Abstract

The vertical-external-cavity surface-emitting laser (VECSEL) has shown promise in becoming an efficient source of high power and high beam quality coherent radiation. In order to live up to its true potential, the VECSEL must be thermally managed in order to avoid thermal damage as thermal lensing and filamentation causing preventing it from operating in a single mode regime. For an optically pumped VECSEL, optical cooling presents an elegant solution for thermal management as it does not require electrical or thermal conduction. The goal of optical refrigeration is to achieve radiation balance lasing (RBL) when the active medium is maintained at a steady uniform temperature. In this work, we investigate the active medium characteristics and operating conditions that can lead to RBL in a semiconductor medium and show that to achieve RBL, the gain medium should be engineered to create a density of states that simultaneously allows gain and strong anti-Stokes luminescence. Such a medium may incorporate bandtail states, impurities or quantum dots. We provide a recipe for optimization of such band structure-engineered materials to achieve the lowest threshold and highest output power.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Time, space, and spectral multiplexing for radiation balanced operation of semiconductor lasers

Zohreh Vafapour and Jacob B. Khurgin
Opt. Express 26(18) 24124-24134 (2018)

Multiwatt—power highly—coherent compact single—frequency tunable Vertical—External—Cavity—Surface—Emitting—Semiconductor—Laser

A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, and A. Garnache
Opt. Express 18(14) 14627-14636 (2010)

High-sensitivity intracavity laser absorption spectroscopy with vertical-external-cavity surface-emitting semiconductor lasers

A. Garnache, A. A. Kachanov, F. Stoeckel, and R. Planel
Opt. Lett. 24(12) 826-828 (1999)

References

  • View by:
  • |
  • |
  • |

  1. C. A. Hurni, A. David, M. J. Cich, R. I. Aldaz, B. Ellis, K. Huang, A. Tyagi, R. A. DeLille, M. D. Craven, and F. M. Steranka, “Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation,” Appl. Phys. Lett. 106, 031101 (2015).
    [Crossref]
  2. P. Crump, J. Wang, S. Patterson, D. Wise, A. Basauri, M. DeFranza, S. Elim, W. Dong, S. Zhang, and M. Bougher, “Diode laser efficiency increases enable > 400-W peak power from 1-cm bars and show a clear path to peak powers in excess of 1-kW,” in High-Power Diode Laser Technology and Applications IV, 610409, p. 610409 (International Society for Optics and Photonics, 2006).
  3. H. Wenzel, “Basic aspects of high-power semiconductor laser simulation,” IEEE J. Sel. Top. Quantum Electron. 19, 1–13 (2013).
    [Crossref]
  4. R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency,” Opt. Express 15, 7075–7082 (2007).
    [Crossref] [PubMed]
  5. T. Graf, J. Balmer, and H. Weber, “Entropy balance of optically pumped cw lasers,” Opt. Commun. 148, 256–260 (1998).
    [Crossref]
  6. P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturstrahlung,” Z. Phys. 57, 739–746 (1929).
    [Crossref]
  7. N. Djeu and W. Whitney, “Laser cooling by spontaneous anti-Stokes scattering,” Phys. Rev. Lett. 46, 236 (1981).
    [Crossref]
  8. C. Zander and K. H. Drexhage, “Cooling of a dye solution by anti-Stokes fluorescence,” Adv. Photochem. 20, 59–78 (1995).
  9. J. Clark and G. Rumbles, “Laser cooling in the condensed phase by frequency up-conversion,” Phys. Rev. Lett. 76, 2037 (1996).
    [Crossref] [PubMed]
  10. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500 (1995).
    [Crossref]
  11. C. E. Mungan and T. R. Gosnell, “Laser cooling of solids,” in Advances in Atomic, Molecular, and Optical Physics (Elsevier, 1999), pp. 161–228.
  12. G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73, 086501 (2010).
    [Crossref]
  13. M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1, 693 (2007).
    [Crossref]
  14. M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 31, 67–84 (2009).
    [Crossref]
  15. S. R. Bowman, S. P. O’Connor, and S. Biswal, “Ytterbium laser with reduced thermal loading,” IEEE J. Quantum Electron. 41, 1510–1517 (2005).
    [Crossref]
  16. S. Bowman, S. O’Connor, S. Biswal, and N. Condon, “Demonstration and analysis of a high power radiation balanced laser,” in CLEO: Science and Innovations, (Optical Society of America, 2011), CMH4.
  17. S. R. Bowman, S. P. O’Connor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron. 46, 1076–1085 (2010).
    [Crossref]
  18. J. L. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High-power optically pumped semiconductor lasers,” in Solid State Lasers XIII: Technology and Devices, 5332 (International Society for Optics and Photonics, 2004), 143–151.
  19. T.-L. Wang, Y. Kaneda, J. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
    [Crossref]
  20. M. Guina, A. Rantamäki, and A. Härkönen, “Optically pumped VECSELs: review of technology and progress,” J. Phys. D: Appl. Phys. 50, 383001 (2017).
    [Crossref]
  21. H. Kahle, C. M. N. Mateo, U. Brauch, P. Tatar-Mathes, R. Bek, M. Jetter, T. Graf, and P. Michler, “Semiconductor membrane external-cavity surface-emitting laser (MECSEL),” Optica 3(12), 1506–1512 (2016).
    [Crossref]
  22. J. Zhang, D. Li, R. Chen, and Q. Xiong, “Laser cooling of a semiconductor by 40 Kelvin,” Nature 493, 504 (2013).
    [Crossref] [PubMed]
  23. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9(8), 1063–1065 (1997).
    [Crossref]
  24. P. Zhang, Y. Song, J. Tian, X. Zhang, and Z. Zhang, “Gain characteristics of the InGaAs strained quantum wells with GaAs, AlGaAs, and GaAsP barriers in vertical-external-cavity surface-emitting lasers,” J. Appl. Phys. 105, 053103 (2009).
    [Crossref]
  25. J.-Y. Kim, S. Cho, J. Lee, G. B. Kim, S.-J. Lim, J. Yoo, K.-S. Kim, S.-M. Lee, J. Shim, and T. Kim, “A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18, 2496–2498 (2006).
    [Crossref]
  26. J. Hader, T.-L. Wang, J. V. Moloney, B. Heinen, M. Koch, S. W. Koch, B. Kunert, and W. Stolz, “On the measurement of the thermal impedance in vertical-external-cavity surface-emitting lasers,” J. Appl. Phys. 113, 153102 (2013).
    [Crossref]
  27. W. J. Alford, T. D. Raymond, and A. A. Allerman, “High power and good beam quality at 980 nm from a vertical external-cavity surface-emitting laser,” J. Opt. Soc. Am. B 19(4), 663–666 (2002).
    [Crossref]
  28. C. M. N. Mateo, U. Brauch, T. Schwarzbäck, H. Kahle, M. Jetter, M. Abdou Ahmed, P. Michler, and T. Graf, “Enhanced efficiency of AlGaInP disk laser by in-well pumping,” Opt. Express 23(3) 2472–2486 (2015).
    [Crossref] [PubMed]
  29. S. S. Beyertt, M. Zorn, T. Kübler, H. Wenzel, M. Weyers, A. Giesen, G. Tränkle, and U. Brauch, “Optical in-well pumping of a semiconductor disk laser with high optical efficiency,” IEEE J. Quantum Electron. 41(12), 1439–1449 (2005).
    [Crossref]
  30. Z. Vafapour and J. B. Khurgin, “Bandgap engineering and prospects for radiation-balanced vertical-cavity semiconductor lasers (Conference Presentation),” Proc. SPIE 10550, 105500R (2018).
  31. J. B. Khurgin and Z. Vafapour, “Time, space, and spectral multiplexing for radiation-balanced operation of semiconductor lasers (Conference Presentation),” Proc. SPIE 10550, 105500A (2018).
  32. M. Butkus, K. G. Wilcox, J. Rautiainen, O. G. Okhotnikov, S. S. Mikhrin, I. L. Krestnikov, A. R. Kovsh, M. Hoffmann, T. Süedmeyer, U. Keller, and E. U. Rafailov, “High-power quantum-dot-based semiconductor disk laser,” Opt. Lett. 34, 1672–1674 (2009).
    [Crossref] [PubMed]
  33. A. R. Albrecht, C. P. Hains, T. J. Rotter, A. Stintz, K. J. Malloy, G. Balakrishnan, and J. V. Moloney, “High power 1.25 µ m InAs quantum dot vertical external-cavity surface-emitting laser,” J. Vac. Sci. Technol. B29(3), 03C113 (2011).
    [Crossref]
  34. K. G. Wilcox, H. J. Kbashi, A. H. Quarterman, O. J. Morris, V. Apostolopoulos, M. Henini, and A. C. Tropper, “Wetting-Layer-Pumped Continuous-Wave Surface-Emitting Quantum-Dot Laser,” IEEE Photon. Technol. Lett. 24(1), 37–39 (2012).
    [Crossref]
  35. B. Vaseghi, M. Mousavi, S. Khorshidian, and Z. Vafapour, “Spin-orbit interaction effects on the electronic structure of spherical quantum dot with different confinement potentials,” Superlat. Microstruct. 111, 671–677 (2017).
    [Crossref]
  36. C. M. N. Mateo, U. Brauch, H. Kahle, T. Schwarzbäck, M. Jetter, M. A. Ahmed, P. Michler, and T. Graf, “2.5W continuous wave output at 665nm from a multipass and quantum-well-pumped AlGaInP vertical-external-cavity surface-emitting laser,” Opt. Lett. 41, 1245–1248 (2016).
    [Crossref] [PubMed]

2018 (2)

Z. Vafapour and J. B. Khurgin, “Bandgap engineering and prospects for radiation-balanced vertical-cavity semiconductor lasers (Conference Presentation),” Proc. SPIE 10550, 105500R (2018).

J. B. Khurgin and Z. Vafapour, “Time, space, and spectral multiplexing for radiation-balanced operation of semiconductor lasers (Conference Presentation),” Proc. SPIE 10550, 105500A (2018).

2017 (2)

B. Vaseghi, M. Mousavi, S. Khorshidian, and Z. Vafapour, “Spin-orbit interaction effects on the electronic structure of spherical quantum dot with different confinement potentials,” Superlat. Microstruct. 111, 671–677 (2017).
[Crossref]

M. Guina, A. Rantamäki, and A. Härkönen, “Optically pumped VECSELs: review of technology and progress,” J. Phys. D: Appl. Phys. 50, 383001 (2017).
[Crossref]

2016 (2)

2015 (2)

C. M. N. Mateo, U. Brauch, T. Schwarzbäck, H. Kahle, M. Jetter, M. Abdou Ahmed, P. Michler, and T. Graf, “Enhanced efficiency of AlGaInP disk laser by in-well pumping,” Opt. Express 23(3) 2472–2486 (2015).
[Crossref] [PubMed]

C. A. Hurni, A. David, M. J. Cich, R. I. Aldaz, B. Ellis, K. Huang, A. Tyagi, R. A. DeLille, M. D. Craven, and F. M. Steranka, “Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation,” Appl. Phys. Lett. 106, 031101 (2015).
[Crossref]

2013 (3)

H. Wenzel, “Basic aspects of high-power semiconductor laser simulation,” IEEE J. Sel. Top. Quantum Electron. 19, 1–13 (2013).
[Crossref]

J. Zhang, D. Li, R. Chen, and Q. Xiong, “Laser cooling of a semiconductor by 40 Kelvin,” Nature 493, 504 (2013).
[Crossref] [PubMed]

J. Hader, T.-L. Wang, J. V. Moloney, B. Heinen, M. Koch, S. W. Koch, B. Kunert, and W. Stolz, “On the measurement of the thermal impedance in vertical-external-cavity surface-emitting lasers,” J. Appl. Phys. 113, 153102 (2013).
[Crossref]

2012 (1)

K. G. Wilcox, H. J. Kbashi, A. H. Quarterman, O. J. Morris, V. Apostolopoulos, M. Henini, and A. C. Tropper, “Wetting-Layer-Pumped Continuous-Wave Surface-Emitting Quantum-Dot Laser,” IEEE Photon. Technol. Lett. 24(1), 37–39 (2012).
[Crossref]

2011 (1)

A. R. Albrecht, C. P. Hains, T. J. Rotter, A. Stintz, K. J. Malloy, G. Balakrishnan, and J. V. Moloney, “High power 1.25 µ m InAs quantum dot vertical external-cavity surface-emitting laser,” J. Vac. Sci. Technol. B29(3), 03C113 (2011).
[Crossref]

2010 (3)

S. R. Bowman, S. P. O’Connor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron. 46, 1076–1085 (2010).
[Crossref]

T.-L. Wang, Y. Kaneda, J. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
[Crossref]

G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73, 086501 (2010).
[Crossref]

2009 (3)

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 31, 67–84 (2009).
[Crossref]

P. Zhang, Y. Song, J. Tian, X. Zhang, and Z. Zhang, “Gain characteristics of the InGaAs strained quantum wells with GaAs, AlGaAs, and GaAsP barriers in vertical-external-cavity surface-emitting lasers,” J. Appl. Phys. 105, 053103 (2009).
[Crossref]

M. Butkus, K. G. Wilcox, J. Rautiainen, O. G. Okhotnikov, S. S. Mikhrin, I. L. Krestnikov, A. R. Kovsh, M. Hoffmann, T. Süedmeyer, U. Keller, and E. U. Rafailov, “High-power quantum-dot-based semiconductor disk laser,” Opt. Lett. 34, 1672–1674 (2009).
[Crossref] [PubMed]

2007 (2)

2006 (1)

J.-Y. Kim, S. Cho, J. Lee, G. B. Kim, S.-J. Lim, J. Yoo, K.-S. Kim, S.-M. Lee, J. Shim, and T. Kim, “A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18, 2496–2498 (2006).
[Crossref]

2005 (2)

S. S. Beyertt, M. Zorn, T. Kübler, H. Wenzel, M. Weyers, A. Giesen, G. Tränkle, and U. Brauch, “Optical in-well pumping of a semiconductor disk laser with high optical efficiency,” IEEE J. Quantum Electron. 41(12), 1439–1449 (2005).
[Crossref]

S. R. Bowman, S. P. O’Connor, and S. Biswal, “Ytterbium laser with reduced thermal loading,” IEEE J. Quantum Electron. 41, 1510–1517 (2005).
[Crossref]

2002 (1)

1998 (1)

T. Graf, J. Balmer, and H. Weber, “Entropy balance of optically pumped cw lasers,” Opt. Commun. 148, 256–260 (1998).
[Crossref]

1997 (1)

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

1996 (1)

J. Clark and G. Rumbles, “Laser cooling in the condensed phase by frequency up-conversion,” Phys. Rev. Lett. 76, 2037 (1996).
[Crossref] [PubMed]

1995 (2)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500 (1995).
[Crossref]

C. Zander and K. H. Drexhage, “Cooling of a dye solution by anti-Stokes fluorescence,” Adv. Photochem. 20, 59–78 (1995).

1981 (1)

N. Djeu and W. Whitney, “Laser cooling by spontaneous anti-Stokes scattering,” Phys. Rev. Lett. 46, 236 (1981).
[Crossref]

1929 (1)

P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturstrahlung,” Z. Phys. 57, 739–746 (1929).
[Crossref]

Abdou Ahmed, M.

Ahmed, M. A.

Albrecht, A. R.

A. R. Albrecht, C. P. Hains, T. J. Rotter, A. Stintz, K. J. Malloy, G. Balakrishnan, and J. V. Moloney, “High power 1.25 µ m InAs quantum dot vertical external-cavity surface-emitting laser,” J. Vac. Sci. Technol. B29(3), 03C113 (2011).
[Crossref]

Aldaz, R. I.

C. A. Hurni, A. David, M. J. Cich, R. I. Aldaz, B. Ellis, K. Huang, A. Tyagi, R. A. DeLille, M. D. Craven, and F. M. Steranka, “Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation,” Appl. Phys. Lett. 106, 031101 (2015).
[Crossref]

Alford, W. J.

Allerman, A. A.

Apostolopoulos, V.

K. G. Wilcox, H. J. Kbashi, A. H. Quarterman, O. J. Morris, V. Apostolopoulos, M. Henini, and A. C. Tropper, “Wetting-Layer-Pumped Continuous-Wave Surface-Emitting Quantum-Dot Laser,” IEEE Photon. Technol. Lett. 24(1), 37–39 (2012).
[Crossref]

Balakrishnan, G.

A. R. Albrecht, C. P. Hains, T. J. Rotter, A. Stintz, K. J. Malloy, G. Balakrishnan, and J. V. Moloney, “High power 1.25 µ m InAs quantum dot vertical external-cavity surface-emitting laser,” J. Vac. Sci. Technol. B29(3), 03C113 (2011).
[Crossref]

Balmer, J.

T. Graf, J. Balmer, and H. Weber, “Entropy balance of optically pumped cw lasers,” Opt. Commun. 148, 256–260 (1998).
[Crossref]

Basauri, A.

P. Crump, J. Wang, S. Patterson, D. Wise, A. Basauri, M. DeFranza, S. Elim, W. Dong, S. Zhang, and M. Bougher, “Diode laser efficiency increases enable > 400-W peak power from 1-cm bars and show a clear path to peak powers in excess of 1-kW,” in High-Power Diode Laser Technology and Applications IV, 610409, p. 610409 (International Society for Optics and Photonics, 2006).

Bek, R.

Beyertt, S. S.

S. S. Beyertt, M. Zorn, T. Kübler, H. Wenzel, M. Weyers, A. Giesen, G. Tränkle, and U. Brauch, “Optical in-well pumping of a semiconductor disk laser with high optical efficiency,” IEEE J. Quantum Electron. 41(12), 1439–1449 (2005).
[Crossref]

Biswal, S.

S. R. Bowman, S. P. O’Connor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron. 46, 1076–1085 (2010).
[Crossref]

S. R. Bowman, S. P. O’Connor, and S. Biswal, “Ytterbium laser with reduced thermal loading,” IEEE J. Quantum Electron. 41, 1510–1517 (2005).
[Crossref]

S. Bowman, S. O’Connor, S. Biswal, and N. Condon, “Demonstration and analysis of a high power radiation balanced laser,” in CLEO: Science and Innovations, (Optical Society of America, 2011), CMH4.

Bougher, M.

P. Crump, J. Wang, S. Patterson, D. Wise, A. Basauri, M. DeFranza, S. Elim, W. Dong, S. Zhang, and M. Bougher, “Diode laser efficiency increases enable > 400-W peak power from 1-cm bars and show a clear path to peak powers in excess of 1-kW,” in High-Power Diode Laser Technology and Applications IV, 610409, p. 610409 (International Society for Optics and Photonics, 2006).

Bowman, S.

S. Bowman, S. O’Connor, S. Biswal, and N. Condon, “Demonstration and analysis of a high power radiation balanced laser,” in CLEO: Science and Innovations, (Optical Society of America, 2011), CMH4.

Bowman, S. R.

S. R. Bowman, S. P. O’Connor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron. 46, 1076–1085 (2010).
[Crossref]

S. R. Bowman, S. P. O’Connor, and S. Biswal, “Ytterbium laser with reduced thermal loading,” IEEE J. Quantum Electron. 41, 1510–1517 (2005).
[Crossref]

Brauch, U.

Buchwald, M. I.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500 (1995).
[Crossref]

Butkus, M.

Butterworth, S. D.

J. L. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High-power optically pumped semiconductor lasers,” in Solid State Lasers XIII: Technology and Devices, 5332 (International Society for Optics and Photonics, 2004), 143–151.

Caprara, A. L.

J. L. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High-power optically pumped semiconductor lasers,” in Solid State Lasers XIII: Technology and Devices, 5332 (International Society for Optics and Photonics, 2004), 143–151.

Charles, J. P.

J. L. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High-power optically pumped semiconductor lasers,” in Solid State Lasers XIII: Technology and Devices, 5332 (International Society for Optics and Photonics, 2004), 143–151.

Chatterjee, S.

T.-L. Wang, Y. Kaneda, J. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
[Crossref]

Chen, R.

J. Zhang, D. Li, R. Chen, and Q. Xiong, “Laser cooling of a semiconductor by 40 Kelvin,” Nature 493, 504 (2013).
[Crossref] [PubMed]

Chernikov, A.

T.-L. Wang, Y. Kaneda, J. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
[Crossref]

Chilla, J. L.

J. L. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High-power optically pumped semiconductor lasers,” in Solid State Lasers XIII: Technology and Devices, 5332 (International Society for Optics and Photonics, 2004), 143–151.

Cho, S.

J.-Y. Kim, S. Cho, J. Lee, G. B. Kim, S.-J. Lim, J. Yoo, K.-S. Kim, S.-M. Lee, J. Shim, and T. Kim, “A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18, 2496–2498 (2006).
[Crossref]

Cich, M. J.

C. A. Hurni, A. David, M. J. Cich, R. I. Aldaz, B. Ellis, K. Huang, A. Tyagi, R. A. DeLille, M. D. Craven, and F. M. Steranka, “Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation,” Appl. Phys. Lett. 106, 031101 (2015).
[Crossref]

Clark, J.

J. Clark and G. Rumbles, “Laser cooling in the condensed phase by frequency up-conversion,” Phys. Rev. Lett. 76, 2037 (1996).
[Crossref] [PubMed]

Condon, N.

S. Bowman, S. O’Connor, S. Biswal, and N. Condon, “Demonstration and analysis of a high power radiation balanced laser,” in CLEO: Science and Innovations, (Optical Society of America, 2011), CMH4.

Condon, N. J.

S. R. Bowman, S. P. O’Connor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron. 46, 1076–1085 (2010).
[Crossref]

Craven, M. D.

C. A. Hurni, A. David, M. J. Cich, R. I. Aldaz, B. Ellis, K. Huang, A. Tyagi, R. A. DeLille, M. D. Craven, and F. M. Steranka, “Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation,” Appl. Phys. Lett. 106, 031101 (2015).
[Crossref]

Crump, P.

P. Crump, J. Wang, S. Patterson, D. Wise, A. Basauri, M. DeFranza, S. Elim, W. Dong, S. Zhang, and M. Bougher, “Diode laser efficiency increases enable > 400-W peak power from 1-cm bars and show a clear path to peak powers in excess of 1-kW,” in High-Power Diode Laser Technology and Applications IV, 610409, p. 610409 (International Society for Optics and Photonics, 2006).

David, A.

C. A. Hurni, A. David, M. J. Cich, R. I. Aldaz, B. Ellis, K. Huang, A. Tyagi, R. A. DeLille, M. D. Craven, and F. M. Steranka, “Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation,” Appl. Phys. Lett. 106, 031101 (2015).
[Crossref]

DeFranza, M.

P. Crump, J. Wang, S. Patterson, D. Wise, A. Basauri, M. DeFranza, S. Elim, W. Dong, S. Zhang, and M. Bougher, “Diode laser efficiency increases enable > 400-W peak power from 1-cm bars and show a clear path to peak powers in excess of 1-kW,” in High-Power Diode Laser Technology and Applications IV, 610409, p. 610409 (International Society for Optics and Photonics, 2006).

DeLille, R. A.

C. A. Hurni, A. David, M. J. Cich, R. I. Aldaz, B. Ellis, K. Huang, A. Tyagi, R. A. DeLille, M. D. Craven, and F. M. Steranka, “Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation,” Appl. Phys. Lett. 106, 031101 (2015).
[Crossref]

Djeu, N.

N. Djeu and W. Whitney, “Laser cooling by spontaneous anti-Stokes scattering,” Phys. Rev. Lett. 46, 236 (1981).
[Crossref]

Dong, W.

P. Crump, J. Wang, S. Patterson, D. Wise, A. Basauri, M. DeFranza, S. Elim, W. Dong, S. Zhang, and M. Bougher, “Diode laser efficiency increases enable > 400-W peak power from 1-cm bars and show a clear path to peak powers in excess of 1-kW,” in High-Power Diode Laser Technology and Applications IV, 610409, p. 610409 (International Society for Optics and Photonics, 2006).

Drexhage, K. H.

C. Zander and K. H. Drexhage, “Cooling of a dye solution by anti-Stokes fluorescence,” Adv. Photochem. 20, 59–78 (1995).

Edwards, B. C.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500 (1995).
[Crossref]

Elim, S.

P. Crump, J. Wang, S. Patterson, D. Wise, A. Basauri, M. DeFranza, S. Elim, W. Dong, S. Zhang, and M. Bougher, “Diode laser efficiency increases enable > 400-W peak power from 1-cm bars and show a clear path to peak powers in excess of 1-kW,” in High-Power Diode Laser Technology and Applications IV, 610409, p. 610409 (International Society for Optics and Photonics, 2006).

Ellis, B.

C. A. Hurni, A. David, M. J. Cich, R. I. Aldaz, B. Ellis, K. Huang, A. Tyagi, R. A. DeLille, M. D. Craven, and F. M. Steranka, “Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation,” Appl. Phys. Lett. 106, 031101 (2015).
[Crossref]

Epstein, R. I.

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 31, 67–84 (2009).
[Crossref]

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1, 693 (2007).
[Crossref]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500 (1995).
[Crossref]

Giesen, A.

S. S. Beyertt, M. Zorn, T. Kübler, H. Wenzel, M. Weyers, A. Giesen, G. Tränkle, and U. Brauch, “Optical in-well pumping of a semiconductor disk laser with high optical efficiency,” IEEE J. Quantum Electron. 41(12), 1439–1449 (2005).
[Crossref]

Gosnell, T. R.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500 (1995).
[Crossref]

C. E. Mungan and T. R. Gosnell, “Laser cooling of solids,” in Advances in Atomic, Molecular, and Optical Physics (Elsevier, 1999), pp. 161–228.

Graf, T.

Guina, M.

M. Guina, A. Rantamäki, and A. Härkönen, “Optically pumped VECSELs: review of technology and progress,” J. Phys. D: Appl. Phys. 50, 383001 (2017).
[Crossref]

Hader, J.

J. Hader, T.-L. Wang, J. V. Moloney, B. Heinen, M. Koch, S. W. Koch, B. Kunert, and W. Stolz, “On the measurement of the thermal impedance in vertical-external-cavity surface-emitting lasers,” J. Appl. Phys. 113, 153102 (2013).
[Crossref]

T.-L. Wang, Y. Kaneda, J. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
[Crossref]

Hains, C. P.

A. R. Albrecht, C. P. Hains, T. J. Rotter, A. Stintz, K. J. Malloy, G. Balakrishnan, and J. V. Moloney, “High power 1.25 µ m InAs quantum dot vertical external-cavity surface-emitting laser,” J. Vac. Sci. Technol. B29(3), 03C113 (2011).
[Crossref]

Hakimi, F.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

Härkönen, A.

M. Guina, A. Rantamäki, and A. Härkönen, “Optically pumped VECSELs: review of technology and progress,” J. Phys. D: Appl. Phys. 50, 383001 (2017).
[Crossref]

Heinen, B.

J. Hader, T.-L. Wang, J. V. Moloney, B. Heinen, M. Koch, S. W. Koch, B. Kunert, and W. Stolz, “On the measurement of the thermal impedance in vertical-external-cavity surface-emitting lasers,” J. Appl. Phys. 113, 153102 (2013).
[Crossref]

Henini, M.

K. G. Wilcox, H. J. Kbashi, A. H. Quarterman, O. J. Morris, V. Apostolopoulos, M. Henini, and A. C. Tropper, “Wetting-Layer-Pumped Continuous-Wave Surface-Emitting Quantum-Dot Laser,” IEEE Photon. Technol. Lett. 24(1), 37–39 (2012).
[Crossref]

Hoffmann, M.

Huang, K.

C. A. Hurni, A. David, M. J. Cich, R. I. Aldaz, B. Ellis, K. Huang, A. Tyagi, R. A. DeLille, M. D. Craven, and F. M. Steranka, “Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation,” Appl. Phys. Lett. 106, 031101 (2015).
[Crossref]

Huber, G.

Hurni, C. A.

C. A. Hurni, A. David, M. J. Cich, R. I. Aldaz, B. Ellis, K. Huang, A. Tyagi, R. A. DeLille, M. D. Craven, and F. M. Steranka, “Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation,” Appl. Phys. Lett. 106, 031101 (2015).
[Crossref]

Jetter, M.

Kahle, H.

Kaneda, Y.

T.-L. Wang, Y. Kaneda, J. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
[Crossref]

Kashyap, R.

G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73, 086501 (2010).
[Crossref]

Kbashi, H. J.

K. G. Wilcox, H. J. Kbashi, A. H. Quarterman, O. J. Morris, V. Apostolopoulos, M. Henini, and A. C. Tropper, “Wetting-Layer-Pumped Continuous-Wave Surface-Emitting Quantum-Dot Laser,” IEEE Photon. Technol. Lett. 24(1), 37–39 (2012).
[Crossref]

Keller, U.

Khorshidian, S.

B. Vaseghi, M. Mousavi, S. Khorshidian, and Z. Vafapour, “Spin-orbit interaction effects on the electronic structure of spherical quantum dot with different confinement potentials,” Superlat. Microstruct. 111, 671–677 (2017).
[Crossref]

Khurgin, J. B.

Z. Vafapour and J. B. Khurgin, “Bandgap engineering and prospects for radiation-balanced vertical-cavity semiconductor lasers (Conference Presentation),” Proc. SPIE 10550, 105500R (2018).

J. B. Khurgin and Z. Vafapour, “Time, space, and spectral multiplexing for radiation-balanced operation of semiconductor lasers (Conference Presentation),” Proc. SPIE 10550, 105500A (2018).

Kim, G. B.

J.-Y. Kim, S. Cho, J. Lee, G. B. Kim, S.-J. Lim, J. Yoo, K.-S. Kim, S.-M. Lee, J. Shim, and T. Kim, “A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18, 2496–2498 (2006).
[Crossref]

Kim, J.-Y.

J.-Y. Kim, S. Cho, J. Lee, G. B. Kim, S.-J. Lim, J. Yoo, K.-S. Kim, S.-M. Lee, J. Shim, and T. Kim, “A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18, 2496–2498 (2006).
[Crossref]

Kim, K.-S.

J.-Y. Kim, S. Cho, J. Lee, G. B. Kim, S.-J. Lim, J. Yoo, K.-S. Kim, S.-M. Lee, J. Shim, and T. Kim, “A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18, 2496–2498 (2006).
[Crossref]

Kim, T.

J.-Y. Kim, S. Cho, J. Lee, G. B. Kim, S.-J. Lim, J. Yoo, K.-S. Kim, S.-M. Lee, J. Shim, and T. Kim, “A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18, 2496–2498 (2006).
[Crossref]

Koch, M.

J. Hader, T.-L. Wang, J. V. Moloney, B. Heinen, M. Koch, S. W. Koch, B. Kunert, and W. Stolz, “On the measurement of the thermal impedance in vertical-external-cavity surface-emitting lasers,” J. Appl. Phys. 113, 153102 (2013).
[Crossref]

Koch, S. W.

J. Hader, T.-L. Wang, J. V. Moloney, B. Heinen, M. Koch, S. W. Koch, B. Kunert, and W. Stolz, “On the measurement of the thermal impedance in vertical-external-cavity surface-emitting lasers,” J. Appl. Phys. 113, 153102 (2013).
[Crossref]

T.-L. Wang, Y. Kaneda, J. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
[Crossref]

Kovsh, A. R.

Kränkel, C.

Krestnikov, I. L.

Kübler, T.

S. S. Beyertt, M. Zorn, T. Kübler, H. Wenzel, M. Weyers, A. Giesen, G. Tränkle, and U. Brauch, “Optical in-well pumping of a semiconductor disk laser with high optical efficiency,” IEEE J. Quantum Electron. 41(12), 1439–1449 (2005).
[Crossref]

Kunert, B.

J. Hader, T.-L. Wang, J. V. Moloney, B. Heinen, M. Koch, S. W. Koch, B. Kunert, and W. Stolz, “On the measurement of the thermal impedance in vertical-external-cavity surface-emitting lasers,” J. Appl. Phys. 113, 153102 (2013).
[Crossref]

T.-L. Wang, Y. Kaneda, J. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
[Crossref]

Kuznetsov, M.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

Lee, J.

J.-Y. Kim, S. Cho, J. Lee, G. B. Kim, S.-J. Lim, J. Yoo, K.-S. Kim, S.-M. Lee, J. Shim, and T. Kim, “A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18, 2496–2498 (2006).
[Crossref]

Lee, S.-M.

J.-Y. Kim, S. Cho, J. Lee, G. B. Kim, S.-J. Lim, J. Yoo, K.-S. Kim, S.-M. Lee, J. Shim, and T. Kim, “A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18, 2496–2498 (2006).
[Crossref]

Li, D.

J. Zhang, D. Li, R. Chen, and Q. Xiong, “Laser cooling of a semiconductor by 40 Kelvin,” Nature 493, 504 (2013).
[Crossref] [PubMed]

Lim, S.-J.

J.-Y. Kim, S. Cho, J. Lee, G. B. Kim, S.-J. Lim, J. Yoo, K.-S. Kim, S.-M. Lee, J. Shim, and T. Kim, “A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18, 2496–2498 (2006).
[Crossref]

Malloy, K. J.

A. R. Albrecht, C. P. Hains, T. J. Rotter, A. Stintz, K. J. Malloy, G. Balakrishnan, and J. V. Moloney, “High power 1.25 µ m InAs quantum dot vertical external-cavity surface-emitting laser,” J. Vac. Sci. Technol. B29(3), 03C113 (2011).
[Crossref]

Mateo, C. M. N.

Michler, P.

Mikhrin, S. S.

Moloney, J. V.

J. Hader, T.-L. Wang, J. V. Moloney, B. Heinen, M. Koch, S. W. Koch, B. Kunert, and W. Stolz, “On the measurement of the thermal impedance in vertical-external-cavity surface-emitting lasers,” J. Appl. Phys. 113, 153102 (2013).
[Crossref]

A. R. Albrecht, C. P. Hains, T. J. Rotter, A. Stintz, K. J. Malloy, G. Balakrishnan, and J. V. Moloney, “High power 1.25 µ m InAs quantum dot vertical external-cavity surface-emitting laser,” J. Vac. Sci. Technol. B29(3), 03C113 (2011).
[Crossref]

T.-L. Wang, Y. Kaneda, J. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
[Crossref]

Mooradian, A.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

Morris, O. J.

K. G. Wilcox, H. J. Kbashi, A. H. Quarterman, O. J. Morris, V. Apostolopoulos, M. Henini, and A. C. Tropper, “Wetting-Layer-Pumped Continuous-Wave Surface-Emitting Quantum-Dot Laser,” IEEE Photon. Technol. Lett. 24(1), 37–39 (2012).
[Crossref]

Mousavi, M.

B. Vaseghi, M. Mousavi, S. Khorshidian, and Z. Vafapour, “Spin-orbit interaction effects on the electronic structure of spherical quantum dot with different confinement potentials,” Superlat. Microstruct. 111, 671–677 (2017).
[Crossref]

Mungan, C. E.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500 (1995).
[Crossref]

C. E. Mungan and T. R. Gosnell, “Laser cooling of solids,” in Advances in Atomic, Molecular, and Optical Physics (Elsevier, 1999), pp. 161–228.

Nemova, G.

G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73, 086501 (2010).
[Crossref]

O’Connor, S.

S. Bowman, S. O’Connor, S. Biswal, and N. Condon, “Demonstration and analysis of a high power radiation balanced laser,” in CLEO: Science and Innovations, (Optical Society of America, 2011), CMH4.

O’Connor, S. P.

S. R. Bowman, S. P. O’Connor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron. 46, 1076–1085 (2010).
[Crossref]

S. R. Bowman, S. P. O’Connor, and S. Biswal, “Ytterbium laser with reduced thermal loading,” IEEE J. Quantum Electron. 41, 1510–1517 (2005).
[Crossref]

Okhotnikov, O. G.

Patterson, S.

P. Crump, J. Wang, S. Patterson, D. Wise, A. Basauri, M. DeFranza, S. Elim, W. Dong, S. Zhang, and M. Bougher, “Diode laser efficiency increases enable > 400-W peak power from 1-cm bars and show a clear path to peak powers in excess of 1-kW,” in High-Power Diode Laser Technology and Applications IV, 610409, p. 610409 (International Society for Optics and Photonics, 2006).

Petermann, K.

Peters, R.

Pringsheim, P.

P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturstrahlung,” Z. Phys. 57, 739–746 (1929).
[Crossref]

Quarterman, A. H.

K. G. Wilcox, H. J. Kbashi, A. H. Quarterman, O. J. Morris, V. Apostolopoulos, M. Henini, and A. C. Tropper, “Wetting-Layer-Pumped Continuous-Wave Surface-Emitting Quantum-Dot Laser,” IEEE Photon. Technol. Lett. 24(1), 37–39 (2012).
[Crossref]

Rafailov, E. U.

Rantamäki, A.

M. Guina, A. Rantamäki, and A. Härkönen, “Optically pumped VECSELs: review of technology and progress,” J. Phys. D: Appl. Phys. 50, 383001 (2017).
[Crossref]

Rautiainen, J.

Raymond, T. D.

Reed, M. K.

J. L. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High-power optically pumped semiconductor lasers,” in Solid State Lasers XIII: Technology and Devices, 5332 (International Society for Optics and Photonics, 2004), 143–151.

Rosenberg, A.

S. R. Bowman, S. P. O’Connor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron. 46, 1076–1085 (2010).
[Crossref]

Rotter, T. J.

A. R. Albrecht, C. P. Hains, T. J. Rotter, A. Stintz, K. J. Malloy, G. Balakrishnan, and J. V. Moloney, “High power 1.25 µ m InAs quantum dot vertical external-cavity surface-emitting laser,” J. Vac. Sci. Technol. B29(3), 03C113 (2011).
[Crossref]

Rumbles, G.

J. Clark and G. Rumbles, “Laser cooling in the condensed phase by frequency up-conversion,” Phys. Rev. Lett. 76, 2037 (1996).
[Crossref] [PubMed]

Schwarzbäck, T.

Sheik-Bahae, M.

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 31, 67–84 (2009).
[Crossref]

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1, 693 (2007).
[Crossref]

Shim, J.

J.-Y. Kim, S. Cho, J. Lee, G. B. Kim, S.-J. Lim, J. Yoo, K.-S. Kim, S.-M. Lee, J. Shim, and T. Kim, “A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18, 2496–2498 (2006).
[Crossref]

Song, Y.

P. Zhang, Y. Song, J. Tian, X. Zhang, and Z. Zhang, “Gain characteristics of the InGaAs strained quantum wells with GaAs, AlGaAs, and GaAsP barriers in vertical-external-cavity surface-emitting lasers,” J. Appl. Phys. 105, 053103 (2009).
[Crossref]

Spinelli, L.

J. L. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High-power optically pumped semiconductor lasers,” in Solid State Lasers XIII: Technology and Devices, 5332 (International Society for Optics and Photonics, 2004), 143–151.

Sprague, R.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

Steranka, F. M.

C. A. Hurni, A. David, M. J. Cich, R. I. Aldaz, B. Ellis, K. Huang, A. Tyagi, R. A. DeLille, M. D. Craven, and F. M. Steranka, “Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation,” Appl. Phys. Lett. 106, 031101 (2015).
[Crossref]

Stintz, A.

A. R. Albrecht, C. P. Hains, T. J. Rotter, A. Stintz, K. J. Malloy, G. Balakrishnan, and J. V. Moloney, “High power 1.25 µ m InAs quantum dot vertical external-cavity surface-emitting laser,” J. Vac. Sci. Technol. B29(3), 03C113 (2011).
[Crossref]

Stolz, W.

J. Hader, T.-L. Wang, J. V. Moloney, B. Heinen, M. Koch, S. W. Koch, B. Kunert, and W. Stolz, “On the measurement of the thermal impedance in vertical-external-cavity surface-emitting lasers,” J. Appl. Phys. 113, 153102 (2013).
[Crossref]

T.-L. Wang, Y. Kaneda, J. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
[Crossref]

Süedmeyer, T.

Tatar-Mathes, P.

Tian, J.

P. Zhang, Y. Song, J. Tian, X. Zhang, and Z. Zhang, “Gain characteristics of the InGaAs strained quantum wells with GaAs, AlGaAs, and GaAsP barriers in vertical-external-cavity surface-emitting lasers,” J. Appl. Phys. 105, 053103 (2009).
[Crossref]

Tränkle, G.

S. S. Beyertt, M. Zorn, T. Kübler, H. Wenzel, M. Weyers, A. Giesen, G. Tränkle, and U. Brauch, “Optical in-well pumping of a semiconductor disk laser with high optical efficiency,” IEEE J. Quantum Electron. 41(12), 1439–1449 (2005).
[Crossref]

Tropper, A. C.

K. G. Wilcox, H. J. Kbashi, A. H. Quarterman, O. J. Morris, V. Apostolopoulos, M. Henini, and A. C. Tropper, “Wetting-Layer-Pumped Continuous-Wave Surface-Emitting Quantum-Dot Laser,” IEEE Photon. Technol. Lett. 24(1), 37–39 (2012).
[Crossref]

Tyagi, A.

C. A. Hurni, A. David, M. J. Cich, R. I. Aldaz, B. Ellis, K. Huang, A. Tyagi, R. A. DeLille, M. D. Craven, and F. M. Steranka, “Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation,” Appl. Phys. Lett. 106, 031101 (2015).
[Crossref]

Vafapour, Z.

J. B. Khurgin and Z. Vafapour, “Time, space, and spectral multiplexing for radiation-balanced operation of semiconductor lasers (Conference Presentation),” Proc. SPIE 10550, 105500A (2018).

Z. Vafapour and J. B. Khurgin, “Bandgap engineering and prospects for radiation-balanced vertical-cavity semiconductor lasers (Conference Presentation),” Proc. SPIE 10550, 105500R (2018).

B. Vaseghi, M. Mousavi, S. Khorshidian, and Z. Vafapour, “Spin-orbit interaction effects on the electronic structure of spherical quantum dot with different confinement potentials,” Superlat. Microstruct. 111, 671–677 (2017).
[Crossref]

Vaseghi, B.

B. Vaseghi, M. Mousavi, S. Khorshidian, and Z. Vafapour, “Spin-orbit interaction effects on the electronic structure of spherical quantum dot with different confinement potentials,” Superlat. Microstruct. 111, 671–677 (2017).
[Crossref]

Wang, J.

P. Crump, J. Wang, S. Patterson, D. Wise, A. Basauri, M. DeFranza, S. Elim, W. Dong, S. Zhang, and M. Bougher, “Diode laser efficiency increases enable > 400-W peak power from 1-cm bars and show a clear path to peak powers in excess of 1-kW,” in High-Power Diode Laser Technology and Applications IV, 610409, p. 610409 (International Society for Optics and Photonics, 2006).

Wang, T.-L.

J. Hader, T.-L. Wang, J. V. Moloney, B. Heinen, M. Koch, S. W. Koch, B. Kunert, and W. Stolz, “On the measurement of the thermal impedance in vertical-external-cavity surface-emitting lasers,” J. Appl. Phys. 113, 153102 (2013).
[Crossref]

T.-L. Wang, Y. Kaneda, J. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
[Crossref]

Weber, H.

T. Graf, J. Balmer, and H. Weber, “Entropy balance of optically pumped cw lasers,” Opt. Commun. 148, 256–260 (1998).
[Crossref]

Wenzel, H.

H. Wenzel, “Basic aspects of high-power semiconductor laser simulation,” IEEE J. Sel. Top. Quantum Electron. 19, 1–13 (2013).
[Crossref]

S. S. Beyertt, M. Zorn, T. Kübler, H. Wenzel, M. Weyers, A. Giesen, G. Tränkle, and U. Brauch, “Optical in-well pumping of a semiconductor disk laser with high optical efficiency,” IEEE J. Quantum Electron. 41(12), 1439–1449 (2005).
[Crossref]

Weyers, M.

S. S. Beyertt, M. Zorn, T. Kübler, H. Wenzel, M. Weyers, A. Giesen, G. Tränkle, and U. Brauch, “Optical in-well pumping of a semiconductor disk laser with high optical efficiency,” IEEE J. Quantum Electron. 41(12), 1439–1449 (2005).
[Crossref]

Whitney, W.

N. Djeu and W. Whitney, “Laser cooling by spontaneous anti-Stokes scattering,” Phys. Rev. Lett. 46, 236 (1981).
[Crossref]

Wilcox, K. G.

K. G. Wilcox, H. J. Kbashi, A. H. Quarterman, O. J. Morris, V. Apostolopoulos, M. Henini, and A. C. Tropper, “Wetting-Layer-Pumped Continuous-Wave Surface-Emitting Quantum-Dot Laser,” IEEE Photon. Technol. Lett. 24(1), 37–39 (2012).
[Crossref]

M. Butkus, K. G. Wilcox, J. Rautiainen, O. G. Okhotnikov, S. S. Mikhrin, I. L. Krestnikov, A. R. Kovsh, M. Hoffmann, T. Süedmeyer, U. Keller, and E. U. Rafailov, “High-power quantum-dot-based semiconductor disk laser,” Opt. Lett. 34, 1672–1674 (2009).
[Crossref] [PubMed]

Wise, D.

P. Crump, J. Wang, S. Patterson, D. Wise, A. Basauri, M. DeFranza, S. Elim, W. Dong, S. Zhang, and M. Bougher, “Diode laser efficiency increases enable > 400-W peak power from 1-cm bars and show a clear path to peak powers in excess of 1-kW,” in High-Power Diode Laser Technology and Applications IV, 610409, p. 610409 (International Society for Optics and Photonics, 2006).

Xiong, Q.

J. Zhang, D. Li, R. Chen, and Q. Xiong, “Laser cooling of a semiconductor by 40 Kelvin,” Nature 493, 504 (2013).
[Crossref] [PubMed]

Yarborough, J.

T.-L. Wang, Y. Kaneda, J. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
[Crossref]

Yoo, J.

J.-Y. Kim, S. Cho, J. Lee, G. B. Kim, S.-J. Lim, J. Yoo, K.-S. Kim, S.-M. Lee, J. Shim, and T. Kim, “A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18, 2496–2498 (2006).
[Crossref]

Zander, C.

C. Zander and K. H. Drexhage, “Cooling of a dye solution by anti-Stokes fluorescence,” Adv. Photochem. 20, 59–78 (1995).

Zeitschel, A.

J. L. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High-power optically pumped semiconductor lasers,” in Solid State Lasers XIII: Technology and Devices, 5332 (International Society for Optics and Photonics, 2004), 143–151.

Zhang, J.

J. Zhang, D. Li, R. Chen, and Q. Xiong, “Laser cooling of a semiconductor by 40 Kelvin,” Nature 493, 504 (2013).
[Crossref] [PubMed]

Zhang, P.

P. Zhang, Y. Song, J. Tian, X. Zhang, and Z. Zhang, “Gain characteristics of the InGaAs strained quantum wells with GaAs, AlGaAs, and GaAsP barriers in vertical-external-cavity surface-emitting lasers,” J. Appl. Phys. 105, 053103 (2009).
[Crossref]

Zhang, S.

P. Crump, J. Wang, S. Patterson, D. Wise, A. Basauri, M. DeFranza, S. Elim, W. Dong, S. Zhang, and M. Bougher, “Diode laser efficiency increases enable > 400-W peak power from 1-cm bars and show a clear path to peak powers in excess of 1-kW,” in High-Power Diode Laser Technology and Applications IV, 610409, p. 610409 (International Society for Optics and Photonics, 2006).

Zhang, X.

P. Zhang, Y. Song, J. Tian, X. Zhang, and Z. Zhang, “Gain characteristics of the InGaAs strained quantum wells with GaAs, AlGaAs, and GaAsP barriers in vertical-external-cavity surface-emitting lasers,” J. Appl. Phys. 105, 053103 (2009).
[Crossref]

Zhang, Z.

P. Zhang, Y. Song, J. Tian, X. Zhang, and Z. Zhang, “Gain characteristics of the InGaAs strained quantum wells with GaAs, AlGaAs, and GaAsP barriers in vertical-external-cavity surface-emitting lasers,” J. Appl. Phys. 105, 053103 (2009).
[Crossref]

Zorn, M.

S. S. Beyertt, M. Zorn, T. Kübler, H. Wenzel, M. Weyers, A. Giesen, G. Tränkle, and U. Brauch, “Optical in-well pumping of a semiconductor disk laser with high optical efficiency,” IEEE J. Quantum Electron. 41(12), 1439–1449 (2005).
[Crossref]

Adv. Photochem. (1)

C. Zander and K. H. Drexhage, “Cooling of a dye solution by anti-Stokes fluorescence,” Adv. Photochem. 20, 59–78 (1995).

Appl. Phys. Lett. (1)

C. A. Hurni, A. David, M. J. Cich, R. I. Aldaz, B. Ellis, K. Huang, A. Tyagi, R. A. DeLille, M. D. Craven, and F. M. Steranka, “Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation,” Appl. Phys. Lett. 106, 031101 (2015).
[Crossref]

IEEE J. Quantum Electron. (3)

S. R. Bowman, S. P. O’Connor, and S. Biswal, “Ytterbium laser with reduced thermal loading,” IEEE J. Quantum Electron. 41, 1510–1517 (2005).
[Crossref]

S. R. Bowman, S. P. O’Connor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron. 46, 1076–1085 (2010).
[Crossref]

S. S. Beyertt, M. Zorn, T. Kübler, H. Wenzel, M. Weyers, A. Giesen, G. Tränkle, and U. Brauch, “Optical in-well pumping of a semiconductor disk laser with high optical efficiency,” IEEE J. Quantum Electron. 41(12), 1439–1449 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Wenzel, “Basic aspects of high-power semiconductor laser simulation,” IEEE J. Sel. Top. Quantum Electron. 19, 1–13 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (4)

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

K. G. Wilcox, H. J. Kbashi, A. H. Quarterman, O. J. Morris, V. Apostolopoulos, M. Henini, and A. C. Tropper, “Wetting-Layer-Pumped Continuous-Wave Surface-Emitting Quantum-Dot Laser,” IEEE Photon. Technol. Lett. 24(1), 37–39 (2012).
[Crossref]

T.-L. Wang, Y. Kaneda, J. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
[Crossref]

J.-Y. Kim, S. Cho, J. Lee, G. B. Kim, S.-J. Lim, J. Yoo, K.-S. Kim, S.-M. Lee, J. Shim, and T. Kim, “A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18, 2496–2498 (2006).
[Crossref]

J. Appl. Phys. (2)

J. Hader, T.-L. Wang, J. V. Moloney, B. Heinen, M. Koch, S. W. Koch, B. Kunert, and W. Stolz, “On the measurement of the thermal impedance in vertical-external-cavity surface-emitting lasers,” J. Appl. Phys. 113, 153102 (2013).
[Crossref]

P. Zhang, Y. Song, J. Tian, X. Zhang, and Z. Zhang, “Gain characteristics of the InGaAs strained quantum wells with GaAs, AlGaAs, and GaAsP barriers in vertical-external-cavity surface-emitting lasers,” J. Appl. Phys. 105, 053103 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (1)

M. Guina, A. Rantamäki, and A. Härkönen, “Optically pumped VECSELs: review of technology and progress,” J. Phys. D: Appl. Phys. 50, 383001 (2017).
[Crossref]

J. Vac. Sci. Technol. (1)

A. R. Albrecht, C. P. Hains, T. J. Rotter, A. Stintz, K. J. Malloy, G. Balakrishnan, and J. V. Moloney, “High power 1.25 µ m InAs quantum dot vertical external-cavity surface-emitting laser,” J. Vac. Sci. Technol. B29(3), 03C113 (2011).
[Crossref]

Laser Photon. Rev. (1)

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 31, 67–84 (2009).
[Crossref]

Nat. Photonics (1)

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1, 693 (2007).
[Crossref]

Nature (2)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500 (1995).
[Crossref]

J. Zhang, D. Li, R. Chen, and Q. Xiong, “Laser cooling of a semiconductor by 40 Kelvin,” Nature 493, 504 (2013).
[Crossref] [PubMed]

Opt. Commun. (1)

T. Graf, J. Balmer, and H. Weber, “Entropy balance of optically pumped cw lasers,” Opt. Commun. 148, 256–260 (1998).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Optica (1)

Phys. Rev. Lett. (2)

J. Clark and G. Rumbles, “Laser cooling in the condensed phase by frequency up-conversion,” Phys. Rev. Lett. 76, 2037 (1996).
[Crossref] [PubMed]

N. Djeu and W. Whitney, “Laser cooling by spontaneous anti-Stokes scattering,” Phys. Rev. Lett. 46, 236 (1981).
[Crossref]

Proc. SPIE (2)

Z. Vafapour and J. B. Khurgin, “Bandgap engineering and prospects for radiation-balanced vertical-cavity semiconductor lasers (Conference Presentation),” Proc. SPIE 10550, 105500R (2018).

J. B. Khurgin and Z. Vafapour, “Time, space, and spectral multiplexing for radiation-balanced operation of semiconductor lasers (Conference Presentation),” Proc. SPIE 10550, 105500A (2018).

Rep. Prog. Phys. (1)

G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73, 086501 (2010).
[Crossref]

Superlat. Microstruct. (1)

B. Vaseghi, M. Mousavi, S. Khorshidian, and Z. Vafapour, “Spin-orbit interaction effects on the electronic structure of spherical quantum dot with different confinement potentials,” Superlat. Microstruct. 111, 671–677 (2017).
[Crossref]

Z. Phys. (1)

P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturstrahlung,” Z. Phys. 57, 739–746 (1929).
[Crossref]

Other (4)

P. Crump, J. Wang, S. Patterson, D. Wise, A. Basauri, M. DeFranza, S. Elim, W. Dong, S. Zhang, and M. Bougher, “Diode laser efficiency increases enable > 400-W peak power from 1-cm bars and show a clear path to peak powers in excess of 1-kW,” in High-Power Diode Laser Technology and Applications IV, 610409, p. 610409 (International Society for Optics and Photonics, 2006).

C. E. Mungan and T. R. Gosnell, “Laser cooling of solids,” in Advances in Atomic, Molecular, and Optical Physics (Elsevier, 1999), pp. 161–228.

S. Bowman, S. O’Connor, S. Biswal, and N. Condon, “Demonstration and analysis of a high power radiation balanced laser,” in CLEO: Science and Innovations, (Optical Society of America, 2011), CMH4.

J. L. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High-power optically pumped semiconductor lasers,” in Solid State Lasers XIII: Technology and Devices, 5332 (International Society for Optics and Photonics, 2004), 143–151.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The schematic quasi-two-level energy diagram with the pump, fluorescence and lasing transitions.
Fig. 2
Fig. 2 Schematic of a VECSEL (not to scale) with a semiconductor gain chip and an external laser resonator.
Fig. 3
Fig. 3 (a) MQWs with the wavefunctions, Eg0 is as bulk bandgap and Eg is as the effective bandgap, (b) the laser cooling cycle, (c) the step-function density of state (blue-line) and the Gaussian broadened 2D density of state, (d) Fermi functions in Conduction and Valence bands, and (e) the carrier concentration (n0 for electron and p0 for hole concentration).
Fig. 4
Fig. 4 (a) The step-function 2D joint density of states (blue-dashed curve) and the Lorentzian broadend density of states (red-line curve), (b) the absorption coefficient, and (c) the spontaneous emission of the structure vs. energy.
Fig. 5
Fig. 5 (a) The density of state of QW, spectra of the fluorescence and gain of QW GaAs with carrier density of n2D = 0.62 × 1012cm−2. (b) The four relevant frequencies in radiation-balanced (RB)-VECSELs, and (c) cooling power, the peak gain for round-trip QWs and the outside laser power, respectively.
Fig. 6
Fig. 6 (a) The density of state of QW with extended bandtail, spectra of the fluorescence and gain of QW GaAs with carrier density of n2D = 0.59 × 1012cm−2. (b) The four relevant frequencies in RB-VECSELs and (c) cooling power, the peak gain for round-trip QWs and the outside laser power, respectively.
Fig. 7
Fig. 7 (a) The density of state of QWs adding some resonant impurities (QDs) below the bandgap, spectra of the fluorescence and gain of QW GaAs with carrier density of n2D = 0.824 × 1012cm−2. (b) The four relevant frequencies in RB-VECSELs, and (c) cooling power, the peak gain for round-trip QWs and the outside laser power, respectively.
Fig. 8
Fig. 8 (a) The density of state of QWs adding some resonant impurities (QDs) below the bandgap in the optimized case, spectra of the fluorescence and gain of QW GaAs with carrier density of n2D = 0.69 × 1012cm−2. (b) The four relevant frequencies in RB-VECSELs and (c) cooling power, the peak gain for round-trip QWs and the outside laser power, respectively.

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

ρ 2 D , 0 ( ω ) = n μ r π 2 H ( E c n E v n ω )
d n 2 D d t = 2 π 1 2 e 2 P c v 2 m 0 2 ω 2 μ r π 2 ρ 2 D   ( f c f v ) E 2 ( ω ) 4 F c v
F c v = | ψ c ( z ) ψ v * ( z ) d z | 2
f c , v ( E c , v ) = 1 e E c E F c , v k B T + 1
E c ( v ) = E c ( v ) , 1 ± ( ω E c 1 E v 1 ) μ r m c ( v ) .
f ¯ v ( E v ) = 1 f v ( E ) = 1 e E v E E v k B T + 1 .
I ω = n r 2 η 0 E 2 ( ω ) ,
d n 2 D d t = η 0 2 n r e 2 P c v 2 m 0 2 ω 2 μ r 2 ρ 2 D   ( f c + f ¯ v 1 ) F c v I ω
m c 1 = m 0 1 + 2 P c v 2 m 0 E g
R P = 2 P c v 2 m 0 2 E g μ r
d u 2 D d t = ω d n 2 D d t = η 0 e 2 4 n r R P ρ 2 D   ( f c + f ¯ v 1 ) F c v I ω = α ( ω ) I ω = γ ( ω ) I ω
γ ( ω ) = π α 0 n r R P ρ 2 D   ( ω ) F c v ( f c + f ¯ v 1 )
ε 0 n r 2 d E ( ω ) v a c 2 2 = U ω d ω = ω n r 3 ω 2 π 2 c 3 d ω .
r s p   = 2 π 1 3 e 2 P c v 2 m 0 2 ω 2 f c f ¯ v n r 2 ω 3 ε 0 π 2 c 3 F c v 2 3 n r α 0 R P μ 0 ω 2 c 2 F c v f c f ¯ v 8 π 3 n r α 0 R P μ 0 λ 2 F c v f c f ¯ v
r s p = E g r s p   ( ω ) ρ 2 D   μ r π 2 d ( ω ) = 8 π 3 λ 2 n r α 0 R P F c v E g ρ 2 D   f c f ¯ v d ( ω )
τ r a d = n 2 D r s p
h ν F = r s p 1 E g ω r s p   ( ω ) ρ 2 D   μ r π 2 d ( ω ) = E g ω ρ 2 D   f c f ¯ v d ( ω ) E g ρ 2 D   f c f ¯ v d ( ω )
α ( ν P ) I P h ν P = γ ( ν L ) I L h ν L + n 2 D η Q τ r a d
α ( ν P ) I P = γ ( ν L ) I L + n 2 D h ν F τ r a d η e x t .
α ( ν P ) I P h ν P = n 2 D τ r η Q η Q η e x t h ν F h ν L h ν P h ν L
γ ( ν L ) I L h ν L = n 2 D τ r η Q η Q η e x t h ν F h ν P h ν P h ν L
I L I P = h ν L h ν P α ( ν P ) γ ( ν L ) η Q η e x t h ν F h ν P η Q η e x t h ν F h ν L .
P c o o l = n 2 D h ν F τ r a d η e x t α ( ν P ) I P
η c o o l = P c o o l I P = α ( ν P ) P c o o l P a b s
P L = N Q W γ ( ν L ) I L η o u t = η Q η e x t ν F ν P 1 η Q η e x t ν F ν L 1 N Q W α ( ν P ) I P η o u t η Q η e x t ν F ν P 1 η Q η e x t ν F ν L 1 P T , a b s η o u t
η L , 1 = P L I P = η Q η e x t ν F ν P 1 η Q η e x t ν F ν L 1 N Q W α ( ν P ) η o u t ,
η L , 2 = P L P T , a b s = η Q η e x t ν F ν P 1 η Q η e x t ν F ν L 1 ( 1 L c 2 N Q W γ ) .
α ( ν P ) I P h ν P = n 2 D η Q τ r a d
P c o o l = n 2 D η e x t η Q h ν F h ν P η Q τ r a d
η c o o l = α ( ν P ) ( η e x t η Q ν F ν P 1 )
P c o o l = ( ν P ν L 1 ) I L γ ( ν L )
I L = P c o o l γ ( ν L ) ( ν P ν L 1 ) = α ( ν P ) ( η e x t η Q ν F ν P 1 ) γ ( ν L ) ( ν P ν L 1 ) I P .
P L = N Q W P c o o l ( ν P ν L 1 ) η o u t = ( η e x t η Q ν F ν P 1 ) ( ν P ν L 1 ) ( 1 L C 2 N Q W γ ) P a b s

Metrics