Abstract

Heralded single photon sources are often implemented using spontaneous parametric downconversion, but their quality can be restricted by optical loss, double pair emission and detector dark counts. Here, we propose a scheme using cascaded downconversion that would improve the performance of such sources by providing a second trigger signal to herald the presence of a single photon, thereby reducing the effects of detector dark counts. Our calculations show that for a setup with fixed detectors, an improved heralded second-order correlation function g(2) can be achieved with cascaded downconversion given sufficient efficiency for the second downconversion, even for equal single-photon production rates. Furthermore, the minimal g(2) value is unchanged for a large range in pump beam intensity. These results are interesting for applications where achieving low, stable values of g(2) is of primary importance.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Heralded single-photon source utilizing highly nondegenerate, spectrally factorable spontaneous parametric downconversion

Fumihiro Kaneda, Karina Garay-Palmett, Alfred B. U’Ren, and Paul G. Kwiat
Opt. Express 24(10) 10733-10747 (2016)

On-chip low loss heralded source of pure single photons

Justin B. Spring, Patrick S. Salter, Benjamin J. Metcalf, Peter C. Humphreys, Merritt Moore, Nicholas Thomas-Peter, Marco Barbieri, Xian-Min Jin, Nathan K. Langford, W. Steven Kolthammer, Martin J. Booth, and Ian A. Walmsley
Opt. Express 21(11) 13522-13532 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
    [Crossref] [PubMed]
  2. M. Schiavon, G. Vallone, F. Ticozzi, and P. Villoresi, “Heralded single-photon sources for quantum-key-distribution applications,” Phys. Rev. A 93, 012331 (2016).
    [Crossref]
  3. T. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt. 58, 276–287 (2011).
    [Crossref]
  4. C. J. Chunnilall, I. P. Degiovanni, S. Kück, I. Müller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: a review,” Opt. Eng. 53, 081910 (2014).
    [Crossref]
  5. A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys. Rev. A 66, 053805 (2002).
    [Crossref]
  6. W. P. Grice, A. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
    [Crossref]
  7. A. B. U’Ren, C. Silberhorn, J. L. Ball, K. Banaszek, and I. A. Walmsley, “Characterization of the nonclassical nature of conditionally prepared single photons,” Phys. Rev. A 72, 021802 (2005).
    [Crossref]
  8. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
    [Crossref] [PubMed]
  9. P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
    [Crossref]
  10. Z. H. Levine, J. Fan, J. Chen, A. Ling, and A. Migdall, “Heralded, pure-state single-photon source based on a potassium titanyl phosphate waveguide,” Opt. Express 18, 3708 (2010).
    [Crossref] [PubMed]
  11. E. Jeffrey, N. A. Peters, and P. G. Kwiat, “Towards a periodic deterministic source of arbitrary single-photon states,” New J. Phys. 6, 100 (2004).
    [Crossref]
  12. J. H. Shapiro and F. N. Wong, “On-demand single-photon generation using a modular array of parametric downconverters with electro-optic polarization controls,” Opt. Lett. 32, 2698 (2007).
    [Crossref] [PubMed]
  13. X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83, 043814 (2011).
    [Crossref]
  14. M. Collins, C. Xiong, I. Rey, T. Vo, J. He, S. Shahnia, C. Reardon, T. Krauss, M. Steel, A. Clark, and B. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 42582 (2013).
    [Crossref]
  15. C. Xiong, X. Zhang, Z. Liu, M. Collins, A. Mahendra, L. Helt, M. Steel, D.-Y. Choi, C. Chae, P. Leong, and B. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 710853 (2016).
    [Crossref]
  16. G. J. Mendoza, R. Santagati, J. Munns, E. Hemsley, M. Piekarek, E. Martín-López, G. D. Marshall, D. Bonneau, M. G. Thompson, and J. L. O’Brien, “Active temporal and spatial multiplexing of photons,” Optica 3, 127 (2016).
    [Crossref]
  17. M. Grimau Puigibert, G. H. Aguilar, Q. Zhou, F. Marsili, M. D. Shaw, V. B. Verma, S. W. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119, 083601 (2017).
    [Crossref] [PubMed]
  18. F. Kaneda, B. G. Christensen, J. J. Wong, H. S. Park, K. T. McCusker, and P. G. Kwiat, “Time-multiplexed heralded single-photon source,” Optica 2, 1010–1013 (2015).
    [Crossref]
  19. A. Cabello and F. Sciarrino, “Loophole-free Bell test based on local precertification of photon’s presence,” Phys. Rev. X 2, 021010 (2012).
  20. H. Hübel, D. R. Hamel, A. Fedrizzi, S. Ramelow, K. J. Resch, and T. Jennewein, “Direct generation of photon triplets using cascaded photon-pair sources,” Nature 466, 601–603 (2010).
    [Crossref] [PubMed]
  21. S. Krapick, B. Brecht, H. Herrmann, V. Quiring, and C. Silberhorn, “On-chip generation of photon-triplet states,” Opt. Express 24, 2836–2849 (2016).
    [Crossref] [PubMed]
  22. D.-S. Ding, W. Zhang, S. Shi, Z.-Y. Zhou, Y. Li, B.-S. Shi, and G.-C. Guo, “Hybrid-cascaded generation of tripartite telecom photons using an atomic ensemble and a nonlinear waveguide,” Optica 2, 642–645 (2015).
    [Crossref]
  23. L. K. Shalm, D. R. Hamel, Z. Yan, C. Simon, K. J. Resch, and T. Jennewein, “Three-photon energy-time entanglement,” Nat. Phys. 9, 19–22 (2013).
    [Crossref]
  24. D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8, 801–807 (2014).
    [Crossref]
  25. E. Meyer-Scott, D. McCloskey, K. Gołos, J. Z. Salvail, K. A. G. Fisher, D. R. Hamel, A. Cabello, K. J. Resch, and T. Jennewein, “Certifying the presence of a photonic qubit by splitting it in two,” Phys. Rev. Lett. 116, 070501 (2016).
    [Crossref] [PubMed]
  26. P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single-photon interferences,” Europhys. Lett. 1, 173 (1986).
    [Crossref]
  27. P. Senellart, G. Solomon, and A. G. White, “High-performance semiconductor quantum-dot single-photon sources,” Nat. Nanotechnol. 12, 1026–1039 (2017).
    [Crossref] [PubMed]
  28. F. Bussières, J. A. Slater, N. Godbout, and W. Tittel, “Fast and simple characterization of a photon pair source,” Opt. Express 16, 17060 (2008).
    [Crossref] [PubMed]
  29. D. N. Klyshko, “Use of two-photon light for absolute calibration of photoelectric detectors,” Sov. J. Quantum Electron. 10, 1112 (1980).
    [Crossref]
  30. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
    [Crossref]
  31. H. Takesue and K. Shimizu, “Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes,” Opt. Commun. 283, 276–287 (2010).
    [Crossref]
  32. Q.-Y. Zhang, G.-T. Xue, P. Xu, Y.-X. Gong, Z. Xie, and S. Zhu, “Manipulation of tripartite frequency correlation under extended phase matchings,” Phys. Rev. A 97, 022327 (2018).
    [Crossref]
  33. S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26 (2001).
    [Crossref]
  34. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
    [Crossref]
  35. M. Bock, A. Lenhard, C. Chunnilall, and C. Becher, “Highly efficient heralded single-photon source for telecom wavelengths based on a PPLN waveguide,” Opt. Express 24, 23992 (2016).
    [Crossref] [PubMed]
  36. G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” Opt. Express 21, 13975–13985 (2013).
    [Crossref] [PubMed]

2018 (1)

Q.-Y. Zhang, G.-T. Xue, P. Xu, Y.-X. Gong, Z. Xie, and S. Zhu, “Manipulation of tripartite frequency correlation under extended phase matchings,” Phys. Rev. A 97, 022327 (2018).
[Crossref]

2017 (2)

P. Senellart, G. Solomon, and A. G. White, “High-performance semiconductor quantum-dot single-photon sources,” Nat. Nanotechnol. 12, 1026–1039 (2017).
[Crossref] [PubMed]

M. Grimau Puigibert, G. H. Aguilar, Q. Zhou, F. Marsili, M. D. Shaw, V. B. Verma, S. W. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119, 083601 (2017).
[Crossref] [PubMed]

2016 (6)

E. Meyer-Scott, D. McCloskey, K. Gołos, J. Z. Salvail, K. A. G. Fisher, D. R. Hamel, A. Cabello, K. J. Resch, and T. Jennewein, “Certifying the presence of a photonic qubit by splitting it in two,” Phys. Rev. Lett. 116, 070501 (2016).
[Crossref] [PubMed]

C. Xiong, X. Zhang, Z. Liu, M. Collins, A. Mahendra, L. Helt, M. Steel, D.-Y. Choi, C. Chae, P. Leong, and B. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 710853 (2016).
[Crossref]

M. Schiavon, G. Vallone, F. Ticozzi, and P. Villoresi, “Heralded single-photon sources for quantum-key-distribution applications,” Phys. Rev. A 93, 012331 (2016).
[Crossref]

G. J. Mendoza, R. Santagati, J. Munns, E. Hemsley, M. Piekarek, E. Martín-López, G. D. Marshall, D. Bonneau, M. G. Thompson, and J. L. O’Brien, “Active temporal and spatial multiplexing of photons,” Optica 3, 127 (2016).
[Crossref]

S. Krapick, B. Brecht, H. Herrmann, V. Quiring, and C. Silberhorn, “On-chip generation of photon-triplet states,” Opt. Express 24, 2836–2849 (2016).
[Crossref] [PubMed]

M. Bock, A. Lenhard, C. Chunnilall, and C. Becher, “Highly efficient heralded single-photon source for telecom wavelengths based on a PPLN waveguide,” Opt. Express 24, 23992 (2016).
[Crossref] [PubMed]

2015 (2)

2014 (2)

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8, 801–807 (2014).
[Crossref]

C. J. Chunnilall, I. P. Degiovanni, S. Kück, I. Müller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: a review,” Opt. Eng. 53, 081910 (2014).
[Crossref]

2013 (4)

M. Collins, C. Xiong, I. Rey, T. Vo, J. He, S. Shahnia, C. Reardon, T. Krauss, M. Steel, A. Clark, and B. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 42582 (2013).
[Crossref]

L. K. Shalm, D. R. Hamel, Z. Yan, C. Simon, K. J. Resch, and T. Jennewein, “Three-photon energy-time entanglement,” Nat. Phys. 9, 19–22 (2013).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” Opt. Express 21, 13975–13985 (2013).
[Crossref] [PubMed]

2012 (1)

A. Cabello and F. Sciarrino, “Loophole-free Bell test based on local precertification of photon’s presence,” Phys. Rev. X 2, 021010 (2012).

2011 (3)

X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83, 043814 (2011).
[Crossref]

T. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt. 58, 276–287 (2011).
[Crossref]

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref] [PubMed]

2010 (3)

H. Hübel, D. R. Hamel, A. Fedrizzi, S. Ramelow, K. J. Resch, and T. Jennewein, “Direct generation of photon triplets using cascaded photon-pair sources,” Nature 466, 601–603 (2010).
[Crossref] [PubMed]

Z. H. Levine, J. Fan, J. Chen, A. Ling, and A. Migdall, “Heralded, pure-state single-photon source based on a potassium titanyl phosphate waveguide,” Opt. Express 18, 3708 (2010).
[Crossref] [PubMed]

H. Takesue and K. Shimizu, “Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes,” Opt. Commun. 283, 276–287 (2010).
[Crossref]

2009 (1)

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
[Crossref]

2008 (3)

F. Bussières, J. A. Slater, N. Godbout, and W. Tittel, “Fast and simple characterization of a photon pair source,” Opt. Express 16, 17060 (2008).
[Crossref] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
[Crossref]

2007 (1)

2005 (1)

A. B. U’Ren, C. Silberhorn, J. L. Ball, K. Banaszek, and I. A. Walmsley, “Characterization of the nonclassical nature of conditionally prepared single photons,” Phys. Rev. A 72, 021802 (2005).
[Crossref]

2004 (1)

E. Jeffrey, N. A. Peters, and P. G. Kwiat, “Towards a periodic deterministic source of arbitrary single-photon states,” New J. Phys. 6, 100 (2004).
[Crossref]

2002 (1)

A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys. Rev. A 66, 053805 (2002).
[Crossref]

2001 (2)

W. P. Grice, A. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26 (2001).
[Crossref]

1986 (1)

P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single-photon interferences,” Europhys. Lett. 1, 173 (1986).
[Crossref]

1980 (1)

D. N. Klyshko, “Use of two-photon light for absolute calibration of photoelectric detectors,” Sov. J. Quantum Electron. 10, 1112 (1980).
[Crossref]

Aguilar, G. H.

M. Grimau Puigibert, G. H. Aguilar, Q. Zhou, F. Marsili, M. D. Shaw, V. B. Verma, S. W. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119, 083601 (2017).
[Crossref] [PubMed]

Ansari, V.

Aspect, A.

P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single-photon interferences,” Europhys. Lett. 1, 173 (1986).
[Crossref]

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Baldi, P.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26 (2001).
[Crossref]

Ball, J. L.

A. B. U’Ren, C. Silberhorn, J. L. Ball, K. Banaszek, and I. A. Walmsley, “Characterization of the nonclassical nature of conditionally prepared single photons,” Phys. Rev. A 72, 021802 (2005).
[Crossref]

Banaszek, K.

A. B. U’Ren, C. Silberhorn, J. L. Ball, K. Banaszek, and I. A. Walmsley, “Characterization of the nonclassical nature of conditionally prepared single photons,” Phys. Rev. A 72, 021802 (2005).
[Crossref]

Barbieri, M.

T. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt. 58, 276–287 (2011).
[Crossref]

Becher, C.

Bock, M.

Bonneau, D.

Branning, D.

A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys. Rev. A 66, 053805 (2002).
[Crossref]

Brecht, B.

Bussières, F.

Cabello, A.

E. Meyer-Scott, D. McCloskey, K. Gołos, J. Z. Salvail, K. A. G. Fisher, D. R. Hamel, A. Cabello, K. J. Resch, and T. Jennewein, “Certifying the presence of a photonic qubit by splitting it in two,” Phys. Rev. Lett. 116, 070501 (2016).
[Crossref] [PubMed]

A. Cabello and F. Sciarrino, “Loophole-free Bell test based on local precertification of photon’s presence,” Phys. Rev. X 2, 021010 (2012).

Castelletto, S.

A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys. Rev. A 66, 053805 (2002).
[Crossref]

Chae, C.

C. Xiong, X. Zhang, Z. Liu, M. Collins, A. Mahendra, L. Helt, M. Steel, D.-Y. Choi, C. Chae, P. Leong, and B. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 710853 (2016).
[Crossref]

Chen, J.

Choi, D.-Y.

C. Xiong, X. Zhang, Z. Liu, M. Collins, A. Mahendra, L. Helt, M. Steel, D.-Y. Choi, C. Chae, P. Leong, and B. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 710853 (2016).
[Crossref]

Christensen, B. G.

Chunnilall, C.

Chunnilall, C. J.

C. J. Chunnilall, I. P. Degiovanni, S. Kück, I. Müller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: a review,” Opt. Eng. 53, 081910 (2014).
[Crossref]

Clark, A.

M. Collins, C. Xiong, I. Rey, T. Vo, J. He, S. Shahnia, C. Reardon, T. Krauss, M. Steel, A. Clark, and B. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 42582 (2013).
[Crossref]

Collins, M.

C. Xiong, X. Zhang, Z. Liu, M. Collins, A. Mahendra, L. Helt, M. Steel, D.-Y. Choi, C. Chae, P. Leong, and B. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 710853 (2016).
[Crossref]

M. Collins, C. Xiong, I. Rey, T. Vo, J. He, S. Shahnia, C. Reardon, T. Krauss, M. Steel, A. Clark, and B. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 42582 (2013).
[Crossref]

De Micheli, M.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26 (2001).
[Crossref]

De Riedmatten, H.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26 (2001).
[Crossref]

Degiovanni, I. P.

C. J. Chunnilall, I. P. Degiovanni, S. Kück, I. Müller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: a review,” Opt. Eng. 53, 081910 (2014).
[Crossref]

Ding, D.-S.

Dirmeier, T.

Eggleton, B.

C. Xiong, X. Zhang, Z. Liu, M. Collins, A. Mahendra, L. Helt, M. Steel, D.-Y. Choi, C. Chae, P. Leong, and B. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 710853 (2016).
[Crossref]

M. Collins, C. Xiong, I. Rey, T. Vo, J. He, S. Shahnia, C. Reardon, T. Krauss, M. Steel, A. Clark, and B. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 42582 (2013).
[Crossref]

Eisaman, M. D.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref] [PubMed]

Fan, J.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref] [PubMed]

Z. H. Levine, J. Fan, J. Chen, A. Ling, and A. Migdall, “Heralded, pure-state single-photon source based on a potassium titanyl phosphate waveguide,” Opt. Express 18, 3708 (2010).
[Crossref] [PubMed]

Fedrizzi, A.

H. Hübel, D. R. Hamel, A. Fedrizzi, S. Ramelow, K. J. Resch, and T. Jennewein, “Direct generation of photon triplets using cascaded photon-pair sources,” Nature 466, 601–603 (2010).
[Crossref] [PubMed]

Fisher, K. A. G.

E. Meyer-Scott, D. McCloskey, K. Gołos, J. Z. Salvail, K. A. G. Fisher, D. R. Hamel, A. Cabello, K. J. Resch, and T. Jennewein, “Certifying the presence of a photonic qubit by splitting it in two,” Phys. Rev. Lett. 116, 070501 (2016).
[Crossref] [PubMed]

Gerrits, T.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Gisin, N.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26 (2001).
[Crossref]

Godbout, N.

Golos, K.

E. Meyer-Scott, D. McCloskey, K. Gołos, J. Z. Salvail, K. A. G. Fisher, D. R. Hamel, A. Cabello, K. J. Resch, and T. Jennewein, “Certifying the presence of a photonic qubit by splitting it in two,” Phys. Rev. Lett. 116, 070501 (2016).
[Crossref] [PubMed]

Gong, Y.-X.

Q.-Y. Zhang, G.-T. Xue, P. Xu, Y.-X. Gong, Z. Xie, and S. Zhu, “Manipulation of tripartite frequency correlation under extended phase matchings,” Phys. Rev. A 97, 022327 (2018).
[Crossref]

Grangier, P.

P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single-photon interferences,” Europhys. Lett. 1, 173 (1986).
[Crossref]

Grice, W. P.

W. P. Grice, A. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

Grimau Puigibert, M.

M. Grimau Puigibert, G. H. Aguilar, Q. Zhou, F. Marsili, M. D. Shaw, V. B. Verma, S. W. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119, 083601 (2017).
[Crossref] [PubMed]

Guo, G.-C.

Hadfield, R. H.

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
[Crossref]

Hamel, D. R.

E. Meyer-Scott, D. McCloskey, K. Gołos, J. Z. Salvail, K. A. G. Fisher, D. R. Hamel, A. Cabello, K. J. Resch, and T. Jennewein, “Certifying the presence of a photonic qubit by splitting it in two,” Phys. Rev. Lett. 116, 070501 (2016).
[Crossref] [PubMed]

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8, 801–807 (2014).
[Crossref]

L. K. Shalm, D. R. Hamel, Z. Yan, C. Simon, K. J. Resch, and T. Jennewein, “Three-photon energy-time entanglement,” Nat. Phys. 9, 19–22 (2013).
[Crossref]

H. Hübel, D. R. Hamel, A. Fedrizzi, S. Ramelow, K. J. Resch, and T. Jennewein, “Direct generation of photon triplets using cascaded photon-pair sources,” Nature 466, 601–603 (2010).
[Crossref] [PubMed]

Harder, G.

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

He, J.

M. Collins, C. Xiong, I. Rey, T. Vo, J. He, S. Shahnia, C. Reardon, T. Krauss, M. Steel, A. Clark, and B. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 42582 (2013).
[Crossref]

Helt, L.

C. Xiong, X. Zhang, Z. Liu, M. Collins, A. Mahendra, L. Helt, M. Steel, D.-Y. Choi, C. Chae, P. Leong, and B. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 710853 (2016).
[Crossref]

Hemsley, E.

Herrmann, H.

Hübel, H.

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8, 801–807 (2014).
[Crossref]

H. Hübel, D. R. Hamel, A. Fedrizzi, S. Ramelow, K. J. Resch, and T. Jennewein, “Direct generation of photon triplets using cascaded photon-pair sources,” Nature 466, 601–603 (2010).
[Crossref] [PubMed]

Jeffrey, E.

E. Jeffrey, N. A. Peters, and P. G. Kwiat, “Towards a periodic deterministic source of arbitrary single-photon states,” New J. Phys. 6, 100 (2004).
[Crossref]

Jennewein, T.

E. Meyer-Scott, D. McCloskey, K. Gołos, J. Z. Salvail, K. A. G. Fisher, D. R. Hamel, A. Cabello, K. J. Resch, and T. Jennewein, “Certifying the presence of a photonic qubit by splitting it in two,” Phys. Rev. Lett. 116, 070501 (2016).
[Crossref] [PubMed]

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8, 801–807 (2014).
[Crossref]

L. K. Shalm, D. R. Hamel, Z. Yan, C. Simon, K. J. Resch, and T. Jennewein, “Three-photon energy-time entanglement,” Nat. Phys. 9, 19–22 (2013).
[Crossref]

T. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt. 58, 276–287 (2011).
[Crossref]

X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83, 043814 (2011).
[Crossref]

H. Hübel, D. R. Hamel, A. Fedrizzi, S. Ramelow, K. J. Resch, and T. Jennewein, “Direct generation of photon triplets using cascaded photon-pair sources,” Nature 466, 601–603 (2010).
[Crossref] [PubMed]

Kaneda, F.

Klyshko, D. N.

D. N. Klyshko, “Use of two-photon light for absolute calibration of photoelectric detectors,” Sov. J. Quantum Electron. 10, 1112 (1980).
[Crossref]

Kofler, J.

X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83, 043814 (2011).
[Crossref]

Krapick, S.

Krauss, T.

M. Collins, C. Xiong, I. Rey, T. Vo, J. He, S. Shahnia, C. Reardon, T. Krauss, M. Steel, A. Clark, and B. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 42582 (2013).
[Crossref]

Kück, S.

C. J. Chunnilall, I. P. Degiovanni, S. Kück, I. Müller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: a review,” Opt. Eng. 53, 081910 (2014).
[Crossref]

Kwiat, P. G.

F. Kaneda, B. G. Christensen, J. J. Wong, H. S. Park, K. T. McCusker, and P. G. Kwiat, “Time-multiplexed heralded single-photon source,” Optica 2, 1010–1013 (2015).
[Crossref]

E. Jeffrey, N. A. Peters, and P. G. Kwiat, “Towards a periodic deterministic source of arbitrary single-photon states,” New J. Phys. 6, 100 (2004).
[Crossref]

Lenhard, A.

Leong, P.

C. Xiong, X. Zhang, Z. Liu, M. Collins, A. Mahendra, L. Helt, M. Steel, D.-Y. Choi, C. Chae, P. Leong, and B. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 710853 (2016).
[Crossref]

Levine, Z. H.

Li, Y.

Ling, A.

Lita, A. E.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Liu, Z.

C. Xiong, X. Zhang, Z. Liu, M. Collins, A. Mahendra, L. Helt, M. Steel, D.-Y. Choi, C. Chae, P. Leong, and B. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 710853 (2016).
[Crossref]

Lundeen, J. S.

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
[Crossref]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

Ma, X. S.

X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83, 043814 (2011).
[Crossref]

Mahendra, A.

C. Xiong, X. Zhang, Z. Liu, M. Collins, A. Mahendra, L. Helt, M. Steel, D.-Y. Choi, C. Chae, P. Leong, and B. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 710853 (2016).
[Crossref]

Marquardt, C.

Marshall, G. D.

Marsili, F.

M. Grimau Puigibert, G. H. Aguilar, Q. Zhou, F. Marsili, M. D. Shaw, V. B. Verma, S. W. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119, 083601 (2017).
[Crossref] [PubMed]

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8, 801–807 (2014).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Martín-López, E.

McCloskey, D.

E. Meyer-Scott, D. McCloskey, K. Gołos, J. Z. Salvail, K. A. G. Fisher, D. R. Hamel, A. Cabello, K. J. Resch, and T. Jennewein, “Certifying the presence of a photonic qubit by splitting it in two,” Phys. Rev. Lett. 116, 070501 (2016).
[Crossref] [PubMed]

McCusker, K. T.

Mendoza, G. J.

Meyer-Scott, E.

E. Meyer-Scott, D. McCloskey, K. Gołos, J. Z. Salvail, K. A. G. Fisher, D. R. Hamel, A. Cabello, K. J. Resch, and T. Jennewein, “Certifying the presence of a photonic qubit by splitting it in two,” Phys. Rev. Lett. 116, 070501 (2016).
[Crossref] [PubMed]

Migdall, A.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref] [PubMed]

Z. H. Levine, J. Fan, J. Chen, A. Ling, and A. Migdall, “Heralded, pure-state single-photon source based on a potassium titanyl phosphate waveguide,” Opt. Express 18, 3708 (2010).
[Crossref] [PubMed]

Migdall, A. L.

A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys. Rev. A 66, 053805 (2002).
[Crossref]

Miller, A. J.

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8, 801–807 (2014).
[Crossref]

Mirin, R. P.

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8, 801–807 (2014).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Mosley, P. J.

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
[Crossref]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

Müller, I.

C. J. Chunnilall, I. P. Degiovanni, S. Kück, I. Müller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: a review,” Opt. Eng. 53, 081910 (2014).
[Crossref]

Munns, J.

Nam, S. W.

M. Grimau Puigibert, G. H. Aguilar, Q. Zhou, F. Marsili, M. D. Shaw, V. B. Verma, S. W. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119, 083601 (2017).
[Crossref] [PubMed]

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8, 801–807 (2014).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

O’Brien, J. L.

Oblak, D.

M. Grimau Puigibert, G. H. Aguilar, Q. Zhou, F. Marsili, M. D. Shaw, V. B. Verma, S. W. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119, 083601 (2017).
[Crossref] [PubMed]

Ostrowsky, D.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26 (2001).
[Crossref]

Park, H. S.

Peters, N. A.

E. Jeffrey, N. A. Peters, and P. G. Kwiat, “Towards a periodic deterministic source of arbitrary single-photon states,” New J. Phys. 6, 100 (2004).
[Crossref]

Piekarek, M.

Polyakov, S. V.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref] [PubMed]

Quiring, V.

Ramelow, S.

H. Hübel, D. R. Hamel, A. Fedrizzi, S. Ramelow, K. J. Resch, and T. Jennewein, “Direct generation of photon triplets using cascaded photon-pair sources,” Nature 466, 601–603 (2010).
[Crossref] [PubMed]

Reardon, C.

M. Collins, C. Xiong, I. Rey, T. Vo, J. He, S. Shahnia, C. Reardon, T. Krauss, M. Steel, A. Clark, and B. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 42582 (2013).
[Crossref]

Resch, K. J.

E. Meyer-Scott, D. McCloskey, K. Gołos, J. Z. Salvail, K. A. G. Fisher, D. R. Hamel, A. Cabello, K. J. Resch, and T. Jennewein, “Certifying the presence of a photonic qubit by splitting it in two,” Phys. Rev. Lett. 116, 070501 (2016).
[Crossref] [PubMed]

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8, 801–807 (2014).
[Crossref]

L. K. Shalm, D. R. Hamel, Z. Yan, C. Simon, K. J. Resch, and T. Jennewein, “Three-photon energy-time entanglement,” Nat. Phys. 9, 19–22 (2013).
[Crossref]

H. Hübel, D. R. Hamel, A. Fedrizzi, S. Ramelow, K. J. Resch, and T. Jennewein, “Direct generation of photon triplets using cascaded photon-pair sources,” Nature 466, 601–603 (2010).
[Crossref] [PubMed]

Rey, I.

M. Collins, C. Xiong, I. Rey, T. Vo, J. He, S. Shahnia, C. Reardon, T. Krauss, M. Steel, A. Clark, and B. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 42582 (2013).
[Crossref]

Roger, G.

P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single-photon interferences,” Europhys. Lett. 1, 173 (1986).
[Crossref]

Salvail, J. Z.

E. Meyer-Scott, D. McCloskey, K. Gołos, J. Z. Salvail, K. A. G. Fisher, D. R. Hamel, A. Cabello, K. J. Resch, and T. Jennewein, “Certifying the presence of a photonic qubit by splitting it in two,” Phys. Rev. Lett. 116, 070501 (2016).
[Crossref] [PubMed]

Santagati, R.

Schiavon, M.

M. Schiavon, G. Vallone, F. Ticozzi, and P. Villoresi, “Heralded single-photon sources for quantum-key-distribution applications,” Phys. Rev. A 93, 012331 (2016).
[Crossref]

Sciarrino, F.

A. Cabello and F. Sciarrino, “Loophole-free Bell test based on local precertification of photon’s presence,” Phys. Rev. X 2, 021010 (2012).

Senellart, P.

P. Senellart, G. Solomon, and A. G. White, “High-performance semiconductor quantum-dot single-photon sources,” Nat. Nanotechnol. 12, 1026–1039 (2017).
[Crossref] [PubMed]

Shahnia, S.

M. Collins, C. Xiong, I. Rey, T. Vo, J. He, S. Shahnia, C. Reardon, T. Krauss, M. Steel, A. Clark, and B. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 42582 (2013).
[Crossref]

Shalm, L. K.

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8, 801–807 (2014).
[Crossref]

L. K. Shalm, D. R. Hamel, Z. Yan, C. Simon, K. J. Resch, and T. Jennewein, “Three-photon energy-time entanglement,” Nat. Phys. 9, 19–22 (2013).
[Crossref]

Shapiro, J. H.

Shaw, M. D.

M. Grimau Puigibert, G. H. Aguilar, Q. Zhou, F. Marsili, M. D. Shaw, V. B. Verma, S. W. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119, 083601 (2017).
[Crossref] [PubMed]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Shi, B.-S.

Shi, S.

Shimizu, K.

H. Takesue and K. Shimizu, “Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes,” Opt. Commun. 283, 276–287 (2010).
[Crossref]

Silberhorn, C.

S. Krapick, B. Brecht, H. Herrmann, V. Quiring, and C. Silberhorn, “On-chip generation of photon-triplet states,” Opt. Express 24, 2836–2849 (2016).
[Crossref] [PubMed]

G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” Opt. Express 21, 13975–13985 (2013).
[Crossref] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

A. B. U’Ren, C. Silberhorn, J. L. Ball, K. Banaszek, and I. A. Walmsley, “Characterization of the nonclassical nature of conditionally prepared single photons,” Phys. Rev. A 72, 021802 (2005).
[Crossref]

Simon, C.

L. K. Shalm, D. R. Hamel, Z. Yan, C. Simon, K. J. Resch, and T. Jennewein, “Three-photon energy-time entanglement,” Nat. Phys. 9, 19–22 (2013).
[Crossref]

Sinclair, A. G.

C. J. Chunnilall, I. P. Degiovanni, S. Kück, I. Müller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: a review,” Opt. Eng. 53, 081910 (2014).
[Crossref]

Slater, J. A.

Smith, B. J.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
[Crossref]

Solomon, G.

P. Senellart, G. Solomon, and A. G. White, “High-performance semiconductor quantum-dot single-photon sources,” Nat. Nanotechnol. 12, 1026–1039 (2017).
[Crossref] [PubMed]

Steel, M.

C. Xiong, X. Zhang, Z. Liu, M. Collins, A. Mahendra, L. Helt, M. Steel, D.-Y. Choi, C. Chae, P. Leong, and B. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 710853 (2016).
[Crossref]

M. Collins, C. Xiong, I. Rey, T. Vo, J. He, S. Shahnia, C. Reardon, T. Krauss, M. Steel, A. Clark, and B. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 42582 (2013).
[Crossref]

Stern, J. A.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Takesue, H.

H. Takesue and K. Shimizu, “Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes,” Opt. Commun. 283, 276–287 (2010).
[Crossref]

Tanzilli, S.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26 (2001).
[Crossref]

Thompson, M. G.

Ticozzi, F.

M. Schiavon, G. Vallone, F. Ticozzi, and P. Villoresi, “Heralded single-photon sources for quantum-key-distribution applications,” Phys. Rev. A 93, 012331 (2016).
[Crossref]

Tittel, W.

M. Grimau Puigibert, G. H. Aguilar, Q. Zhou, F. Marsili, M. D. Shaw, V. B. Verma, S. W. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119, 083601 (2017).
[Crossref] [PubMed]

F. Bussières, J. A. Slater, N. Godbout, and W. Tittel, “Fast and simple characterization of a photon pair source,” Opt. Express 16, 17060 (2008).
[Crossref] [PubMed]

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26 (2001).
[Crossref]

U’Ren, A.

W. P. Grice, A. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

U’Ren, A. B.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

A. B. U’Ren, C. Silberhorn, J. L. Ball, K. Banaszek, and I. A. Walmsley, “Characterization of the nonclassical nature of conditionally prepared single photons,” Phys. Rev. A 72, 021802 (2005).
[Crossref]

Vallone, G.

M. Schiavon, G. Vallone, F. Ticozzi, and P. Villoresi, “Heralded single-photon sources for quantum-key-distribution applications,” Phys. Rev. A 93, 012331 (2016).
[Crossref]

Vayshenker, I.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Verma, V. B.

M. Grimau Puigibert, G. H. Aguilar, Q. Zhou, F. Marsili, M. D. Shaw, V. B. Verma, S. W. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119, 083601 (2017).
[Crossref] [PubMed]

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8, 801–807 (2014).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Villoresi, P.

M. Schiavon, G. Vallone, F. Ticozzi, and P. Villoresi, “Heralded single-photon sources for quantum-key-distribution applications,” Phys. Rev. A 93, 012331 (2016).
[Crossref]

Vo, T.

M. Collins, C. Xiong, I. Rey, T. Vo, J. He, S. Shahnia, C. Reardon, T. Krauss, M. Steel, A. Clark, and B. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 42582 (2013).
[Crossref]

Walmsley, I. A.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
[Crossref]

A. B. U’Ren, C. Silberhorn, J. L. Ball, K. Banaszek, and I. A. Walmsley, “Characterization of the nonclassical nature of conditionally prepared single photons,” Phys. Rev. A 72, 021802 (2005).
[Crossref]

W. P. Grice, A. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

Wasylczyk, P.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

White, A. G.

P. Senellart, G. Solomon, and A. G. White, “High-performance semiconductor quantum-dot single-photon sources,” Nat. Nanotechnol. 12, 1026–1039 (2017).
[Crossref] [PubMed]

T. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt. 58, 276–287 (2011).
[Crossref]

Wong, F. N.

Wong, J. J.

Xie, Z.

Q.-Y. Zhang, G.-T. Xue, P. Xu, Y.-X. Gong, Z. Xie, and S. Zhu, “Manipulation of tripartite frequency correlation under extended phase matchings,” Phys. Rev. A 97, 022327 (2018).
[Crossref]

Xiong, C.

C. Xiong, X. Zhang, Z. Liu, M. Collins, A. Mahendra, L. Helt, M. Steel, D.-Y. Choi, C. Chae, P. Leong, and B. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 710853 (2016).
[Crossref]

M. Collins, C. Xiong, I. Rey, T. Vo, J. He, S. Shahnia, C. Reardon, T. Krauss, M. Steel, A. Clark, and B. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 42582 (2013).
[Crossref]

Xu, P.

Q.-Y. Zhang, G.-T. Xue, P. Xu, Y.-X. Gong, Z. Xie, and S. Zhu, “Manipulation of tripartite frequency correlation under extended phase matchings,” Phys. Rev. A 97, 022327 (2018).
[Crossref]

Xue, G.-T.

Q.-Y. Zhang, G.-T. Xue, P. Xu, Y.-X. Gong, Z. Xie, and S. Zhu, “Manipulation of tripartite frequency correlation under extended phase matchings,” Phys. Rev. A 97, 022327 (2018).
[Crossref]

Yan, Z.

L. K. Shalm, D. R. Hamel, Z. Yan, C. Simon, K. J. Resch, and T. Jennewein, “Three-photon energy-time entanglement,” Nat. Phys. 9, 19–22 (2013).
[Crossref]

Zbinden, H.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26 (2001).
[Crossref]

Zeilinger, A.

X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83, 043814 (2011).
[Crossref]

Zhang, Q.-Y.

Q.-Y. Zhang, G.-T. Xue, P. Xu, Y.-X. Gong, Z. Xie, and S. Zhu, “Manipulation of tripartite frequency correlation under extended phase matchings,” Phys. Rev. A 97, 022327 (2018).
[Crossref]

Zhang, W.

Zhang, X.

C. Xiong, X. Zhang, Z. Liu, M. Collins, A. Mahendra, L. Helt, M. Steel, D.-Y. Choi, C. Chae, P. Leong, and B. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 710853 (2016).
[Crossref]

Zhou, Q.

M. Grimau Puigibert, G. H. Aguilar, Q. Zhou, F. Marsili, M. D. Shaw, V. B. Verma, S. W. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119, 083601 (2017).
[Crossref] [PubMed]

Zhou, Z.-Y.

Zhu, S.

Q.-Y. Zhang, G.-T. Xue, P. Xu, Y.-X. Gong, Z. Xie, and S. Zhu, “Manipulation of tripartite frequency correlation under extended phase matchings,” Phys. Rev. A 97, 022327 (2018).
[Crossref]

Zotter, S.

X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83, 043814 (2011).
[Crossref]

Electron. Lett. (1)

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26 (2001).
[Crossref]

Europhys. Lett. (1)

P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single-photon interferences,” Europhys. Lett. 1, 173 (1986).
[Crossref]

J. Mod. Opt. (1)

T. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt. 58, 276–287 (2011).
[Crossref]

Nat. Commun. (2)

M. Collins, C. Xiong, I. Rey, T. Vo, J. He, S. Shahnia, C. Reardon, T. Krauss, M. Steel, A. Clark, and B. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 42582 (2013).
[Crossref]

C. Xiong, X. Zhang, Z. Liu, M. Collins, A. Mahendra, L. Helt, M. Steel, D.-Y. Choi, C. Chae, P. Leong, and B. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 710853 (2016).
[Crossref]

Nat. Nanotechnol. (1)

P. Senellart, G. Solomon, and A. G. White, “High-performance semiconductor quantum-dot single-photon sources,” Nat. Nanotechnol. 12, 1026–1039 (2017).
[Crossref] [PubMed]

Nat. Photonics (3)

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8, 801–807 (2014).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
[Crossref]

Nat. Phys. (1)

L. K. Shalm, D. R. Hamel, Z. Yan, C. Simon, K. J. Resch, and T. Jennewein, “Three-photon energy-time entanglement,” Nat. Phys. 9, 19–22 (2013).
[Crossref]

Nature (1)

H. Hübel, D. R. Hamel, A. Fedrizzi, S. Ramelow, K. J. Resch, and T. Jennewein, “Direct generation of photon triplets using cascaded photon-pair sources,” Nature 466, 601–603 (2010).
[Crossref] [PubMed]

New J. Phys. (2)

E. Jeffrey, N. A. Peters, and P. G. Kwiat, “Towards a periodic deterministic source of arbitrary single-photon states,” New J. Phys. 6, 100 (2004).
[Crossref]

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
[Crossref]

Opt. Commun. (1)

H. Takesue and K. Shimizu, “Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes,” Opt. Commun. 283, 276–287 (2010).
[Crossref]

Opt. Eng. (1)

C. J. Chunnilall, I. P. Degiovanni, S. Kück, I. Müller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: a review,” Opt. Eng. 53, 081910 (2014).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Optica (3)

Phys. Rev. A (6)

Q.-Y. Zhang, G.-T. Xue, P. Xu, Y.-X. Gong, Z. Xie, and S. Zhu, “Manipulation of tripartite frequency correlation under extended phase matchings,” Phys. Rev. A 97, 022327 (2018).
[Crossref]

A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys. Rev. A 66, 053805 (2002).
[Crossref]

W. P. Grice, A. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

A. B. U’Ren, C. Silberhorn, J. L. Ball, K. Banaszek, and I. A. Walmsley, “Characterization of the nonclassical nature of conditionally prepared single photons,” Phys. Rev. A 72, 021802 (2005).
[Crossref]

X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83, 043814 (2011).
[Crossref]

M. Schiavon, G. Vallone, F. Ticozzi, and P. Villoresi, “Heralded single-photon sources for quantum-key-distribution applications,” Phys. Rev. A 93, 012331 (2016).
[Crossref]

Phys. Rev. Lett. (3)

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

M. Grimau Puigibert, G. H. Aguilar, Q. Zhou, F. Marsili, M. D. Shaw, V. B. Verma, S. W. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119, 083601 (2017).
[Crossref] [PubMed]

E. Meyer-Scott, D. McCloskey, K. Gołos, J. Z. Salvail, K. A. G. Fisher, D. R. Hamel, A. Cabello, K. J. Resch, and T. Jennewein, “Certifying the presence of a photonic qubit by splitting it in two,” Phys. Rev. Lett. 116, 070501 (2016).
[Crossref] [PubMed]

Phys. Rev. X (1)

A. Cabello and F. Sciarrino, “Loophole-free Bell test based on local precertification of photon’s presence,” Phys. Rev. X 2, 021010 (2012).

Rev. Sci. Instrum. (1)

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref] [PubMed]

Sov. J. Quantum Electron. (1)

D. N. Klyshko, “Use of two-photon light for absolute calibration of photoelectric detectors,” Sov. J. Quantum Electron. 10, 1112 (1980).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Scheme to produce heralded single photons using (a) a normal downconversion source and a heralding detector, T1 and (b) cascaded downconversion, where the output of the first downconversion acts as the pump for the second, heralded with heralding detectors T1 and T2. (c) Scheme for the evaluation of the single photon character of the source. The produced heralded photons are sent on a 50:50 beamsplitter with g(2) detectors A and B on each end.
Fig. 2
Fig. 2 An example of the minimal g(2) for identical detectors. The necessity for high conversion efficiency in the SPDC crystal becomes less pronounced as the detector figure of merit increases. In this case, for superconducting nanowire detectors, which can have figures of merit above 109 [1], secondary downconversion requires an efficiency of 10−8 or better for CSPDC to be advantageous. This criterion is easily met by efficient SPDC crystals such as lithium niobate waveguides [20].
Fig. 3
Fig. 3 With ideal g(2) detectors, we find a substantial improvement of the minimal g(2). In this example, η1 = η2 = 0.7, d1 = d2 = 10 s−1, W = 2 ns and P = 10−6.
Fig. 4
Fig. 4 A typical example of the g(2) as a function of pump rate assuming η = 0.7, P = 10−6, W = 5 ns and d = 20 s−1 for SPDC and CSPDC. CSPDC maintains the minimal g(2) on an extended range of heralded single photon production rates.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

g ( 2 ) = T 1 AB S 1 D 1 A D 1 B ,
S 1 = N η 1 + d 1
S A = S B = N η AB 2 + d AB ,
D 1 A = D 1 B = N η 1 η AB 2 .
T 1 AB = D 1 A S B W + D 1 B S A W D 1 A D 1 B W ,
g S ( 2 ) = ( 4 d AB N η 1 η AB + 2 η 1 1 ) ( N W η 1 + W d 1 ) .
g S , min ( 2 ) = ( 2 H AB + 2 η 1 H 1 ) 2 ,
g C ( 2 ) = F D 12 T 12 A T 12 B ,
T 12 A = T 12 B = N P η 1 η 2 η AB 2 ,
D 12 = S 2 S 1 W + N P η 1 η 2 S 2 d 1 W + N P η 1 η 2 .
F = 2 T 12 A d AB W + ( 1 ( 1 η 2 ) 2 ) ( 1 ( 1 η 1 ) 2 ) N 2 P 2 η AB 2 W 2 .
g C , min ( 2 ) = ( 2 H AB 1 + 1 P H 1 + ( 2 η 1 ) ( 2 η 2 ) H 1 H 2 ) 2 .
P > ( H 1 + 2 η 1 4 H AB + ( 2 η 1 ) H AB H 1 ) 1 .
g S , min ( 2 ) = 2 η 1 H 1
g C , min ( 2 ) = ( 2 η 1 ) ( 2 η 2 ) H 1 H 2 .
g S , min ( 2 ) g C , min ( 2 ) = H 2 2 η 2 .
P > 1 H f ( η 1 ) ,
f ( η 1 ) = 2 η 1 + 2 η 1 4 .
g S ( 2 ) g C ( 2 ) = 1 + f ( η ) 1 + 1 P H .