Abstract

High-repetition-rate high-power laser systems induce a high average power heat deposition into the gold-coated diffraction gratings. To study the effects of the thermal expansion of in-vacuum Pyrex gratings on the laser properties, we scan the pulse energy and repetition rate of a 200 TW laser system while monitoring the laser wavefront. Through the measured changes in laser divergence and focusability, we define an average power limit below which the in-vacuum compressor can be used with no degradation of the laser focus quality.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Investigation of the thermally induced laser beam distortion associated with vacuum compressor gratings in high energy and high average power femtosecond laser systems

S. Fourmaux, C. Serbanescu, L. Lecherbourg, S. Payeur, F. Martin, and J. C. Kieffer
Opt. Express 17(1) 178-184 (2009)

Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast lasers

David A. Alessi, Paul A. Rosso, Hoang T. Nguyen, Michael D. Aasen, Jerald A. Britten, and Constantin Haefner
Opt. Express 24(26) 30015-30023 (2016)

Laser beam wavefront correction for ultra high intensities with the 200 TW laser system at the Advanced Laser Light Source

S. Fourmaux, S. Payeur, A. Alexandrov, C. Serbanescu, F. Martin, T. Ozaki, A. Kudryashov, and J. C. Kieffer
Opt. Express 16(16) 11987-11994 (2008)

References

  • View by:
  • |
  • |
  • |

  1. C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, e3 (2015).
    [Crossref]
  2. G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309–371 (2006).
    [Crossref]
  3. J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, and W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79, 419–422 (2004).
    [Crossref]
  4. J. Tümmler, R. Jung, H. Stiel, P. V. Nickles, and W. Sandner, “High-repetition-rate chirped-pulse-amplification thin-disk laser system with joule-level pulse energy,” Opt. Lett. 34, 1378–1380 (2009).
    [Crossref] [PubMed]
  5. C. W. Siders and C. Haefner, “High-power lasers for science and society,” Tech. rep., Lawrence Livermore National Lab. (2016).
    [Crossref]
  6. N. Bonod and J. Neauport, “Diffraction gratings: from principles to applications in high-intensity lasers,” Adv. Opt. Photonics 8, 156–199 (2016).
    [Crossref]
  7. O. Loebich, “The optical properties of gold,” Gold Bull. 5, 2–10 (1972).
    [Crossref]
  8. Z. Li, K. Tsubakimoto, H. Yoshida, Y. Nakata, and N. Miyanaga, “Degradation of femtosecond petawatt laser beams: Spatio-temporal/spectral coupling induced by wavefront errors of compression gratings,” Appl. Phys. Express 10, 102702 (2017).
    [Crossref]
  9. G. Genoud, M. S. Bloom, J. Vieira, M. Burza, Z. Najmudin, A. Persson, L. O. Silva, K. Svensson, C.-G. Wahlström, and S. P. D. Mangles, “Increasing energy coupling into plasma waves by tailoring the laser radial focal spot distribution in a laser wakefield accelerator,” Phys. Plasmas 20, 064501 (2013).
    [Crossref]
  10. S. Backus, R. Bartels, S. Thompson, R. Dollinger, H. C. Kapteyn, and M. M. Murnane, “High-efficiency, single-stage 7-khz high-average-power ultrafast laser system,” Opt. Lett. 26, 465–467 (2001).
    [Crossref]
  11. S. Fourmaux, C. Serbanescu, L. Lecherbourg, S. Payeur, F. Martin, and J. C. Kieffer, “Investigation of the thermally induced laser beam distortion associated with vacuum compressor gratings in high energy and high average power femtosecond laser systems,” Opt. Express 17, 178–184 (2009).
    [Crossref] [PubMed]
  12. D. A. Alessi, P. A. Rosso, H. T. Nguyen, M. D. Aasen, J. A. Britten, and C. Haefner, “Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast lasers,” Opt. Express 24, 30015–30023 (2016).
    [Crossref]
  13. N. Delbos, C. Werle, I. Dornmair, T. Eichner, L. Hübner, S. Jalas, S. Jolly, M. Kirchen, V. Leroux, P. Messner, M. Schnepp, M. Trunk, P. Walker, P. Winkler, and A. Maier, “LUX: A laser-plasma driven undulator beamline,” Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. (2018).
    [Crossref]
  14. J.-C. Chanteloup, “Multiple-wave lateral shearing interferometry for wave-front sensing,” Appl. Opt. 44, 1559–1571 (2005).
    [Crossref] [PubMed]
  15. U. Hahn and K. Zapfe, “Guidelines for UHV-components at DESY,” Tech. rep., Deutsches Elektronen-Synchrotron (2010).
  16. S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12, 093001 (2010).
    [Crossref]

2017 (1)

Z. Li, K. Tsubakimoto, H. Yoshida, Y. Nakata, and N. Miyanaga, “Degradation of femtosecond petawatt laser beams: Spatio-temporal/spectral coupling induced by wavefront errors of compression gratings,” Appl. Phys. Express 10, 102702 (2017).
[Crossref]

2016 (2)

2015 (1)

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, e3 (2015).
[Crossref]

2013 (1)

G. Genoud, M. S. Bloom, J. Vieira, M. Burza, Z. Najmudin, A. Persson, L. O. Silva, K. Svensson, C.-G. Wahlström, and S. P. D. Mangles, “Increasing energy coupling into plasma waves by tailoring the laser radial focal spot distribution in a laser wakefield accelerator,” Phys. Plasmas 20, 064501 (2013).
[Crossref]

2010 (1)

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12, 093001 (2010).
[Crossref]

2009 (2)

2006 (1)

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309–371 (2006).
[Crossref]

2005 (1)

2004 (1)

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, and W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[Crossref]

2001 (1)

1972 (1)

O. Loebich, “The optical properties of gold,” Gold Bull. 5, 2–10 (1972).
[Crossref]

Aasen, M. D.

Akturk, S.

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12, 093001 (2010).
[Crossref]

Alessi, D. A.

Backus, S.

Bartels, R.

Bloom, M. S.

G. Genoud, M. S. Bloom, J. Vieira, M. Burza, Z. Najmudin, A. Persson, L. O. Silva, K. Svensson, C.-G. Wahlström, and S. P. D. Mangles, “Increasing energy coupling into plasma waves by tailoring the laser radial focal spot distribution in a laser wakefield accelerator,” Phys. Plasmas 20, 064501 (2013).
[Crossref]

Bödefeld, R.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, and W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[Crossref]

Bonod, N.

N. Bonod and J. Neauport, “Diffraction gratings: from principles to applications in high-intensity lasers,” Adv. Opt. Photonics 8, 156–199 (2016).
[Crossref]

Bowlan, P.

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12, 093001 (2010).
[Crossref]

Britten, J. A.

Bulanov, S. V.

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309–371 (2006).
[Crossref]

Burza, M.

G. Genoud, M. S. Bloom, J. Vieira, M. Burza, Z. Najmudin, A. Persson, L. O. Silva, K. Svensson, C.-G. Wahlström, and S. P. D. Mangles, “Increasing energy coupling into plasma waves by tailoring the laser radial focal spot distribution in a laser wakefield accelerator,” Phys. Plasmas 20, 064501 (2013).
[Crossref]

Chanteloup, J.-C.

Danson, C.

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, e3 (2015).
[Crossref]

Delbos, N.

N. Delbos, C. Werle, I. Dornmair, T. Eichner, L. Hübner, S. Jalas, S. Jolly, M. Kirchen, V. Leroux, P. Messner, M. Schnepp, M. Trunk, P. Walker, P. Winkler, and A. Maier, “LUX: A laser-plasma driven undulator beamline,” Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. (2018).
[Crossref]

Dollinger, R.

Dornmair, I.

N. Delbos, C. Werle, I. Dornmair, T. Eichner, L. Hübner, S. Jalas, S. Jolly, M. Kirchen, V. Leroux, P. Messner, M. Schnepp, M. Trunk, P. Walker, P. Winkler, and A. Maier, “LUX: A laser-plasma driven undulator beamline,” Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. (2018).
[Crossref]

Ehrt, D.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, and W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[Crossref]

Eichner, T.

N. Delbos, C. Werle, I. Dornmair, T. Eichner, L. Hübner, S. Jalas, S. Jolly, M. Kirchen, V. Leroux, P. Messner, M. Schnepp, M. Trunk, P. Walker, P. Winkler, and A. Maier, “LUX: A laser-plasma driven undulator beamline,” Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. (2018).
[Crossref]

Fourmaux, S.

Genoud, G.

G. Genoud, M. S. Bloom, J. Vieira, M. Burza, Z. Najmudin, A. Persson, L. O. Silva, K. Svensson, C.-G. Wahlström, and S. P. D. Mangles, “Increasing energy coupling into plasma waves by tailoring the laser radial focal spot distribution in a laser wakefield accelerator,” Phys. Plasmas 20, 064501 (2013).
[Crossref]

Gu, X.

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12, 093001 (2010).
[Crossref]

Haefner, C.

Hahn, U.

U. Hahn and K. Zapfe, “Guidelines for UHV-components at DESY,” Tech. rep., Deutsches Elektronen-Synchrotron (2010).

Hein, J.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, and W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[Crossref]

Hellwing, M.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, and W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[Crossref]

Hillier, D.

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, e3 (2015).
[Crossref]

Hopps, N.

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, e3 (2015).
[Crossref]

Hübner, L.

N. Delbos, C. Werle, I. Dornmair, T. Eichner, L. Hübner, S. Jalas, S. Jolly, M. Kirchen, V. Leroux, P. Messner, M. Schnepp, M. Trunk, P. Walker, P. Winkler, and A. Maier, “LUX: A laser-plasma driven undulator beamline,” Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. (2018).
[Crossref]

Jalas, S.

N. Delbos, C. Werle, I. Dornmair, T. Eichner, L. Hübner, S. Jalas, S. Jolly, M. Kirchen, V. Leroux, P. Messner, M. Schnepp, M. Trunk, P. Walker, P. Winkler, and A. Maier, “LUX: A laser-plasma driven undulator beamline,” Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. (2018).
[Crossref]

Jolly, S.

N. Delbos, C. Werle, I. Dornmair, T. Eichner, L. Hübner, S. Jalas, S. Jolly, M. Kirchen, V. Leroux, P. Messner, M. Schnepp, M. Trunk, P. Walker, P. Winkler, and A. Maier, “LUX: A laser-plasma driven undulator beamline,” Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. (2018).
[Crossref]

Jung, R.

Kapteyn, H. C.

Kieffer, J. C.

Kirchen, M.

N. Delbos, C. Werle, I. Dornmair, T. Eichner, L. Hübner, S. Jalas, S. Jolly, M. Kirchen, V. Leroux, P. Messner, M. Schnepp, M. Trunk, P. Walker, P. Winkler, and A. Maier, “LUX: A laser-plasma driven undulator beamline,” Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. (2018).
[Crossref]

Lecherbourg, L.

Leroux, V.

N. Delbos, C. Werle, I. Dornmair, T. Eichner, L. Hübner, S. Jalas, S. Jolly, M. Kirchen, V. Leroux, P. Messner, M. Schnepp, M. Trunk, P. Walker, P. Winkler, and A. Maier, “LUX: A laser-plasma driven undulator beamline,” Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. (2018).
[Crossref]

Li, Z.

Z. Li, K. Tsubakimoto, H. Yoshida, Y. Nakata, and N. Miyanaga, “Degradation of femtosecond petawatt laser beams: Spatio-temporal/spectral coupling induced by wavefront errors of compression gratings,” Appl. Phys. Express 10, 102702 (2017).
[Crossref]

Loebich, O.

O. Loebich, “The optical properties of gold,” Gold Bull. 5, 2–10 (1972).
[Crossref]

Maier, A.

N. Delbos, C. Werle, I. Dornmair, T. Eichner, L. Hübner, S. Jalas, S. Jolly, M. Kirchen, V. Leroux, P. Messner, M. Schnepp, M. Trunk, P. Walker, P. Winkler, and A. Maier, “LUX: A laser-plasma driven undulator beamline,” Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. (2018).
[Crossref]

Mangles, S. P. D.

G. Genoud, M. S. Bloom, J. Vieira, M. Burza, Z. Najmudin, A. Persson, L. O. Silva, K. Svensson, C.-G. Wahlström, and S. P. D. Mangles, “Increasing energy coupling into plasma waves by tailoring the laser radial focal spot distribution in a laser wakefield accelerator,” Phys. Plasmas 20, 064501 (2013).
[Crossref]

Martin, F.

Messner, P.

N. Delbos, C. Werle, I. Dornmair, T. Eichner, L. Hübner, S. Jalas, S. Jolly, M. Kirchen, V. Leroux, P. Messner, M. Schnepp, M. Trunk, P. Walker, P. Winkler, and A. Maier, “LUX: A laser-plasma driven undulator beamline,” Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. (2018).
[Crossref]

Miyanaga, N.

Z. Li, K. Tsubakimoto, H. Yoshida, Y. Nakata, and N. Miyanaga, “Degradation of femtosecond petawatt laser beams: Spatio-temporal/spectral coupling induced by wavefront errors of compression gratings,” Appl. Phys. Express 10, 102702 (2017).
[Crossref]

Mourou, G. A.

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309–371 (2006).
[Crossref]

Murnane, M. M.

Najmudin, Z.

G. Genoud, M. S. Bloom, J. Vieira, M. Burza, Z. Najmudin, A. Persson, L. O. Silva, K. Svensson, C.-G. Wahlström, and S. P. D. Mangles, “Increasing energy coupling into plasma waves by tailoring the laser radial focal spot distribution in a laser wakefield accelerator,” Phys. Plasmas 20, 064501 (2013).
[Crossref]

Nakata, Y.

Z. Li, K. Tsubakimoto, H. Yoshida, Y. Nakata, and N. Miyanaga, “Degradation of femtosecond petawatt laser beams: Spatio-temporal/spectral coupling induced by wavefront errors of compression gratings,” Appl. Phys. Express 10, 102702 (2017).
[Crossref]

Neauport, J.

N. Bonod and J. Neauport, “Diffraction gratings: from principles to applications in high-intensity lasers,” Adv. Opt. Photonics 8, 156–199 (2016).
[Crossref]

Neely, D.

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, e3 (2015).
[Crossref]

Nguyen, H. T.

Nickles, P. V.

Payeur, S.

Persson, A.

G. Genoud, M. S. Bloom, J. Vieira, M. Burza, Z. Najmudin, A. Persson, L. O. Silva, K. Svensson, C.-G. Wahlström, and S. P. D. Mangles, “Increasing energy coupling into plasma waves by tailoring the laser radial focal spot distribution in a laser wakefield accelerator,” Phys. Plasmas 20, 064501 (2013).
[Crossref]

Podleska, S.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, and W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[Crossref]

Rosso, P. A.

Sandner, W.

Sauerbrey, R.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, and W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[Crossref]

Schnepp, M.

N. Delbos, C. Werle, I. Dornmair, T. Eichner, L. Hübner, S. Jalas, S. Jolly, M. Kirchen, V. Leroux, P. Messner, M. Schnepp, M. Trunk, P. Walker, P. Winkler, and A. Maier, “LUX: A laser-plasma driven undulator beamline,” Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. (2018).
[Crossref]

Serbanescu, C.

Siders, C. W.

C. W. Siders and C. Haefner, “High-power lasers for science and society,” Tech. rep., Lawrence Livermore National Lab. (2016).
[Crossref]

Siebold, M.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, and W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[Crossref]

Silva, L. O.

G. Genoud, M. S. Bloom, J. Vieira, M. Burza, Z. Najmudin, A. Persson, L. O. Silva, K. Svensson, C.-G. Wahlström, and S. P. D. Mangles, “Increasing energy coupling into plasma waves by tailoring the laser radial focal spot distribution in a laser wakefield accelerator,” Phys. Plasmas 20, 064501 (2013).
[Crossref]

Stiel, H.

Svensson, K.

G. Genoud, M. S. Bloom, J. Vieira, M. Burza, Z. Najmudin, A. Persson, L. O. Silva, K. Svensson, C.-G. Wahlström, and S. P. D. Mangles, “Increasing energy coupling into plasma waves by tailoring the laser radial focal spot distribution in a laser wakefield accelerator,” Phys. Plasmas 20, 064501 (2013).
[Crossref]

Tajima, T.

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309–371 (2006).
[Crossref]

Thompson, S.

Trebino, R.

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12, 093001 (2010).
[Crossref]

Trunk, M.

N. Delbos, C. Werle, I. Dornmair, T. Eichner, L. Hübner, S. Jalas, S. Jolly, M. Kirchen, V. Leroux, P. Messner, M. Schnepp, M. Trunk, P. Walker, P. Winkler, and A. Maier, “LUX: A laser-plasma driven undulator beamline,” Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. (2018).
[Crossref]

Tsubakimoto, K.

Z. Li, K. Tsubakimoto, H. Yoshida, Y. Nakata, and N. Miyanaga, “Degradation of femtosecond petawatt laser beams: Spatio-temporal/spectral coupling induced by wavefront errors of compression gratings,” Appl. Phys. Express 10, 102702 (2017).
[Crossref]

Tümmler, J.

Vieira, J.

G. Genoud, M. S. Bloom, J. Vieira, M. Burza, Z. Najmudin, A. Persson, L. O. Silva, K. Svensson, C.-G. Wahlström, and S. P. D. Mangles, “Increasing energy coupling into plasma waves by tailoring the laser radial focal spot distribution in a laser wakefield accelerator,” Phys. Plasmas 20, 064501 (2013).
[Crossref]

Wahlström, C.-G.

G. Genoud, M. S. Bloom, J. Vieira, M. Burza, Z. Najmudin, A. Persson, L. O. Silva, K. Svensson, C.-G. Wahlström, and S. P. D. Mangles, “Increasing energy coupling into plasma waves by tailoring the laser radial focal spot distribution in a laser wakefield accelerator,” Phys. Plasmas 20, 064501 (2013).
[Crossref]

Walker, P.

N. Delbos, C. Werle, I. Dornmair, T. Eichner, L. Hübner, S. Jalas, S. Jolly, M. Kirchen, V. Leroux, P. Messner, M. Schnepp, M. Trunk, P. Walker, P. Winkler, and A. Maier, “LUX: A laser-plasma driven undulator beamline,” Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. (2018).
[Crossref]

Werle, C.

N. Delbos, C. Werle, I. Dornmair, T. Eichner, L. Hübner, S. Jalas, S. Jolly, M. Kirchen, V. Leroux, P. Messner, M. Schnepp, M. Trunk, P. Walker, P. Winkler, and A. Maier, “LUX: A laser-plasma driven undulator beamline,” Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. (2018).
[Crossref]

Winkler, P.

N. Delbos, C. Werle, I. Dornmair, T. Eichner, L. Hübner, S. Jalas, S. Jolly, M. Kirchen, V. Leroux, P. Messner, M. Schnepp, M. Trunk, P. Walker, P. Winkler, and A. Maier, “LUX: A laser-plasma driven undulator beamline,” Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. (2018).
[Crossref]

Wintzer, W.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, and W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[Crossref]

Yoshida, H.

Z. Li, K. Tsubakimoto, H. Yoshida, Y. Nakata, and N. Miyanaga, “Degradation of femtosecond petawatt laser beams: Spatio-temporal/spectral coupling induced by wavefront errors of compression gratings,” Appl. Phys. Express 10, 102702 (2017).
[Crossref]

Zapfe, K.

U. Hahn and K. Zapfe, “Guidelines for UHV-components at DESY,” Tech. rep., Deutsches Elektronen-Synchrotron (2010).

Adv. Opt. Photonics (1)

N. Bonod and J. Neauport, “Diffraction gratings: from principles to applications in high-intensity lasers,” Adv. Opt. Photonics 8, 156–199 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, and W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[Crossref]

Appl. Phys. Express (1)

Z. Li, K. Tsubakimoto, H. Yoshida, Y. Nakata, and N. Miyanaga, “Degradation of femtosecond petawatt laser beams: Spatio-temporal/spectral coupling induced by wavefront errors of compression gratings,” Appl. Phys. Express 10, 102702 (2017).
[Crossref]

Gold Bull. (1)

O. Loebich, “The optical properties of gold,” Gold Bull. 5, 2–10 (1972).
[Crossref]

High Power Laser Sci. Eng. (1)

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, e3 (2015).
[Crossref]

J. Opt. (1)

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12, 093001 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Plasmas (1)

G. Genoud, M. S. Bloom, J. Vieira, M. Burza, Z. Najmudin, A. Persson, L. O. Silva, K. Svensson, C.-G. Wahlström, and S. P. D. Mangles, “Increasing energy coupling into plasma waves by tailoring the laser radial focal spot distribution in a laser wakefield accelerator,” Phys. Plasmas 20, 064501 (2013).
[Crossref]

Rev. Mod. Phys. (1)

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309–371 (2006).
[Crossref]

Other (3)

C. W. Siders and C. Haefner, “High-power lasers for science and society,” Tech. rep., Lawrence Livermore National Lab. (2016).
[Crossref]

N. Delbos, C. Werle, I. Dornmair, T. Eichner, L. Hübner, S. Jalas, S. Jolly, M. Kirchen, V. Leroux, P. Messner, M. Schnepp, M. Trunk, P. Walker, P. Winkler, and A. Maier, “LUX: A laser-plasma driven undulator beamline,” Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. (2018).
[Crossref]

U. Hahn and K. Zapfe, “Guidelines for UHV-components at DESY,” Tech. rep., Deutsches Elektronen-Synchrotron (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of the ANGUS pre- and post-compressor diagnostics. NF, near field camera; FF, far field camera; IR Cam., infrared camera; WFS, wavefront sensor; M, mirror; L, lens; BS, beam splitter; G, grating; RM, roof mirror; CcM, concave mirror; CxM, convex mirror; RGA, residual gas analyzer.
Fig. 2
Fig. 2 Evolution of the laser beam horizontal (top) and vertical (bottom) divergence measured after the grating compressor for different fluence level from 10 mJ/cm2 to 70 mJ/cm2 at a repetition rate of 5 Hz. The single-shot data (gray dots) is overlaid by a fit (colored solid line) in a good agreement with the measurements.
Fig. 3
Fig. 3 Exponential constant (a) and linear growth rate (b) of the fitted curves (solid lines on Fig. 2) for the different measured input fluences in the horizontal (blue circles) and vertical (green squares) planes. A linear fit (solid line) highlights the behavior of the scan.
Fig. 4
Fig. 4 Evolution of the laser beam horizontal (top) and vertical (bottom) divergence measured after the grating compressor for different repetition rates from 1 Hz to 5 Hz at a fluence of 50 mJ/cm2. The data (gray dots) is again overlaid by a fit (colored solid line).
Fig. 5
Fig. 5 Exponential constant (a) and linear growth rate (b) of the fitted curves (solid lines on Fig. 4) for the different repetition rates in the horizontal (blue circles) and vertical (green squares) planes. A linear fit (solid line) highlights the behavior of the scan, as previously shown.
Fig. 6
Fig. 6 Average divergence measured after 30 minutes in function of the laser input average power, ranging from 1.2 W to 30 W. The data (dots) agrees well with the linear fit (solid line), which equation is given in the legend.
Fig. 7
Fig. 7 Evolution of the wavefront rms amplitude (a) and the Strehl ratio of the point spread function (b) for fluences of 10 mJ/cm2 (blue), 50 mJ/cm2 (green) and 70 mJ/cm2 (red) into the compressor at 5 Hz, which corresponds to average power of 3 W, 15 W, and 21 W. The data (gray dots) is fitted similarly to the divergence (solid color line). The insets show respectively the wavefront map and the normalized PSF spatial profile for the three fluence levels after 10 minutes with the corresponding wavefront rms amplitude and Strehl ratio value.
Fig. 8
Fig. 8 Strehl ratio calculated from the PSF after 30 minutes in function of the laser input average power, ranging from 1.2 W to 30 W. The data (dots) is fitted by a high order Gaussian curve (solid line).
Fig. 9
Fig. 9 Evolution of the wavefront rms amplitude (a) and the Strehl ratio of the point spread function (b) after a 90 minutes run at 80 mJ/cm2 at 5 Hz. The insets show respectively the wavefront and the point spread function profile after 30 minutes. The substrate temperature after a 5 hours run at a 30 W average power is also reported (c).

Metrics