
Fig. 10
Fig. 10 (a) Measured focusing efficiency of the metalenses for incident circularly polarized light as a function of wavelength. The two lenses are designed at two different wavelengths λd = 532 and 660 nm. The efficiency defined as the transmitted optical power with opposite helicity divided by the incident circularly polarized light. Insert: SEM micrograph of the fabricated metalens designed at the 660-nm wavelength with the scale bar of 300 nm. (b) Measured focal spot intensity distribution of the metalens designed at the wavelength of 660 nm. (c) Schematic of the imaging principle of the proposed chiral metasurface, which focuses into two spots with different helicity. The inlet in the figure comprises two images of beetle where left and right panels are revealed by focusing the reflected left-circularly polarized (LCP) and the right-circularly polarized (RCP) light from the beetle, respectively. (d) The diagram demonstrates a multiplex color router with the dielectric metalens capable of guiding individual primary colors into different spatial positions. (a) and (b) are reprinted with permission from [109]. Copyright 2016, The American Association for the Advancement of Science. (c) Reprinted with permission from [110]. Copyright 2016, American Chemical Society. (d) Reprinted with permission from [69]. Copyright 2017, American Chemical Society.
Fig. 11
Fig. 11 (a) SEM images of fabricated meta-holograms consisting of silicon nanopillars of various sizes. (b) Experimental holographic image obtained through an infrared camera from the sample illuminated with a collimated laser beam at a 1600 nm wavelength. (c) Schematic illustration of the designed multicolor meta-hologram under linearly polarized illumination. The meta-hologram structure is made of a pixel array consisting of aluminum (Al) nanorods that produce images R, G, and B in 405, 532, and 658 nm, respectively. The pixels are patterned on a 30-nm-thick SiO2 spacer sputtered on an Al mirror. (d) Schematic of the highly dispersive meta-hologram which projects the red image of a flower, the green image of a peduncle and the blue image of a pot. The insert is the partial SEM image of the fabricated meta-device. The white scale bar corresponds to 1 μm. (e) Sketch of the dynamic holographic metasurface which projects the holographic images of the letters ‘P’, ‘K’, ‘U’ at the imaging plane. The middle panel shows the metasurface composed of an array of meta-atoms. Each meta-atom has a pin diode welded between the two metallic loops and independently controlled by a DC voltage through a via (see the unit cell in the upper left corner). (f) Left panel: phase distribution of the metasurface with fork gratings. Right panel: the SEM images of the fabricated plasmonic metasurfaces on an 80-nm-thick Al thin film by FIB. It includes spatially variant nano-slits with a size of ~50 nm by 210 nm. Scale bar is 3 µm. (g) Generated optical vortex beam from metasurface fork gratings with different incident beams. (h) The measured intensity profiles and corresponding interference patterns of the metasurface on the transmission side under the RCP illumination. Three real focal planes under the cross LCP transmission at z = 40, 100, and 160 µm are observed. (a) and (b) are reprinted with permission from [111]. Copyright 2016, Optical Society of America. (c) Reprinted with permission from [112]. Copyright 2015, American Chemical Society. (d) Reprinted with permission from [113]. Copyright 2016, American Chemical Society. (e) Reprinted with permission from [114]. Copyright 2017, Springer Nature. (f) and (g) are reprinted with permission from [115]. Copyright 2017, John Wiley and Sons. (h) Reprinted with permission from [116]. Copyright 2016, John Wiley and Sons.
Fig. 12
Fig. 12 (a) The simulated performance of the multi-wavelength achromatic metalens with the focal length of 7.5 mm and the diameter of 600 μm for various wavelengths. Broadband incident light is employed to illuminate the backside of the lens. (b) Upper panel: schematic illustration of scattering element composed of two kinds of a-Si nanoposts. Lower panel: the top view and 30-degree-tilt view of the SEM images for the metalens, respectively. (c) The artist’s view and schematic illustration of the three-layer structure metalens are shown in the left panel and the right panel, respectively. An interlayer distance of 200 nm is designed to prevent the near-field crosstalk between the nano-sized antennas in the different layers. The diameters and the separations of nano-disks are 125 and 185 nm in the Au-based layer, 85 and 195 nm in the Ag-based layer, and 120 and 150 nm in the Al-based layer, respectively. (d) The simulated and experimental results of the focal length versus wavelength for the achromatic metalens. Also shown in the figure is the experimental results for the geometric-phase-based metalens. It shows 1.5% variation in focal length between 490 to 550 nm for the achromatic metalens, which is close to the simulation result of 1.2% variation. The insert is a top-view SEM image of the fabricated sample. (e) Schematic of the achromatic metalens where the focal point becomes a single spot with the optimized phase compensation. (f) Schematic illustration of normal dispersion in refractive prisms and conventional lenses in the left panel. The other right panels are schematics of metalenses with negative, zero, positive and hyper-dispersive in dispersion-controlled metasurfaces. (a) Reprinted with permission from [120]. Copyright 2015, The American Association for the Advancement of Science. (b) Reprinted with permission from [121]. Copyright 2016, Optical Society of America. (c) Reprinted with permission from [122]. Copyright 2017, Springer Nature. (d) Reprinted with permission from [123]. Copyright 2017, American Chemical Society. (e) Reprinted with permission from [68]. Copyright 2017, Springer Nature. (f) are reprinted with permission from [124]. Copyright 2017, Optical Society of America.
Fig. 13
Fig. 13 (a) Schematic of the TCO-metasurface serving as the quarter-wave plate in the reflection mode and unit cells of plasmonic resonators with associated geometrical parameters. The material of gallium-doped zinc oxide (Ga:ZnO) is chosen to be TCO. Px and Py are the periodicity in x- and y-directions, respectively. (b) Top-view SEM image of the fabricated Ga:ZnO metasurface. (c) The measured polar diagrams of polarization state for the reflected beam at wavelengths of 1.6, 1.9, and 2.0 μm. The wavelength for reflected beam of the bare glass is 1.9 μm. Here both of Px and Py, as indicated in the schematic diagram of the unit cell, are designed to be 750 nm. (d) Schematic illustration of the Z-shaped chiral metasurface as the CD waveplate. (e) Top-view SEM image of the fabricated Z-shaped left-handed chiral metasurface. The theoretical and experimental polar diagrams for polarization statesof (f) the linearly-polarized transmission spectra with the RCP incident light and (g) the elliptically-polarized reflection spectra (close to circular polarization) with the LCP incident light at the wavelength of 1.56 μm. (h) Schematic of a monolithically integrated metasurface. The monolithic device is composed of QCLs forming two arms with integrated dielectric waveguides on which antennas are arranged. (i) Optical microscope (OM) image of the fabricated antenna structure arranged as a second-order grating with the white scalar bar of 100 μm. Each antenna has dimensions of 21 μm in length, 3 μm in width, and 0.4 μm in height. Measured polarization state of the active metasurface with pumped current in the left arm (j) equal to 3.49 A or (k) varied from 3.39 to 3.54 A, while keeping the current in the right arm faxed at 3.67 A. The output polarization state can be tuned from linear to near circular with the superposition of polarizations of the emitted light from two arms. (a)-(c) are reprinted with permission from [126]. Copyright 2016, American Chemical Society. (d)-(g) are reprinted with permission from [127]. Copyright 2017, Springer Nature. (h)-(k) are reprinted with permission from [128]. Copyright 2017, American Chemical Society.
Fig. 14
Fig. 14 (a) Schematic diagram of the metasurface functioning as the half-wave plate. (b) SEM images of two samples with the optical axis angle of 0° and 45°. The metasurface consists of Au nanorods on a glass substrate. (c) Analytical calculations (the curves) and experimental results (the symbols) of state-of-polarization analysis for the two samples. (d) Optical microscopic photograph of a fabricated sample. Inserted is the schematic of the metasurface. (e) and (f) are simulated and measured cross-polarized transmission spectra, respectively, of the metasurface with different geometric parameters. (g) Schematic of an electrically controllable metasurface operating in the reflection mode. (b) The reflection phase of the active metasurface in relation to various biasing conditions at a specific wavelength of 5.94 μm. Inset shows the diagram describing the complex reflection coefficient for three conditions of bias with the increase in frequency. (a)-(c) are reprinted with permission from [129]. Copyright 2017, American Chemical Society. (d)-(f) are reprinted with permission from [130]. Copyright 2016, AIP Publishing LLC. (g) and (h) are reprinted with permission from [131]. Copyright 2017, American Chemical Society.
Fig. 15
Fig. 15 (a) Schematic of the gap-plasmon metasurface for the generation of six polarization states with the incident light of linear polarization. (b) Diagram showing numerical and experimental results of scattering intensity in the left and right panels, respectively, with the 600-nm wavelength of the incident light. The middle panel shows the corresponding SEM images with a white scale bar of 1 μm. (c) The measured polarization extinction ratio for six generated polarization states. The results validate the metasurface preserving a broadband operation in the visible regime. (d) Schematics explaining the unit pixel and off-axis multichannel generation of the OAM metasurface. Each nanorod has dimensions of 220-nm long, 80-nm wide, and 30-nm thickness. (e) Schematic diagram illustratingthe superposition of two kinds of OAM states upon the illumination of linearly-polarized incident light, which can be decomposed into RCP and LCP incident light. Each kind of circularly polarized incident light can generate off-axis reflection light with four OAM states of ℓ = 1 to ℓ = 4. (f) and (g) are SEM image, numerical and experimental results for the fabricated metasurface with two kinds of superpositions of the OAM states. One is for states of ℓ = 1 and ℓ = −1, and the other is for states of ℓ = 3 and ℓ = −3. The white double-headed arrows refer to the angle of linearly-polarized incident light and the axis for the transmission of the polarizer. (a)-(c) are reprinted with permission from [132]. Copyright 2017, American Chemical Society. (d)-(g) are reprinted with permission from [133]. Copyright 2017, John Wiley and Sons.
Fig. 16
Fig. 16 (a) SEM image of the metasurface with TiO2 resonators embedded in PDMS, where blue indicates PDMS and green TiO2. (b) SEM image of the Si handling wafer for the fabrication of the tunable metasurface after PDMS curing and stripping. Scale bar: 400 nm. Experimental demonstration of the tunable metasurface mounted on four linear translation stages with (c) photographs of an unstretched (left) and a stretched (right) PDMS film. Scale bar: 10 mm. (d) Schematic of the ON state of the LC cell electrically controlled via in-plane potentials. Upper panel: LC ordering has been switched to planar (green) except for a very thin layer at the bottom (blue) with residual twist due to strong surface anchoring. Bottom panel: a hybrid LC cell with nanostructured metasurface. LC switching from twisted to planar state is complete both in the bulk and in the plane of the metasurface. Black arrow indicates the direction of rubbing that sets LC alignment at the top cover. SEM images of (e) the fabricated zig-zag metasurface and (f) a small fragment of the metasurface taken at 52°to the structure’s normal. Dashed box indicates elementary unit cell of zig-zag pattern. (g) The upper-left panel: SEM image of the fabricated prototype of electronically-controlled beam-steering for operation at 100 GHz, offering up to 44° beam deflection in both horizontal and vertical directions. Schematic diagram shows the control of resonance frequency and the phase shift of a transmitted electromagnetic wave through the applied current to the heating electrode of each metasurface unit-cell (red arrow). (h) Schematic illustration of the electrical switching of infrared light for a Fano-resonant metasurface integrated with graphene. (i) SEM image of a metasurface fabricated on top of graphene. Scale bar: 3 μm. (a) Reprinted with permission from [135]. Copyright 2016, American Chemical Society. (b) and (c) are reprinted with permission from [136]. Copyright 2016, American Chemical Society. (d)-(f) are reprinted with permission from [137]. Copyright 2015, John Wiley and Sons. (g) Reprinted with permission from [138]. Copyright 2016, Springer Nature. (h) and (i) are reprinted with permission from [139]. Copyright 2015, American Chemical Society.
Fig. 17
Fig. 17 (a) Schematic of the silicon nanodisk metasurface integrated into an LC cell. The cell can be heated by a resistor mounted on the backside of the silicon handle wafer. (b) SEM image of the silicon nanodisk metasurface. (c) Experimentally measured transmittance spectra of the metasurface for linearly polarized light and a systematic variation of the temperature. The resonance positions of the electric resonance are plotted as red dots; the resonance positions of the magnetic resonance are marked as cyan squares. The phase transition is indicated by the white dashed line. (d) Reconfigurable metasurfaces optically written in the phase-change film imaged at λ = 633 nm. Left panel: Fresnel zone-plate pattern. Middle panel: binary super-oscillatory lens pattern. Right panel: the fabricated eight-level greyscale hologram designed to generate a V-shaped five-spot pattern. Inset: computer-generated greyscale hologram with 121 × 121 pixels. Scale bar: 10 μm. (e) Oblique incidence SEM image of the all-dielectric phase-change reconfigurable metasurface with a 750-nm period grating fabricated by FIB milling in a 300-nm-thick amorphous GST film on silica. (a)-(c) are reprinted with permission from [141]. Copyright 2015, American Chemical Society. (d) Reprinted with permission from [142]. Copyright 2015, Springer Nature. (e) Reprinted with permission from [143]. Copyright 2016, AIP Publishing LLC.

Tables (4)

Tables Icon

Table 1 The properties of Direct-Write Lithography

Tables Icon

Table 2 The unique properties of Pattern Transfer Lithography

Tables Icon

Table 3 The unique properties of Hybrid Patterning Lithography

Tables Icon

Table 4 The unique properties of Alternative Techniques

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

φ(x,y)=- 2π λ ( x 2 + y 2 + f 2 f)

Metrics