Abstract

Optical quantum states based on entangled photons are the key resource in quantum-information science. The realization of multiplexed multiple entanglement are necessary for developing high-capacity quantum information process. Silicon-on-insulator (SOI) has recently become a leading platform for generating and processing of non-classical optical states. In this work, by combining the wavelength- and time-division multiplexing technologies, we demonstrate a multiplexing time-bin entangled photon pair source based on a silicon nanowire waveguide and distribute entangled photons into 3(time) × 14(wavelength) channels independently. The indistinguishability of photon pairs in each time channel is confirmed by a fourfold Hong-Ou-Mandal quantum interference. Our work paves a new and promising way to achieve a high capacity quantum communication and to generate a multiple-photon non-classical state.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Quantum frequency conversion for multiplexed entangled states generated from micro-ring silicon chip

Yin-Hai Li, Wen-Tan Fang, Zhi-Yuan Zhou, Shi-Long Liu, Shi-Kai Liu, Zhao-Huai Xu, Chen Yang, Yan Li, Li-Xin Xu, Guang-Can Guo, and Bao-Sen Shi
Opt. Express 26(22) 28429-28440 (2018)

Wavelength division multiplexed and double-port pumped time-bin entangled photon pair generation using Si ring resonator

Mikio Fujiwara, Ryota Wakabayashi, Masahide Sasaki, and Masahiro Takeoka
Opt. Express 25(4) 3445-3453 (2017)

High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip

F. Mazeas, M. Traetta, M. Bentivegna, F. Kaiser, D. Aktas, W. Zhang, C. A. Ramos, L. A. Ngah, T. Lunghi, É. Picholle, N. Belabas-Plougonven, X. Le Roux, É. Cassan, D. Marris-Morini, L. Vivien, G. Sauder, L. Labonté, and S. Tanzilli
Opt. Express 24(25) 28731-28738 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  2. H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
    [Crossref] [PubMed]
  3. D. Deutsch, “Quantum-Theory, the Church-Turing Principle and the Universal Quantum Computer,” Proc. R. Soc. A Math. Phys. Eng. Sci.400, 97–117 (1985).
    [Crossref]
  4. P. C. Humphreys, B. J. Metcalf, J. B. Spring, M. Moore, X. M. Jin, M. Barbieri, W. S. Kolthammer, and I. A. Walmsley, “Linear Optical Quantum Computing in a Single Spatial Mode,” Phys. Rev. Lett. 111(15), 150501 (2013).
    [Crossref] [PubMed]
  5. M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature 429(6988), 161–164 (2004).
    [Crossref] [PubMed]
  6. Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, “Orbital Angular Momentum-Entanglement Frequency Transducer,” Phys. Rev. Lett. 117(10), 103601 (2016).
    [Crossref] [PubMed]
  7. H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998).
    [Crossref]
  8. D. Aktas, B. Fedrici, F. Kaiser, T. Lunghi, L. Labonte, and S. Tanzilli, “Entanglement distribution over 150 km in wavelength division multiplexed channels for quantum cryptography,” Laser Photonics Rev. 10(3), 451–457 (2016).
    [Crossref]
  9. F. Kaiser, D. Aktas, B. Fedrici, T. Lunghi, L. Labonte, and S. Tanzilli, “Optimal analysis of ultra broadband energy-time entanglement for high bit-rate dense wavelength division multiplexed quantum networks,” Appl. Phys. Lett. 108(23), 231108 (2016).
    [Crossref]
  10. C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
    [Crossref] [PubMed]
  11. M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546(7660), 622–626 (2017).
    [Crossref] [PubMed]
  12. G. J. Mendoza, R. Santagati, J. Munns, E. Hemsley, M. Piekarek, E. Martin-Lopez, G. D. Marshall, D. Bonneau, M. G. Thompson, and J. L. O’Brien, “Active temporal and spatial multiplexing of photons,” Optica 3(2), 127–132 (2016).
    [Crossref]
  13. C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D. Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7, 10853 (2016).
    [Crossref] [PubMed]
  14. X. Zhang, I. Jizan, J. He, A. S. Clark, D. Y. Choi, C. J. Chae, B. J. Eggleton, and C. Xiong, “Enhancing the heralded single-photon rate from a silicon nanowire by time and wavelength division multiplexing pump pulses,” Opt. Lett. 40(11), 2489–2492 (2015).
    [Crossref] [PubMed]
  15. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
    [Crossref] [PubMed]
  16. Y. Li, Z. Y. Zhou, D. S. Ding, and B. S. Shi, “CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer,” Opt. Express 23(22), 28792–28800 (2015).
    [Crossref] [PubMed]
  17. Y. H. Li, Z. Y. Zhou, Z. H. Xu, L. X. Xu, B. S. Shi, and G. C. Guo, “Multiplexed entangled photon-pair sources for all-fiber quantum networks,” Phys. Rev. A 94(4), 043810 (2016).
    [Crossref]
  18. Y. H. Li, Z. Y. Zhou, L. T. Feng, W. T. Fang, S. L. Liu, S. K. Liu, K. Wang, X. F. Ren, D. S. Ding, L. X. Xu, and B. S. Shi, “On-Chip Multiplexed Multiple Entanglement Sources in a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
    [Crossref]
  19. F. Mazeas, M. Traetta, M. Bentivegna, F. Kaiser, D. Aktas, W. Zhang, C. Ramos, L. Ngah, T. Lunghi, E. Picholle, N. Belabas-Plougonven, X. Le Roux, É. Cassan, D. Marris-Morini, L. Vivien, G. Sauder, L. Labonté, and S. Tanzilli, “High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip,” Opt. Express 24(25), 28731–28738 (2016).
    [Crossref] [PubMed]
  20. J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
    [Crossref]
  21. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007).
    [Crossref] [PubMed]
  22. J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009).
    [Crossref]
  23. J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6(1), 7948 (2015).
    [Crossref] [PubMed]
  24. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of bell inequalities by photons more than 10 km apart,” Phys. Rev. Lett. 81(17), 3563–3566 (1998).
    [Crossref]
  25. I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004).
    [Crossref] [PubMed]
  26. C.-K. Hong, Z.-Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
    [Crossref] [PubMed]
  27. Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, M. Zukowski, and J. W. Pan, “Experimental violation of local realism by four-photon Greenberger-Horne-Zeilinger entanglement,” Phys. Rev. Lett. 91(18), 180401 (2003).
    [Crossref] [PubMed]
  28. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum States,” Phys. Rev. Lett. 100(13), 133601 (2008).
    [Crossref] [PubMed]
  29. J. Fulconis, O. Alibart, W. J. Wadsworth, and J. G. Rarity, “Quantum interference with photon pairs using two micro-structured fibres,” New J. Phys. 9(8), 276 (2007).
    [Crossref]
  30. K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Indistinguishable photon pair generation using two independent silicon wire waveguides,” New J. Phys. 13(6), 065005 (2011).
    [Crossref]

2017 (2)

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546(7660), 622–626 (2017).
[Crossref] [PubMed]

Y. H. Li, Z. Y. Zhou, L. T. Feng, W. T. Fang, S. L. Liu, S. K. Liu, K. Wang, X. F. Ren, D. S. Ding, L. X. Xu, and B. S. Shi, “On-Chip Multiplexed Multiple Entanglement Sources in a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

2016 (8)

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D. Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7, 10853 (2016).
[Crossref] [PubMed]

Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, “Orbital Angular Momentum-Entanglement Frequency Transducer,” Phys. Rev. Lett. 117(10), 103601 (2016).
[Crossref] [PubMed]

D. Aktas, B. Fedrici, F. Kaiser, T. Lunghi, L. Labonte, and S. Tanzilli, “Entanglement distribution over 150 km in wavelength division multiplexed channels for quantum cryptography,” Laser Photonics Rev. 10(3), 451–457 (2016).
[Crossref]

F. Kaiser, D. Aktas, B. Fedrici, T. Lunghi, L. Labonte, and S. Tanzilli, “Optimal analysis of ultra broadband energy-time entanglement for high bit-rate dense wavelength division multiplexed quantum networks,” Appl. Phys. Lett. 108(23), 231108 (2016).
[Crossref]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Y. H. Li, Z. Y. Zhou, Z. H. Xu, L. X. Xu, B. S. Shi, and G. C. Guo, “Multiplexed entangled photon-pair sources for all-fiber quantum networks,” Phys. Rev. A 94(4), 043810 (2016).
[Crossref]

G. J. Mendoza, R. Santagati, J. Munns, E. Hemsley, M. Piekarek, E. Martin-Lopez, G. D. Marshall, D. Bonneau, M. G. Thompson, and J. L. O’Brien, “Active temporal and spatial multiplexing of photons,” Optica 3(2), 127–132 (2016).
[Crossref]

F. Mazeas, M. Traetta, M. Bentivegna, F. Kaiser, D. Aktas, W. Zhang, C. Ramos, L. Ngah, T. Lunghi, E. Picholle, N. Belabas-Plougonven, X. Le Roux, É. Cassan, D. Marris-Morini, L. Vivien, G. Sauder, L. Labonté, and S. Tanzilli, “High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip,” Opt. Express 24(25), 28731–28738 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (1)

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

2013 (1)

P. C. Humphreys, B. J. Metcalf, J. B. Spring, M. Moore, X. M. Jin, M. Barbieri, W. S. Kolthammer, and I. A. Walmsley, “Linear Optical Quantum Computing in a Single Spatial Mode,” Phys. Rev. Lett. 111(15), 150501 (2013).
[Crossref] [PubMed]

2012 (1)

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

2011 (1)

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Indistinguishable photon pair generation using two independent silicon wire waveguides,” New J. Phys. 13(6), 065005 (2011).
[Crossref]

2009 (1)

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009).
[Crossref]

2008 (2)

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum States,” Phys. Rev. Lett. 100(13), 133601 (2008).
[Crossref] [PubMed]

2007 (2)

J. Fulconis, O. Alibart, W. J. Wadsworth, and J. G. Rarity, “Quantum interference with photon pairs using two micro-structured fibres,” New J. Phys. 9(8), 276 (2007).
[Crossref]

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007).
[Crossref] [PubMed]

2004 (2)

M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature 429(6988), 161–164 (2004).
[Crossref] [PubMed]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004).
[Crossref] [PubMed]

2003 (1)

Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, M. Zukowski, and J. W. Pan, “Experimental violation of local realism by four-photon Greenberger-Horne-Zeilinger entanglement,” Phys. Rev. Lett. 91(18), 180401 (2003).
[Crossref] [PubMed]

1998 (2)

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of bell inequalities by photons more than 10 km apart,” Phys. Rev. Lett. 81(17), 3563–3566 (1998).
[Crossref]

H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998).
[Crossref]

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

1987 (1)

C.-K. Hong, Z.-Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[Crossref] [PubMed]

Agrawal, G. P.

Ahmed, N.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Aktas, D.

D. Aktas, B. Fedrici, F. Kaiser, T. Lunghi, L. Labonte, and S. Tanzilli, “Entanglement distribution over 150 km in wavelength division multiplexed channels for quantum cryptography,” Laser Photonics Rev. 10(3), 451–457 (2016).
[Crossref]

F. Kaiser, D. Aktas, B. Fedrici, T. Lunghi, L. Labonte, and S. Tanzilli, “Optimal analysis of ultra broadband energy-time entanglement for high bit-rate dense wavelength division multiplexed quantum networks,” Appl. Phys. Lett. 108(23), 231108 (2016).
[Crossref]

F. Mazeas, M. Traetta, M. Bentivegna, F. Kaiser, D. Aktas, W. Zhang, C. Ramos, L. Ngah, T. Lunghi, E. Picholle, N. Belabas-Plougonven, X. Le Roux, É. Cassan, D. Marris-Morini, L. Vivien, G. Sauder, L. Labonté, and S. Tanzilli, “High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip,” Opt. Express 24(25), 28731–28738 (2016).
[Crossref] [PubMed]

Alibart, O.

J. Fulconis, O. Alibart, W. J. Wadsworth, and J. G. Rarity, “Quantum interference with photon pairs using two micro-structured fibres,” New J. Phys. 9(8), 276 (2007).
[Crossref]

Azaña, J.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546(7660), 622–626 (2017).
[Crossref] [PubMed]

Barbieri, M.

P. C. Humphreys, B. J. Metcalf, J. B. Spring, M. Moore, X. M. Jin, M. Barbieri, W. S. Kolthammer, and I. A. Walmsley, “Linear Optical Quantum Computing in a Single Spatial Mode,” Phys. Rev. Lett. 111(15), 150501 (2013).
[Crossref] [PubMed]

Belabas-Plougonven, N.

Bentivegna, M.

Bonneau, D.

G. J. Mendoza, R. Santagati, J. Munns, E. Hemsley, M. Piekarek, E. Martin-Lopez, G. D. Marshall, D. Bonneau, M. G. Thompson, and J. L. O’Brien, “Active temporal and spatial multiplexing of photons,” Optica 3(2), 127–132 (2016).
[Crossref]

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6(1), 7948 (2015).
[Crossref] [PubMed]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Brendel, J.

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of bell inequalities by photons more than 10 km apart,” Phys. Rev. Lett. 81(17), 3563–3566 (1998).
[Crossref]

Briegel, H. J.

H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998).
[Crossref]

Bromberg, Y.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Caspani, L.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546(7660), 622–626 (2017).
[Crossref] [PubMed]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Cassan, É.

Chae, C. J.

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D. Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7, 10853 (2016).
[Crossref] [PubMed]

X. Zhang, I. Jizan, J. He, A. S. Clark, D. Y. Choi, C. J. Chae, B. J. Eggleton, and C. Xiong, “Enhancing the heralded single-photon rate from a silicon nanowire by time and wavelength division multiplexing pump pulses,” Opt. Lett. 40(11), 2489–2492 (2015).
[Crossref] [PubMed]

Chen, Y. A.

Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, M. Zukowski, and J. W. Pan, “Experimental violation of local realism by four-photon Greenberger-Horne-Zeilinger entanglement,” Phys. Rev. Lett. 91(18), 180401 (2003).
[Crossref] [PubMed]

Choi, D. Y.

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D. Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7, 10853 (2016).
[Crossref] [PubMed]

X. Zhang, I. Jizan, J. He, A. S. Clark, D. Y. Choi, C. J. Chae, B. J. Eggleton, and C. Xiong, “Enhancing the heralded single-photon rate from a silicon nanowire by time and wavelength division multiplexing pump pulses,” Opt. Lett. 40(11), 2489–2492 (2015).
[Crossref] [PubMed]

Chu, S. T.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546(7660), 622–626 (2017).
[Crossref] [PubMed]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Cino, A.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546(7660), 622–626 (2017).
[Crossref] [PubMed]

Cirac, J. I.

H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998).
[Crossref]

Clark, A. S.

Collins, M. J.

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D. Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7, 10853 (2016).
[Crossref] [PubMed]

Cortés, L. R.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546(7660), 622–626 (2017).
[Crossref] [PubMed]

de Riedmatten, H.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004).
[Crossref] [PubMed]

Deutsch, D.

D. Deutsch, “Quantum-Theory, the Church-Turing Principle and the Universal Quantum Computer,” Proc. R. Soc. A Math. Phys. Eng. Sci.400, 97–117 (1985).
[Crossref]

Ding, D. S.

Y. H. Li, Z. Y. Zhou, L. T. Feng, W. T. Fang, S. L. Liu, S. K. Liu, K. Wang, X. F. Ren, D. S. Ding, L. X. Xu, and B. S. Shi, “On-Chip Multiplexed Multiple Entanglement Sources in a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, “Orbital Angular Momentum-Entanglement Frequency Transducer,” Phys. Rev. Lett. 117(10), 103601 (2016).
[Crossref] [PubMed]

Y. Li, Z. Y. Zhou, D. S. Ding, and B. S. Shi, “CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer,” Opt. Express 23(22), 28792–28800 (2015).
[Crossref] [PubMed]

Dolinar, S.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Dong, M. X.

Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, “Orbital Angular Momentum-Entanglement Frequency Transducer,” Phys. Rev. Lett. 117(10), 103601 (2016).
[Crossref] [PubMed]

Dur, W.

H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998).
[Crossref]

Eggleton, B. J.

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D. Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7, 10853 (2016).
[Crossref] [PubMed]

X. Zhang, I. Jizan, J. He, A. S. Clark, D. Y. Choi, C. J. Chae, B. J. Eggleton, and C. Xiong, “Enhancing the heralded single-photon rate from a silicon nanowire by time and wavelength division multiplexing pump pulses,” Opt. Lett. 40(11), 2489–2492 (2015).
[Crossref] [PubMed]

Ezaki, M.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Fang, W. T.

Y. H. Li, Z. Y. Zhou, L. T. Feng, W. T. Fang, S. L. Liu, S. K. Liu, K. Wang, X. F. Ren, D. S. Ding, L. X. Xu, and B. S. Shi, “On-Chip Multiplexed Multiple Entanglement Sources in a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Fazal, I. M.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Fedrici, B.

F. Kaiser, D. Aktas, B. Fedrici, T. Lunghi, L. Labonte, and S. Tanzilli, “Optimal analysis of ultra broadband energy-time entanglement for high bit-rate dense wavelength division multiplexed quantum networks,” Appl. Phys. Lett. 108(23), 231108 (2016).
[Crossref]

D. Aktas, B. Fedrici, F. Kaiser, T. Lunghi, L. Labonte, and S. Tanzilli, “Entanglement distribution over 150 km in wavelength division multiplexed channels for quantum cryptography,” Laser Photonics Rev. 10(3), 451–457 (2016).
[Crossref]

Feng, L. T.

Y. H. Li, Z. Y. Zhou, L. T. Feng, W. T. Fang, S. L. Liu, S. K. Liu, K. Wang, X. F. Ren, D. S. Ding, L. X. Xu, and B. S. Shi, “On-Chip Multiplexed Multiple Entanglement Sources in a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Fukuda, H.

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Indistinguishable photon pair generation using two independent silicon wire waveguides,” New J. Phys. 13(6), 065005 (2011).
[Crossref]

Fulconis, J.

J. Fulconis, O. Alibart, W. J. Wadsworth, and J. G. Rarity, “Quantum interference with photon pairs using two micro-structured fibres,” New J. Phys. 9(8), 276 (2007).
[Crossref]

Gisin, N.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004).
[Crossref] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of bell inequalities by photons more than 10 km apart,” Phys. Rev. Lett. 81(17), 3563–3566 (1998).
[Crossref]

Grazioso, F.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Guo, G. C.

Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, “Orbital Angular Momentum-Entanglement Frequency Transducer,” Phys. Rev. Lett. 117(10), 103601 (2016).
[Crossref] [PubMed]

Y. H. Li, Z. Y. Zhou, Z. H. Xu, L. X. Xu, B. S. Shi, and G. C. Guo, “Multiplexed entangled photon-pair sources for all-fiber quantum networks,” Phys. Rev. A 94(4), 043810 (2016).
[Crossref]

Hadfield, R. H.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Harada, K.

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Indistinguishable photon pair generation using two independent silicon wire waveguides,” New J. Phys. 13(6), 065005 (2011).
[Crossref]

He, J.

Helt, L. G.

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D. Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7, 10853 (2016).
[Crossref] [PubMed]

Hemsley, E.

Hong, C.-K.

C.-K. Hong, Z.-Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[Crossref] [PubMed]

Huang, H.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Humphreys, P. C.

P. C. Humphreys, B. J. Metcalf, J. B. Spring, M. Moore, X. M. Jin, M. Barbieri, W. S. Kolthammer, and I. A. Walmsley, “Linear Optical Quantum Computing in a Single Spatial Mode,” Phys. Rev. Lett. 111(15), 150501 (2013).
[Crossref] [PubMed]

Iizuka, N.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Itabashi, S.

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Indistinguishable photon pair generation using two independent silicon wire waveguides,” New J. Phys. 13(6), 065005 (2011).
[Crossref]

Jin, X. M.

P. C. Humphreys, B. J. Metcalf, J. B. Spring, M. Moore, X. M. Jin, M. Barbieri, W. S. Kolthammer, and I. A. Walmsley, “Linear Optical Quantum Computing in a Single Spatial Mode,” Phys. Rev. Lett. 111(15), 150501 (2013).
[Crossref] [PubMed]

Jizan, I.

Johnston, T.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Kaiser, F.

F. Kaiser, D. Aktas, B. Fedrici, T. Lunghi, L. Labonte, and S. Tanzilli, “Optimal analysis of ultra broadband energy-time entanglement for high bit-rate dense wavelength division multiplexed quantum networks,” Appl. Phys. Lett. 108(23), 231108 (2016).
[Crossref]

D. Aktas, B. Fedrici, F. Kaiser, T. Lunghi, L. Labonte, and S. Tanzilli, “Entanglement distribution over 150 km in wavelength division multiplexed channels for quantum cryptography,” Laser Photonics Rev. 10(3), 451–457 (2016).
[Crossref]

F. Mazeas, M. Traetta, M. Bentivegna, F. Kaiser, D. Aktas, W. Zhang, C. Ramos, L. Ngah, T. Lunghi, E. Picholle, N. Belabas-Plougonven, X. Le Roux, É. Cassan, D. Marris-Morini, L. Vivien, G. Sauder, L. Labonté, and S. Tanzilli, “High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip,” Opt. Express 24(25), 28731–28738 (2016).
[Crossref] [PubMed]

Kimble, H. J.

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

Kolthammer, W. S.

P. C. Humphreys, B. J. Metcalf, J. B. Spring, M. Moore, X. M. Jin, M. Barbieri, W. S. Kolthammer, and I. A. Walmsley, “Linear Optical Quantum Computing in a Single Spatial Mode,” Phys. Rev. Lett. 111(15), 150501 (2013).
[Crossref] [PubMed]

Kues, M.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546(7660), 622–626 (2017).
[Crossref] [PubMed]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Kwiat, P. G.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Labonte, L.

F. Kaiser, D. Aktas, B. Fedrici, T. Lunghi, L. Labonte, and S. Tanzilli, “Optimal analysis of ultra broadband energy-time entanglement for high bit-rate dense wavelength division multiplexed quantum networks,” Appl. Phys. Lett. 108(23), 231108 (2016).
[Crossref]

D. Aktas, B. Fedrici, F. Kaiser, T. Lunghi, L. Labonte, and S. Tanzilli, “Entanglement distribution over 150 km in wavelength division multiplexed channels for quantum cryptography,” Laser Photonics Rev. 10(3), 451–457 (2016).
[Crossref]

Labonté, L.

Le Roux, X.

Legré, M.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004).
[Crossref] [PubMed]

Leong, P. H. W.

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D. Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7, 10853 (2016).
[Crossref] [PubMed]

Li, Y.

Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, “Orbital Angular Momentum-Entanglement Frequency Transducer,” Phys. Rev. Lett. 117(10), 103601 (2016).
[Crossref] [PubMed]

Y. Li, Z. Y. Zhou, D. S. Ding, and B. S. Shi, “CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer,” Opt. Express 23(22), 28792–28800 (2015).
[Crossref] [PubMed]

Li, Y. H.

Y. H. Li, Z. Y. Zhou, L. T. Feng, W. T. Fang, S. L. Liu, S. K. Liu, K. Wang, X. F. Ren, D. S. Ding, L. X. Xu, and B. S. Shi, “On-Chip Multiplexed Multiple Entanglement Sources in a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Y. H. Li, Z. Y. Zhou, Z. H. Xu, L. X. Xu, B. S. Shi, and G. C. Guo, “Multiplexed entangled photon-pair sources for all-fiber quantum networks,” Phys. Rev. A 94(4), 043810 (2016).
[Crossref]

Lin, Q.

Little, B. E.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546(7660), 622–626 (2017).
[Crossref] [PubMed]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Liu, S. K.

Y. H. Li, Z. Y. Zhou, L. T. Feng, W. T. Fang, S. L. Liu, S. K. Liu, K. Wang, X. F. Ren, D. S. Ding, L. X. Xu, and B. S. Shi, “On-Chip Multiplexed Multiple Entanglement Sources in a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Liu, S. L.

Y. H. Li, Z. Y. Zhou, L. T. Feng, W. T. Fang, S. L. Liu, S. K. Liu, K. Wang, X. F. Ren, D. S. Ding, L. X. Xu, and B. S. Shi, “On-Chip Multiplexed Multiple Entanglement Sources in a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, “Orbital Angular Momentum-Entanglement Frequency Transducer,” Phys. Rev. Lett. 117(10), 103601 (2016).
[Crossref] [PubMed]

Liu, Z.

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D. Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7, 10853 (2016).
[Crossref] [PubMed]

Lundeen, J. S.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum States,” Phys. Rev. Lett. 100(13), 133601 (2008).
[Crossref] [PubMed]

M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature 429(6988), 161–164 (2004).
[Crossref] [PubMed]

Lunghi, T.

F. Kaiser, D. Aktas, B. Fedrici, T. Lunghi, L. Labonte, and S. Tanzilli, “Optimal analysis of ultra broadband energy-time entanglement for high bit-rate dense wavelength division multiplexed quantum networks,” Appl. Phys. Lett. 108(23), 231108 (2016).
[Crossref]

D. Aktas, B. Fedrici, F. Kaiser, T. Lunghi, L. Labonte, and S. Tanzilli, “Entanglement distribution over 150 km in wavelength division multiplexed channels for quantum cryptography,” Laser Photonics Rev. 10(3), 451–457 (2016).
[Crossref]

F. Mazeas, M. Traetta, M. Bentivegna, F. Kaiser, D. Aktas, W. Zhang, C. Ramos, L. Ngah, T. Lunghi, E. Picholle, N. Belabas-Plougonven, X. Le Roux, É. Cassan, D. Marris-Morini, L. Vivien, G. Sauder, L. Labonté, and S. Tanzilli, “High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip,” Opt. Express 24(25), 28731–28738 (2016).
[Crossref] [PubMed]

Mahendra, A.

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D. Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7, 10853 (2016).
[Crossref] [PubMed]

Mandel, L.

C.-K. Hong, Z.-Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[Crossref] [PubMed]

Marcikic, I.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004).
[Crossref] [PubMed]

Marris-Morini, D.

Marshall, G. D.

G. J. Mendoza, R. Santagati, J. Munns, E. Hemsley, M. Piekarek, E. Martin-Lopez, G. D. Marshall, D. Bonneau, M. G. Thompson, and J. L. O’Brien, “Active temporal and spatial multiplexing of photons,” Optica 3(2), 127–132 (2016).
[Crossref]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Martin-Lopez, E.

Matthews, J. C. F.

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009).
[Crossref]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Mazeas, F.

Mendoza, G. J.

Metcalf, B. J.

P. C. Humphreys, B. J. Metcalf, J. B. Spring, M. Moore, X. M. Jin, M. Barbieri, W. S. Kolthammer, and I. A. Walmsley, “Linear Optical Quantum Computing in a Single Spatial Mode,” Phys. Rev. Lett. 111(15), 150501 (2013).
[Crossref] [PubMed]

Mitchell, M. W.

M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature 429(6988), 161–164 (2004).
[Crossref] [PubMed]

Moore, M.

P. C. Humphreys, B. J. Metcalf, J. B. Spring, M. Moore, X. M. Jin, M. Barbieri, W. S. Kolthammer, and I. A. Walmsley, “Linear Optical Quantum Computing in a Single Spatial Mode,” Phys. Rev. Lett. 111(15), 150501 (2013).
[Crossref] [PubMed]

Morandotti, R.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546(7660), 622–626 (2017).
[Crossref] [PubMed]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Mosley, P. J.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum States,” Phys. Rev. Lett. 100(13), 133601 (2008).
[Crossref] [PubMed]

Moss, D. J.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546(7660), 622–626 (2017).
[Crossref] [PubMed]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Munns, J.

Natarajan, C. M.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Ngah, L.

O’Brien, J. L.

G. J. Mendoza, R. Santagati, J. Munns, E. Hemsley, M. Piekarek, E. Martin-Lopez, G. D. Marshall, D. Bonneau, M. G. Thompson, and J. L. O’Brien, “Active temporal and spatial multiplexing of photons,” Optica 3(2), 127–132 (2016).
[Crossref]

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6(1), 7948 (2015).
[Crossref] [PubMed]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009).
[Crossref]

Ohira, K.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Ou, Z.-Y.

C.-K. Hong, Z.-Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[Crossref] [PubMed]

Painter, O. J.

Pan, J. W.

Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, M. Zukowski, and J. W. Pan, “Experimental violation of local realism by four-photon Greenberger-Horne-Zeilinger entanglement,” Phys. Rev. Lett. 91(18), 180401 (2003).
[Crossref] [PubMed]

Picholle, E.

Piekarek, M.

Politi, A.

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009).
[Crossref]

Ramos, C.

Rarity, J. G.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

J. Fulconis, O. Alibart, W. J. Wadsworth, and J. G. Rarity, “Quantum interference with photon pairs using two micro-structured fibres,” New J. Phys. 9(8), 276 (2007).
[Crossref]

Reimer, C.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546(7660), 622–626 (2017).
[Crossref] [PubMed]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Ren, X. F.

Y. H. Li, Z. Y. Zhou, L. T. Feng, W. T. Fang, S. L. Liu, S. K. Liu, K. Wang, X. F. Ren, D. S. Ding, L. X. Xu, and B. S. Shi, “On-Chip Multiplexed Multiple Entanglement Sources in a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Ren, Y. X.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Roztocki, P.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546(7660), 622–626 (2017).
[Crossref] [PubMed]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Santagati, R.

G. J. Mendoza, R. Santagati, J. Munns, E. Hemsley, M. Piekarek, E. Martin-Lopez, G. D. Marshall, D. Bonneau, M. G. Thompson, and J. L. O’Brien, “Active temporal and spatial multiplexing of photons,” Optica 3(2), 127–132 (2016).
[Crossref]

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6(1), 7948 (2015).
[Crossref] [PubMed]

Sauder, G.

Sciara, S.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546(7660), 622–626 (2017).
[Crossref] [PubMed]

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Shi, B. S.

Y. H. Li, Z. Y. Zhou, L. T. Feng, W. T. Fang, S. L. Liu, S. K. Liu, K. Wang, X. F. Ren, D. S. Ding, L. X. Xu, and B. S. Shi, “On-Chip Multiplexed Multiple Entanglement Sources in a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Y. H. Li, Z. Y. Zhou, Z. H. Xu, L. X. Xu, B. S. Shi, and G. C. Guo, “Multiplexed entangled photon-pair sources for all-fiber quantum networks,” Phys. Rev. A 94(4), 043810 (2016).
[Crossref]

Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, “Orbital Angular Momentum-Entanglement Frequency Transducer,” Phys. Rev. Lett. 117(10), 103601 (2016).
[Crossref] [PubMed]

Y. Li, Z. Y. Zhou, D. S. Ding, and B. S. Shi, “CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer,” Opt. Express 23(22), 28792–28800 (2015).
[Crossref] [PubMed]

Shi, S.

Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, “Orbital Angular Momentum-Entanglement Frequency Transducer,” Phys. Rev. Lett. 117(10), 103601 (2016).
[Crossref] [PubMed]

Shih, Y.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Silberhorn, C.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum States,” Phys. Rev. Lett. 100(13), 133601 (2008).
[Crossref] [PubMed]

Silverstone, J. W.

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6(1), 7948 (2015).
[Crossref] [PubMed]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Smith, B. J.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum States,” Phys. Rev. Lett. 100(13), 133601 (2008).
[Crossref] [PubMed]

Sorel, M.

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6(1), 7948 (2015).
[Crossref] [PubMed]

Spring, J. B.

P. C. Humphreys, B. J. Metcalf, J. B. Spring, M. Moore, X. M. Jin, M. Barbieri, W. S. Kolthammer, and I. A. Walmsley, “Linear Optical Quantum Computing in a Single Spatial Mode,” Phys. Rev. Lett. 111(15), 150501 (2013).
[Crossref] [PubMed]

Steel, M. J.

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D. Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7, 10853 (2016).
[Crossref] [PubMed]

Stefanov, A.

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009).
[Crossref]

Steinberg, A. M.

M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature 429(6988), 161–164 (2004).
[Crossref] [PubMed]

Strain, M. J.

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6(1), 7948 (2015).
[Crossref] [PubMed]

Suzuki, N.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Takesue, H.

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Indistinguishable photon pair generation using two independent silicon wire waveguides,” New J. Phys. 13(6), 065005 (2011).
[Crossref]

Tanner, M. G.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Tanzilli, S.

F. Kaiser, D. Aktas, B. Fedrici, T. Lunghi, L. Labonte, and S. Tanzilli, “Optimal analysis of ultra broadband energy-time entanglement for high bit-rate dense wavelength division multiplexed quantum networks,” Appl. Phys. Lett. 108(23), 231108 (2016).
[Crossref]

D. Aktas, B. Fedrici, F. Kaiser, T. Lunghi, L. Labonte, and S. Tanzilli, “Entanglement distribution over 150 km in wavelength division multiplexed channels for quantum cryptography,” Laser Photonics Rev. 10(3), 451–457 (2016).
[Crossref]

F. Mazeas, M. Traetta, M. Bentivegna, F. Kaiser, D. Aktas, W. Zhang, C. Ramos, L. Ngah, T. Lunghi, E. Picholle, N. Belabas-Plougonven, X. Le Roux, É. Cassan, D. Marris-Morini, L. Vivien, G. Sauder, L. Labonté, and S. Tanzilli, “High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip,” Opt. Express 24(25), 28731–28738 (2016).
[Crossref] [PubMed]

Thompson, M. G.

G. J. Mendoza, R. Santagati, J. Munns, E. Hemsley, M. Piekarek, E. Martin-Lopez, G. D. Marshall, D. Bonneau, M. G. Thompson, and J. L. O’Brien, “Active temporal and spatial multiplexing of photons,” Optica 3(2), 127–132 (2016).
[Crossref]

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6(1), 7948 (2015).
[Crossref] [PubMed]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Tittel, W.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004).
[Crossref] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of bell inequalities by photons more than 10 km apart,” Phys. Rev. Lett. 81(17), 3563–3566 (1998).
[Crossref]

Tokura, Y.

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Indistinguishable photon pair generation using two independent silicon wire waveguides,” New J. Phys. 13(6), 065005 (2011).
[Crossref]

Traetta, M.

Tsuchizawa, T.

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Indistinguishable photon pair generation using two independent silicon wire waveguides,” New J. Phys. 13(6), 065005 (2011).
[Crossref]

Tur, M.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

U’Ren, A. B.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum States,” Phys. Rev. Lett. 100(13), 133601 (2008).
[Crossref] [PubMed]

Vivien, L.

Wadsworth, W. J.

J. Fulconis, O. Alibart, W. J. Wadsworth, and J. G. Rarity, “Quantum interference with photon pairs using two micro-structured fibres,” New J. Phys. 9(8), 276 (2007).
[Crossref]

Walmsley, I. A.

P. C. Humphreys, B. J. Metcalf, J. B. Spring, M. Moore, X. M. Jin, M. Barbieri, W. S. Kolthammer, and I. A. Walmsley, “Linear Optical Quantum Computing in a Single Spatial Mode,” Phys. Rev. Lett. 111(15), 150501 (2013).
[Crossref] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum States,” Phys. Rev. Lett. 100(13), 133601 (2008).
[Crossref] [PubMed]

Wang, J.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Wang, K.

Y. H. Li, Z. Y. Zhou, L. T. Feng, W. T. Fang, S. L. Liu, S. K. Liu, K. Wang, X. F. Ren, D. S. Ding, L. X. Xu, and B. S. Shi, “On-Chip Multiplexed Multiple Entanglement Sources in a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Wasylczyk, P.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum States,” Phys. Rev. Lett. 100(13), 133601 (2008).
[Crossref] [PubMed]

Watanabe, T.

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Indistinguishable photon pair generation using two independent silicon wire waveguides,” New J. Phys. 13(6), 065005 (2011).
[Crossref]

Weinfurter, H.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Wetzel, B.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546(7660), 622–626 (2017).
[Crossref] [PubMed]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Willner, A. E.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Xiong, C.

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D. Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7, 10853 (2016).
[Crossref] [PubMed]

X. Zhang, I. Jizan, J. He, A. S. Clark, D. Y. Choi, C. J. Chae, B. J. Eggleton, and C. Xiong, “Enhancing the heralded single-photon rate from a silicon nanowire by time and wavelength division multiplexing pump pulses,” Opt. Lett. 40(11), 2489–2492 (2015).
[Crossref] [PubMed]

Xu, L. X.

Y. H. Li, Z. Y. Zhou, L. T. Feng, W. T. Fang, S. L. Liu, S. K. Liu, K. Wang, X. F. Ren, D. S. Ding, L. X. Xu, and B. S. Shi, “On-Chip Multiplexed Multiple Entanglement Sources in a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Y. H. Li, Z. Y. Zhou, Z. H. Xu, L. X. Xu, B. S. Shi, and G. C. Guo, “Multiplexed entangled photon-pair sources for all-fiber quantum networks,” Phys. Rev. A 94(4), 043810 (2016).
[Crossref]

Xu, Z. H.

Y. H. Li, Z. Y. Zhou, Z. H. Xu, L. X. Xu, B. S. Shi, and G. C. Guo, “Multiplexed entangled photon-pair sources for all-fiber quantum networks,” Phys. Rev. A 94(4), 043810 (2016).
[Crossref]

Yamada, K.

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Indistinguishable photon pair generation using two independent silicon wire waveguides,” New J. Phys. 13(6), 065005 (2011).
[Crossref]

Yan, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, J. Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, T.

Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, M. Zukowski, and J. W. Pan, “Experimental violation of local realism by four-photon Greenberger-Horne-Zeilinger entanglement,” Phys. Rev. Lett. 91(18), 180401 (2003).
[Crossref] [PubMed]

Yoshida, H.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Yue, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Zbinden, H.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004).
[Crossref] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of bell inequalities by photons more than 10 km apart,” Phys. Rev. Lett. 81(17), 3563–3566 (1998).
[Crossref]

Zeilinger, A.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Zhang, A. N.

Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, M. Zukowski, and J. W. Pan, “Experimental violation of local realism by four-photon Greenberger-Horne-Zeilinger entanglement,” Phys. Rev. Lett. 91(18), 180401 (2003).
[Crossref] [PubMed]

Zhang, W.

Zhang, X.

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D. Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7, 10853 (2016).
[Crossref] [PubMed]

X. Zhang, I. Jizan, J. He, A. S. Clark, D. Y. Choi, C. J. Chae, B. J. Eggleton, and C. Xiong, “Enhancing the heralded single-photon rate from a silicon nanowire by time and wavelength division multiplexing pump pulses,” Opt. Lett. 40(11), 2489–2492 (2015).
[Crossref] [PubMed]

Zhang, Y.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546(7660), 622–626 (2017).
[Crossref] [PubMed]

Zhao, Z.

Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, M. Zukowski, and J. W. Pan, “Experimental violation of local realism by four-photon Greenberger-Horne-Zeilinger entanglement,” Phys. Rev. Lett. 91(18), 180401 (2003).
[Crossref] [PubMed]

Zhou, Z. Y.

Y. H. Li, Z. Y. Zhou, L. T. Feng, W. T. Fang, S. L. Liu, S. K. Liu, K. Wang, X. F. Ren, D. S. Ding, L. X. Xu, and B. S. Shi, “On-Chip Multiplexed Multiple Entanglement Sources in a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Y. H. Li, Z. Y. Zhou, Z. H. Xu, L. X. Xu, B. S. Shi, and G. C. Guo, “Multiplexed entangled photon-pair sources for all-fiber quantum networks,” Phys. Rev. A 94(4), 043810 (2016).
[Crossref]

Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, “Orbital Angular Momentum-Entanglement Frequency Transducer,” Phys. Rev. Lett. 117(10), 103601 (2016).
[Crossref] [PubMed]

Y. Li, Z. Y. Zhou, D. S. Ding, and B. S. Shi, “CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer,” Opt. Express 23(22), 28792–28800 (2015).
[Crossref] [PubMed]

Zoller, P.

H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998).
[Crossref]

Zukowski, M.

Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, M. Zukowski, and J. W. Pan, “Experimental violation of local realism by four-photon Greenberger-Horne-Zeilinger entanglement,” Phys. Rev. Lett. 91(18), 180401 (2003).
[Crossref] [PubMed]

Zwiller, V.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Appl. Phys. Lett. (1)

F. Kaiser, D. Aktas, B. Fedrici, T. Lunghi, L. Labonte, and S. Tanzilli, “Optimal analysis of ultra broadband energy-time entanglement for high bit-rate dense wavelength division multiplexed quantum networks,” Appl. Phys. Lett. 108(23), 231108 (2016).
[Crossref]

Laser Photonics Rev. (1)

D. Aktas, B. Fedrici, F. Kaiser, T. Lunghi, L. Labonte, and S. Tanzilli, “Entanglement distribution over 150 km in wavelength division multiplexed channels for quantum cryptography,” Laser Photonics Rev. 10(3), 451–457 (2016).
[Crossref]

Nat. Commun. (2)

C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L. G. Helt, M. J. Steel, D. Y. Choi, C. J. Chae, P. H. W. Leong, and B. J. Eggleton, “Active temporal multiplexing of indistinguishable heralded single photons,” Nat. Commun. 7, 10853 (2016).
[Crossref] [PubMed]

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6(1), 7948 (2015).
[Crossref] [PubMed]

Nat. Photonics (3)

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009).
[Crossref]

Nature (3)

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546(7660), 622–626 (2017).
[Crossref] [PubMed]

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature 429(6988), 161–164 (2004).
[Crossref] [PubMed]

New J. Phys. (2)

J. Fulconis, O. Alibart, W. J. Wadsworth, and J. G. Rarity, “Quantum interference with photon pairs using two micro-structured fibres,” New J. Phys. 9(8), 276 (2007).
[Crossref]

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Indistinguishable photon pair generation using two independent silicon wire waveguides,” New J. Phys. 13(6), 065005 (2011).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Optica (1)

Phys. Rev. A (1)

Y. H. Li, Z. Y. Zhou, Z. H. Xu, L. X. Xu, B. S. Shi, and G. C. Guo, “Multiplexed entangled photon-pair sources for all-fiber quantum networks,” Phys. Rev. A 94(4), 043810 (2016).
[Crossref]

Phys. Rev. Appl. (1)

Y. H. Li, Z. Y. Zhou, L. T. Feng, W. T. Fang, S. L. Liu, S. K. Liu, K. Wang, X. F. Ren, D. S. Ding, L. X. Xu, and B. S. Shi, “On-Chip Multiplexed Multiple Entanglement Sources in a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Phys. Rev. Lett. (9)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of bell inequalities by photons more than 10 km apart,” Phys. Rev. Lett. 81(17), 3563–3566 (1998).
[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004).
[Crossref] [PubMed]

C.-K. Hong, Z.-Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[Crossref] [PubMed]

Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, M. Zukowski, and J. W. Pan, “Experimental violation of local realism by four-photon Greenberger-Horne-Zeilinger entanglement,” Phys. Rev. Lett. 91(18), 180401 (2003).
[Crossref] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum States,” Phys. Rev. Lett. 100(13), 133601 (2008).
[Crossref] [PubMed]

Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, “Orbital Angular Momentum-Entanglement Frequency Transducer,” Phys. Rev. Lett. 117(10), 103601 (2016).
[Crossref] [PubMed]

H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998).
[Crossref]

P. C. Humphreys, B. J. Metcalf, J. B. Spring, M. Moore, X. M. Jin, M. Barbieri, W. S. Kolthammer, and I. A. Walmsley, “Linear Optical Quantum Computing in a Single Spatial Mode,” Phys. Rev. Lett. 111(15), 150501 (2013).
[Crossref] [PubMed]

Science (1)

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Other (1)

D. Deutsch, “Quantum-Theory, the Church-Turing Principle and the Universal Quantum Computer,” Proc. R. Soc. A Math. Phys. Eng. Sci.400, 97–117 (1985).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The principle diagram for entanglement source. Multiplexed pulses pump an SNW to generate entangled photon pairs in N time slots. The entangled photon pairs are firstly split into temporal channels using a time division multiplexer (TDM), which is consist of optical switches. Then, the entangled photon pairs are distributed to multiusers by DWDM.
Fig. 2
Fig. 2 Experimental setup for multiplexed time-bin entanglement source. TA, tunable attenuator; PC, fiber polarization controller; UMI, unbalanced Michelson fiber interferometer; DDG1, DDG2, digital delay generator; FRM, Faraday rotation mirror; SSPD1 and SSPD2, superconducting single-photon detector; TIA, time interval analyzer. ODL, optical delay line.
Fig. 3
Fig. 3 Quality characterizations of time-and wavelength-division multiplexed entanglement source. (a). Raw visibilities of two-photon interference for 3 × 5 channel pairs. (b). Two-photon coincidence in 60s for channel S8-I8-T1 when the idler and the pump UMI phase is fixed at π/2 (solid blue line) and the idler and the signal UMI phases are fixed at π/2 (solid blue line) in channel. (c). Two-photon coincidence in 300s for channel S8-I8-T2 when the idler and the pump UMI phases are fixed at 0 (solid blue line) and the idler and the signal UMI phases are fixed at 0 (solid blue line). (d). Two-photon coincidence in 300s for channel S8-I8-T3 when the idler and the pump UMI phases are fixed at π/2 (solid blue line) and the idler and the signal UMI phases are fixed at π/2(solid blue line).
Fig. 4
Fig. 4 Experimental setup for HOM interference between photon pairs at different time slots generated from the same SSW. TA, tunable attenuator; PC, fiber polarization controller; DDG1, DDG2, digital delay generator; SSPD1 and SSPD2, superconducting single-photon detector; TIA, time interval analyzer; OC, optical coupler. ODL, optical delay line. TODL, tunable optical delay line.
Fig. 5
Fig. 5 Four-fold HOM interference fringes. (a). The measured four-fold dip between S14-I14-T3 and S14-I14-T2 channel pairs. (b). The measured four-fold dip between S8-I8-T1 and S8-I8-T2 channel pairs.
Fig. 6
Fig. 6 More data about the photon source. (a). single count rate for correlated channel pairs. (b). CARs for different correlated channel pairs from S14-I14-T1 to S2-I2-T3.

Tables (1)

Tables Icon

Table 1 Definition of the wavelengths of the standard ITU grids for the signal and idler photons

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

| ψ p 1 = 1 2 ( | S e i ϕ p 1 | L )
| ψ p 2 = 1 2 ( | S e i ϕ p 2 | L )
| ψ p 3 = 1 2 ( | S e i ϕ p 3 | L )
| Φ T 1 = 1 2 ( | S S e i 2 ϕ P 1 | L L )
| Φ T 2 = 1 2 ( | S S e i 2 ϕ P 2 | L L )
| Φ T 3 = 1 2 ( | S S e i 2 ϕ P 3 | L L )
V 1 1 + 8 μ 1 + 12 μ
C 4 = R μ 2 η s 2 η i 2 / 2
V 2 = 1 + r 2 1 + r 2 / 2

Metrics