Abstract

For circumventing the alignment requirement of line-of-sight (LOS) underwater wireless optical communication (UWOC), we demonstrated a non-line-of-sight (NLOS) UWOC link adequately enhanced using ultraviolet (UV) 375-nm laser. Path loss was chosen as a figure-of-merit for link performance in this investigation, which considers the effects of geometries, water turbidity, and transmission wavelength. The experiments suggest that path loss decreases with smaller azimuth angles, higher water turbidity, and shorter wavelength due in part to enhanced scattering utilizing 375-nm radiation. We highlighted that it is feasible to extend the current findings for long distance NLOS UWOC link in turbid water, such as harbor water.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Non-line-of-sight underwater optical wireless communication network

Shlomi Arnon and Debbie Kedar
J. Opt. Soc. Am. A 26(3) 530-539 (2009)

Real-Time Video Transmission Over Different Underwater Wireless Optical Channels Using a Directly Modulated 520  nm Laser Diode

Abdullah Al-Halafi, Hassan Makine Oubei, Boon S. Ooi, and Basem Shihada
J. Opt. Commun. Netw. 9(10) 826-832 (2017)

2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode

Hassan Makine Oubei, Changping Li, Ki-Hong Park, Tien Khee Ng, Mohamed-Slim Alouini, and Boon S. Ooi
Opt. Express 23(16) 20743-20748 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “‎A Survey of Underwater Optical Wireless Communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).
    [Crossref]
  2. M. A. Khalighi and M. Uysal, “Survey on free space optical communication: A communication theory perspective,” IEEE Comm. Surv. and Tutor. 16(4), 2231–2258 (2014).
    [Crossref]
  3. C. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  4. M. Chitre, S. Shahabudeen, L. Freitag, and M. Stojanovic, “Recent advances in underwater acoustic communications networking,” in Proceedings of IEEE Conference on Oceans (IEEE, 2008), pp. 1–10.
    [Crossref]
  5. R. E. Williams and H. F. Battestin, “Coherent Recombination of Acoustic Multipath Signals Propagated in the Deep Ocean,” J. Acoust. Soc. Am. 50(6A), 1433–1442 (1971).
    [Crossref]
  6. C. Xilin, Q. Fengzhong, and Y. Liuqing, “Single carrier fdma over underwater acoustic channels,” in Proceedings of IEEE Conference on Communications and Networking (IEEE, 2011), pp. 1052–1057.
  7. B. Li, S. Zhou, M. Stojanovic, L. Freitag, and P. Willett, “Multicarrier Communication Over Underwater Acoustic Channels With Nonuniform Doppler Shifts,” IEEE J. Oceanic Eng. 33(2), 198–209 (2008).
    [Crossref]
  8. X. Liu, S. Yi, X. Zhou, Z. Fang, Z.-J. Qiu, L. Hu, C. Cong, L. Zheng, R. Liu, and P. Tian, “34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation,” Opt. Express 25(22), 27937–27947 (2017).
    [Crossref] [PubMed]
  9. C. Shen, Y. Guo, H. M. Oubei, T. K. Ng, G. Liu, K.-H. Park, K.-T. Ho, M.-S. Alouini, and B. S. Ooi, “20-meter underwater wireless optical communication link with 1.5 Gbps data rate,” Opt. Express 24(22), 25502–25509 (2016).
    [Crossref] [PubMed]
  10. Y. Chen, M. Kong, T. Ali, J. Wang, R. Sarwar, J. Han, C. Guo, B. Sun, N. Deng, and J. Xu, “26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode,” Opt. Express 25(13), 14760–14765 (2017).
    [Crossref] [PubMed]
  11. J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array,” IEEE Photonics Technol. Lett. 22(18), 1346–1348 (2010).
    [Crossref]
  12. J. Xu, Y. Song, X. Yu, A. Lin, M. Kong, J. Han, and N. Deng, “Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser,” Opt. Express 24(8), 8097–8109 (2016).
    [Crossref] [PubMed]
  13. A. Al-Halafi, H. M. Oubei, B. S. Ooi, and B. Shihada, “Real-time video transmission over different underwater wireless optical channels using a directly modulated 520 nm laser diode,” IEEE/OSA,” J. Opt. Commun. Netw. 9(10), 826–832 (2017).
    [Crossref]
  14. G. L. Harvey, “A survey of ultraviolet communication systems,” Naval Research Laboratory Technical Report, Washington D.C., March 1964.
    [Crossref]
  15. D. E. Sunstein, “A scatter communications link at ultraviolet frequencies,” B.S. Thesis, MIT, Cambridge, MA, 1968.
  16. S. Tang, Y. Dong, and X. Zhang, “On path loss of nlos underwater wireless optical communication links,” inProceedings of IEEE Conference on Oceans (IEEE, 2013), pp. 1–3.
  17. W. Liu, D. Zou, Z. Xu, and J. Yu, “Non-line-of-sight scattering channel modeling for underwater optical wireless communication,” in IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (IEEE, 2015), pp. 1265–1268.
    [Crossref]
  18. D. Alley, L. Mullen, and A. Laux, “Compact, dual-wavelength, non-line-of-sight (nlos) underwater imager,” in Proceedings of IEEE Conference on Oceans (IEEE, 2011), pp. 1–5.
  19. C. Gabriel, M. A. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” IEEE/OSA J. Opt. Commun. Netw. 5(1), 1–12 (2013).
    [Crossref]
  20. A. Choudhary, F. M. Bui, and P. Muthuchidambaranathan, “Characterization of channel impulse responses for nlos underwater wireless optical communications,” in Proceedings of IEEE Conference on Advances in Computing and Communications (IEEE, 2014), pp. 77–79.
  21. V. K. Jagadeesh, K. V. Naveen, and P. Muthuchidambaranathan, “BER Performance of NLOS Underwater Wireless Optical Communication with Multiple Scattering,” Int. J. Res. Schol. Innov. 9(2), 562–566 (2015).
  22. K. J. VA. Choudhary, V. K. Jagadeesh, and P. Muthuchidambaranathan, “Pathloss analysis of nlos underwater wireless optical communication channel,” in Proceedings of IEEE Conference on Oceans on Electronics and Communication Systems (IEEE, 2014), pp. 1–4.
    [Crossref]
  23. S. Q. Duntley, “Light in the Sea,” J. Opt. Soc. Am. A 53(2), 214–233 (1963).
    [Crossref]
  24. H. M. Oubei, C. Li, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode,” Opt. Express 23(16), 20743–20748 (2015).
    [Crossref] [PubMed]
  25. H. M. Oubei, J. R. Duran, B. Janjua, H.-Y. Wang, C.-T. Tsai, Y.-C. Chi, T. K. Ng, H.-C. Kuo, J.-H. He, M.-S. Alouini, G.-R. Lin, and B. S. Ooi, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23(18), 23302–23309 (2015).
    [Crossref] [PubMed]
  26. M. Jonasz, G. Fournier, and I. ebrary, Light Scattering by Particles in Water: Theoretical and Experimental Foundations (Academic, 2007).
  27. A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, cs of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment‎,” J. Mod. Opt. 49(3-4), 439–451 (2002).
    [Crossref]
  28. T. J. Petzold, “Volume Scattering Functions for Selected Ocean Waters,” Visibility Laboratory Tech. Report 72–78, Scripps Institution of Oceanography, San Diego, Calif. (1972).
    [Crossref]
  29. B. M. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the Beam-Spread Function for Underwater Wireless Optical Communications Links,” IEEE J. Oceanic Eng. 33(4), 513–521 (2008).
    [Crossref]
  30. W. Cox and J. Muth, “Simulating channel losses in an underwater optical communication system,” J. Opt. Soc. Am. A 31(5), 920–934 (2014).
    [Crossref] [PubMed]
  31. H. M. Oubei, R. T. ElAfandy, K. H. Park, T. K. Ng, M. S. Alouini, and B. S. Ooi, “Performance Evaluation of Underwater Wireless Optical Communications Links in the Presence of Different Air Bubble Populations,” IEEE Photonics J. 9(2), 1–9 (2017).
    [Crossref]
  32. M. Lanzagorta, Underwater communications (Morgan & Claypool, 2012).
  33. R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters (200-800 nm),” Appl. Opt. 20(2), 177–184 (1981).
    [Crossref] [PubMed]
  34. N. G. Jerlov, Marine Optics (Elsevier, 1976).
  35. B. Cochenour and L. Mullen, “Free-space optical communications underwater” in Advanced Optical Wireless Communication Systems, J. B. S. Arnon, G. Karagiannidis, R. Schober, and M. Uysal, ed. (Cambridge University, 2012), pp. 201–239.
  36. N. B. Divari, The Height of the Twilight Ray (Springer, 1970).

2017 (5)

2016 (2)

2015 (3)

2014 (2)

W. Cox and J. Muth, “Simulating channel losses in an underwater optical communication system,” J. Opt. Soc. Am. A 31(5), 920–934 (2014).
[Crossref] [PubMed]

M. A. Khalighi and M. Uysal, “Survey on free space optical communication: A communication theory perspective,” IEEE Comm. Surv. and Tutor. 16(4), 2231–2258 (2014).
[Crossref]

2013 (1)

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” IEEE/OSA J. Opt. Commun. Netw. 5(1), 1–12 (2013).
[Crossref]

2010 (1)

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array,” IEEE Photonics Technol. Lett. 22(18), 1346–1348 (2010).
[Crossref]

2008 (2)

B. Li, S. Zhou, M. Stojanovic, L. Freitag, and P. Willett, “Multicarrier Communication Over Underwater Acoustic Channels With Nonuniform Doppler Shifts,” IEEE J. Oceanic Eng. 33(2), 198–209 (2008).
[Crossref]

B. M. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the Beam-Spread Function for Underwater Wireless Optical Communications Links,” IEEE J. Oceanic Eng. 33(4), 513–521 (2008).
[Crossref]

2002 (1)

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, cs of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment‎,” J. Mod. Opt. 49(3-4), 439–451 (2002).
[Crossref]

1981 (1)

1971 (1)

R. E. Williams and H. F. Battestin, “Coherent Recombination of Acoustic Multipath Signals Propagated in the Deep Ocean,” J. Acoust. Soc. Am. 50(6A), 1433–1442 (1971).
[Crossref]

1963 (1)

S. Q. Duntley, “Light in the Sea,” J. Opt. Soc. Am. A 53(2), 214–233 (1963).
[Crossref]

Al-Halafi, A.

Ali, T.

Alley, D.

D. Alley, L. Mullen, and A. Laux, “Compact, dual-wavelength, non-line-of-sight (nlos) underwater imager,” in Proceedings of IEEE Conference on Oceans (IEEE, 2011), pp. 1–5.

Alouini, M. S.

H. M. Oubei, R. T. ElAfandy, K. H. Park, T. K. Ng, M. S. Alouini, and B. S. Ooi, “Performance Evaluation of Underwater Wireless Optical Communications Links in the Presence of Different Air Bubble Populations,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Alouini, M.-S.

Baker, K. S.

Battestin, H. F.

R. E. Williams and H. F. Battestin, “Coherent Recombination of Acoustic Multipath Signals Propagated in the Deep Ocean,” J. Acoust. Soc. Am. 50(6A), 1433–1442 (1971).
[Crossref]

Billmers, R.

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, cs of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment‎,” J. Mod. Opt. 49(3-4), 439–451 (2002).
[Crossref]

Bourennane, S.

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” IEEE/OSA J. Opt. Commun. Netw. 5(1), 1–12 (2013).
[Crossref]

Bui, F. M.

A. Choudhary, F. M. Bui, and P. Muthuchidambaranathan, “Characterization of channel impulse responses for nlos underwater wireless optical communications,” in Proceedings of IEEE Conference on Advances in Computing and Communications (IEEE, 2014), pp. 77–79.

Chen, Y.

Cheng, J.

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “‎A Survey of Underwater Optical Wireless Communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).
[Crossref]

Chi, Y.-C.

Chitre, M.

M. Chitre, S. Shahabudeen, L. Freitag, and M. Stojanovic, “Recent advances in underwater acoustic communications networking,” in Proceedings of IEEE Conference on Oceans (IEEE, 2008), pp. 1–10.
[Crossref]

Choudhary, A.

A. Choudhary, F. M. Bui, and P. Muthuchidambaranathan, “Characterization of channel impulse responses for nlos underwater wireless optical communications,” in Proceedings of IEEE Conference on Advances in Computing and Communications (IEEE, 2014), pp. 77–79.

K. J. VA. Choudhary, V. K. Jagadeesh, and P. Muthuchidambaranathan, “Pathloss analysis of nlos underwater wireless optical communication channel,” in Proceedings of IEEE Conference on Oceans on Electronics and Communication Systems (IEEE, 2014), pp. 1–4.
[Crossref]

Cochenour, B. M.

B. M. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the Beam-Spread Function for Underwater Wireless Optical Communications Links,” IEEE J. Oceanic Eng. 33(4), 513–521 (2008).
[Crossref]

Concannon, B.

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, cs of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment‎,” J. Mod. Opt. 49(3-4), 439–451 (2002).
[Crossref]

Cong, C.

Contarino, V.

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, cs of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment‎,” J. Mod. Opt. 49(3-4), 439–451 (2002).
[Crossref]

Cox, W.

Davis, J.

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, cs of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment‎,” J. Mod. Opt. 49(3-4), 439–451 (2002).
[Crossref]

Dawson, M. D.

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array,” IEEE Photonics Technol. Lett. 22(18), 1346–1348 (2010).
[Crossref]

Deng, N.

Dong, Y.

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “‎A Survey of Underwater Optical Wireless Communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).
[Crossref]

S. Tang, Y. Dong, and X. Zhang, “On path loss of nlos underwater wireless optical communication links,” inProceedings of IEEE Conference on Oceans (IEEE, 2013), pp. 1–3.

Duntley, S. Q.

S. Q. Duntley, “Light in the Sea,” J. Opt. Soc. Am. A 53(2), 214–233 (1963).
[Crossref]

Duran, J. R.

ElAfandy, R. T.

H. M. Oubei, R. T. ElAfandy, K. H. Park, T. K. Ng, M. S. Alouini, and B. S. Ooi, “Performance Evaluation of Underwater Wireless Optical Communications Links in the Presence of Different Air Bubble Populations,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Fang, Z.

Fengzhong, Q.

C. Xilin, Q. Fengzhong, and Y. Liuqing, “Single carrier fdma over underwater acoustic channels,” in Proceedings of IEEE Conference on Communications and Networking (IEEE, 2011), pp. 1052–1057.

Freitag, L.

B. Li, S. Zhou, M. Stojanovic, L. Freitag, and P. Willett, “Multicarrier Communication Over Underwater Acoustic Channels With Nonuniform Doppler Shifts,” IEEE J. Oceanic Eng. 33(2), 198–209 (2008).
[Crossref]

M. Chitre, S. Shahabudeen, L. Freitag, and M. Stojanovic, “Recent advances in underwater acoustic communications networking,” in Proceedings of IEEE Conference on Oceans (IEEE, 2008), pp. 1–10.
[Crossref]

Fu, S.

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “‎A Survey of Underwater Optical Wireless Communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).
[Crossref]

Gabriel, C.

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” IEEE/OSA J. Opt. Commun. Netw. 5(1), 1–12 (2013).
[Crossref]

Gong, Z.

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array,” IEEE Photonics Technol. Lett. 22(18), 1346–1348 (2010).
[Crossref]

Green, R. P.

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array,” IEEE Photonics Technol. Lett. 22(18), 1346–1348 (2010).
[Crossref]

Gu, E.

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array,” IEEE Photonics Technol. Lett. 22(18), 1346–1348 (2010).
[Crossref]

Guilhabert, B.

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array,” IEEE Photonics Technol. Lett. 22(18), 1346–1348 (2010).
[Crossref]

Guo, C.

Guo, Y.

Han, J.

He, J.-H.

Ho, K.-T.

Hu, L.

Jagadeesh, V. K.

V. K. Jagadeesh, K. V. Naveen, and P. Muthuchidambaranathan, “BER Performance of NLOS Underwater Wireless Optical Communication with Multiple Scattering,” Int. J. Res. Schol. Innov. 9(2), 562–566 (2015).

K. J. VA. Choudhary, V. K. Jagadeesh, and P. Muthuchidambaranathan, “Pathloss analysis of nlos underwater wireless optical communication channel,” in Proceedings of IEEE Conference on Oceans on Electronics and Communication Systems (IEEE, 2014), pp. 1–4.
[Crossref]

Janjua, B.

Kelly, A. E.

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array,” IEEE Photonics Technol. Lett. 22(18), 1346–1348 (2010).
[Crossref]

Khalighi, M. A.

M. A. Khalighi and M. Uysal, “Survey on free space optical communication: A communication theory perspective,” IEEE Comm. Surv. and Tutor. 16(4), 2231–2258 (2014).
[Crossref]

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” IEEE/OSA J. Opt. Commun. Netw. 5(1), 1–12 (2013).
[Crossref]

Kong, M.

Kuo, H.-C.

Laux, A.

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, cs of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment‎,” J. Mod. Opt. 49(3-4), 439–451 (2002).
[Crossref]

D. Alley, L. Mullen, and A. Laux, “Compact, dual-wavelength, non-line-of-sight (nlos) underwater imager,” in Proceedings of IEEE Conference on Oceans (IEEE, 2011), pp. 1–5.

Laux, A. E.

B. M. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the Beam-Spread Function for Underwater Wireless Optical Communications Links,” IEEE J. Oceanic Eng. 33(4), 513–521 (2008).
[Crossref]

Leon, P.

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” IEEE/OSA J. Opt. Commun. Netw. 5(1), 1–12 (2013).
[Crossref]

Li, B.

B. Li, S. Zhou, M. Stojanovic, L. Freitag, and P. Willett, “Multicarrier Communication Over Underwater Acoustic Channels With Nonuniform Doppler Shifts,” IEEE J. Oceanic Eng. 33(2), 198–209 (2008).
[Crossref]

Li, C.

Lin, A.

Lin, G.-R.

Liu, G.

Liu, R.

Liu, W.

W. Liu, D. Zou, Z. Xu, and J. Yu, “Non-line-of-sight scattering channel modeling for underwater optical wireless communication,” in IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (IEEE, 2015), pp. 1265–1268.
[Crossref]

Liu, X.

Liuqing, Y.

C. Xilin, Q. Fengzhong, and Y. Liuqing, “Single carrier fdma over underwater acoustic channels,” in Proceedings of IEEE Conference on Communications and Networking (IEEE, 2011), pp. 1052–1057.

Massoubre, D.

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array,” IEEE Photonics Technol. Lett. 22(18), 1346–1348 (2010).
[Crossref]

McKendry, J. J. D.

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array,” IEEE Photonics Technol. Lett. 22(18), 1346–1348 (2010).
[Crossref]

Mullen, L.

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, cs of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment‎,” J. Mod. Opt. 49(3-4), 439–451 (2002).
[Crossref]

D. Alley, L. Mullen, and A. Laux, “Compact, dual-wavelength, non-line-of-sight (nlos) underwater imager,” in Proceedings of IEEE Conference on Oceans (IEEE, 2011), pp. 1–5.

Mullen, L. J.

B. M. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the Beam-Spread Function for Underwater Wireless Optical Communications Links,” IEEE J. Oceanic Eng. 33(4), 513–521 (2008).
[Crossref]

Muth, J.

Muthuchidambaranathan, P.

V. K. Jagadeesh, K. V. Naveen, and P. Muthuchidambaranathan, “BER Performance of NLOS Underwater Wireless Optical Communication with Multiple Scattering,” Int. J. Res. Schol. Innov. 9(2), 562–566 (2015).

A. Choudhary, F. M. Bui, and P. Muthuchidambaranathan, “Characterization of channel impulse responses for nlos underwater wireless optical communications,” in Proceedings of IEEE Conference on Advances in Computing and Communications (IEEE, 2014), pp. 77–79.

K. J. VA. Choudhary, V. K. Jagadeesh, and P. Muthuchidambaranathan, “Pathloss analysis of nlos underwater wireless optical communication channel,” in Proceedings of IEEE Conference on Oceans on Electronics and Communication Systems (IEEE, 2014), pp. 1–4.
[Crossref]

Naveen, K. V.

V. K. Jagadeesh, K. V. Naveen, and P. Muthuchidambaranathan, “BER Performance of NLOS Underwater Wireless Optical Communication with Multiple Scattering,” Int. J. Res. Schol. Innov. 9(2), 562–566 (2015).

Ng, T. K.

Ooi, B. S.

Oubei, H. M.

Park, K. H.

H. M. Oubei, R. T. ElAfandy, K. H. Park, T. K. Ng, M. S. Alouini, and B. S. Ooi, “Performance Evaluation of Underwater Wireless Optical Communications Links in the Presence of Different Air Bubble Populations,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Park, K.-H.

Prentice, J.

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, cs of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment‎,” J. Mod. Opt. 49(3-4), 439–451 (2002).
[Crossref]

Qiu, Z.-J.

Rigaud, V.

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” IEEE/OSA J. Opt. Commun. Netw. 5(1), 1–12 (2013).
[Crossref]

Sarwar, R.

Shahabudeen, S.

M. Chitre, S. Shahabudeen, L. Freitag, and M. Stojanovic, “Recent advances in underwater acoustic communications networking,” in Proceedings of IEEE Conference on Oceans (IEEE, 2008), pp. 1–10.
[Crossref]

Shen, C.

Shihada, B.

Smith, R. C.

Song, Y.

Stojanovic, M.

B. Li, S. Zhou, M. Stojanovic, L. Freitag, and P. Willett, “Multicarrier Communication Over Underwater Acoustic Channels With Nonuniform Doppler Shifts,” IEEE J. Oceanic Eng. 33(2), 198–209 (2008).
[Crossref]

M. Chitre, S. Shahabudeen, L. Freitag, and M. Stojanovic, “Recent advances in underwater acoustic communications networking,” in Proceedings of IEEE Conference on Oceans (IEEE, 2008), pp. 1–10.
[Crossref]

Sun, B.

Tang, S.

S. Tang, Y. Dong, and X. Zhang, “On path loss of nlos underwater wireless optical communication links,” inProceedings of IEEE Conference on Oceans (IEEE, 2013), pp. 1–3.

Tian, P.

Tsai, C.-T.

Uysal, M.

M. A. Khalighi and M. Uysal, “Survey on free space optical communication: A communication theory perspective,” IEEE Comm. Surv. and Tutor. 16(4), 2231–2258 (2014).
[Crossref]

Wang, H.-Y.

Wang, J.

Willett, P.

B. Li, S. Zhou, M. Stojanovic, L. Freitag, and P. Willett, “Multicarrier Communication Over Underwater Acoustic Channels With Nonuniform Doppler Shifts,” IEEE J. Oceanic Eng. 33(2), 198–209 (2008).
[Crossref]

Williams, R. E.

R. E. Williams and H. F. Battestin, “Coherent Recombination of Acoustic Multipath Signals Propagated in the Deep Ocean,” J. Acoust. Soc. Am. 50(6A), 1433–1442 (1971).
[Crossref]

Xilin, C.

C. Xilin, Q. Fengzhong, and Y. Liuqing, “Single carrier fdma over underwater acoustic channels,” in Proceedings of IEEE Conference on Communications and Networking (IEEE, 2011), pp. 1052–1057.

Xu, J.

Xu, Z.

W. Liu, D. Zou, Z. Xu, and J. Yu, “Non-line-of-sight scattering channel modeling for underwater optical wireless communication,” in IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (IEEE, 2015), pp. 1265–1268.
[Crossref]

Yi, S.

Yu, J.

W. Liu, D. Zou, Z. Xu, and J. Yu, “Non-line-of-sight scattering channel modeling for underwater optical wireless communication,” in IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (IEEE, 2015), pp. 1265–1268.
[Crossref]

Yu, X.

Zeng, Z.

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “‎A Survey of Underwater Optical Wireless Communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).
[Crossref]

Zhang, H.

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “‎A Survey of Underwater Optical Wireless Communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).
[Crossref]

Zhang, X.

S. Tang, Y. Dong, and X. Zhang, “On path loss of nlos underwater wireless optical communication links,” inProceedings of IEEE Conference on Oceans (IEEE, 2013), pp. 1–3.

Zheng, L.

Zhou, S.

B. Li, S. Zhou, M. Stojanovic, L. Freitag, and P. Willett, “Multicarrier Communication Over Underwater Acoustic Channels With Nonuniform Doppler Shifts,” IEEE J. Oceanic Eng. 33(2), 198–209 (2008).
[Crossref]

Zhou, X.

Zou, D.

W. Liu, D. Zou, Z. Xu, and J. Yu, “Non-line-of-sight scattering channel modeling for underwater optical wireless communication,” in IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (IEEE, 2015), pp. 1265–1268.
[Crossref]

Appl. Opt. (1)

IEEE Comm. Surv. and Tutor. (2)

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “‎A Survey of Underwater Optical Wireless Communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).
[Crossref]

M. A. Khalighi and M. Uysal, “Survey on free space optical communication: A communication theory perspective,” IEEE Comm. Surv. and Tutor. 16(4), 2231–2258 (2014).
[Crossref]

IEEE J. Oceanic Eng. (2)

B. Li, S. Zhou, M. Stojanovic, L. Freitag, and P. Willett, “Multicarrier Communication Over Underwater Acoustic Channels With Nonuniform Doppler Shifts,” IEEE J. Oceanic Eng. 33(2), 198–209 (2008).
[Crossref]

B. M. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the Beam-Spread Function for Underwater Wireless Optical Communications Links,” IEEE J. Oceanic Eng. 33(4), 513–521 (2008).
[Crossref]

IEEE Photonics J. (1)

H. M. Oubei, R. T. ElAfandy, K. H. Park, T. K. Ng, M. S. Alouini, and B. S. Ooi, “Performance Evaluation of Underwater Wireless Optical Communications Links in the Presence of Different Air Bubble Populations,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array,” IEEE Photonics Technol. Lett. 22(18), 1346–1348 (2010).
[Crossref]

IEEE/OSA J. Opt. Commun. Netw. (1)

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” IEEE/OSA J. Opt. Commun. Netw. 5(1), 1–12 (2013).
[Crossref]

Int. J. Res. Schol. Innov. (1)

V. K. Jagadeesh, K. V. Naveen, and P. Muthuchidambaranathan, “BER Performance of NLOS Underwater Wireless Optical Communication with Multiple Scattering,” Int. J. Res. Schol. Innov. 9(2), 562–566 (2015).

J. Acoust. Soc. Am. (1)

R. E. Williams and H. F. Battestin, “Coherent Recombination of Acoustic Multipath Signals Propagated in the Deep Ocean,” J. Acoust. Soc. Am. 50(6A), 1433–1442 (1971).
[Crossref]

J. Mod. Opt. (1)

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, cs of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment‎,” J. Mod. Opt. 49(3-4), 439–451 (2002).
[Crossref]

J. Opt. Commun. Netw. (1)

J. Opt. Soc. Am. A (2)

Opt. Express (6)

H. M. Oubei, C. Li, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode,” Opt. Express 23(16), 20743–20748 (2015).
[Crossref] [PubMed]

H. M. Oubei, J. R. Duran, B. Janjua, H.-Y. Wang, C.-T. Tsai, Y.-C. Chi, T. K. Ng, H.-C. Kuo, J.-H. He, M.-S. Alouini, G.-R. Lin, and B. S. Ooi, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23(18), 23302–23309 (2015).
[Crossref] [PubMed]

J. Xu, Y. Song, X. Yu, A. Lin, M. Kong, J. Han, and N. Deng, “Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser,” Opt. Express 24(8), 8097–8109 (2016).
[Crossref] [PubMed]

X. Liu, S. Yi, X. Zhou, Z. Fang, Z.-J. Qiu, L. Hu, C. Cong, L. Zheng, R. Liu, and P. Tian, “34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation,” Opt. Express 25(22), 27937–27947 (2017).
[Crossref] [PubMed]

C. Shen, Y. Guo, H. M. Oubei, T. K. Ng, G. Liu, K.-H. Park, K.-T. Ho, M.-S. Alouini, and B. S. Ooi, “20-meter underwater wireless optical communication link with 1.5 Gbps data rate,” Opt. Express 24(22), 25502–25509 (2016).
[Crossref] [PubMed]

Y. Chen, M. Kong, T. Ali, J. Wang, R. Sarwar, J. Han, C. Guo, B. Sun, N. Deng, and J. Xu, “26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode,” Opt. Express 25(13), 14760–14765 (2017).
[Crossref] [PubMed]

Other (16)

C. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).

M. Chitre, S. Shahabudeen, L. Freitag, and M. Stojanovic, “Recent advances in underwater acoustic communications networking,” in Proceedings of IEEE Conference on Oceans (IEEE, 2008), pp. 1–10.
[Crossref]

C. Xilin, Q. Fengzhong, and Y. Liuqing, “Single carrier fdma over underwater acoustic channels,” in Proceedings of IEEE Conference on Communications and Networking (IEEE, 2011), pp. 1052–1057.

G. L. Harvey, “A survey of ultraviolet communication systems,” Naval Research Laboratory Technical Report, Washington D.C., March 1964.
[Crossref]

D. E. Sunstein, “A scatter communications link at ultraviolet frequencies,” B.S. Thesis, MIT, Cambridge, MA, 1968.

S. Tang, Y. Dong, and X. Zhang, “On path loss of nlos underwater wireless optical communication links,” inProceedings of IEEE Conference on Oceans (IEEE, 2013), pp. 1–3.

W. Liu, D. Zou, Z. Xu, and J. Yu, “Non-line-of-sight scattering channel modeling for underwater optical wireless communication,” in IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (IEEE, 2015), pp. 1265–1268.
[Crossref]

D. Alley, L. Mullen, and A. Laux, “Compact, dual-wavelength, non-line-of-sight (nlos) underwater imager,” in Proceedings of IEEE Conference on Oceans (IEEE, 2011), pp. 1–5.

M. Jonasz, G. Fournier, and I. ebrary, Light Scattering by Particles in Water: Theoretical and Experimental Foundations (Academic, 2007).

K. J. VA. Choudhary, V. K. Jagadeesh, and P. Muthuchidambaranathan, “Pathloss analysis of nlos underwater wireless optical communication channel,” in Proceedings of IEEE Conference on Oceans on Electronics and Communication Systems (IEEE, 2014), pp. 1–4.
[Crossref]

A. Choudhary, F. M. Bui, and P. Muthuchidambaranathan, “Characterization of channel impulse responses for nlos underwater wireless optical communications,” in Proceedings of IEEE Conference on Advances in Computing and Communications (IEEE, 2014), pp. 77–79.

T. J. Petzold, “Volume Scattering Functions for Selected Ocean Waters,” Visibility Laboratory Tech. Report 72–78, Scripps Institution of Oceanography, San Diego, Calif. (1972).
[Crossref]

N. G. Jerlov, Marine Optics (Elsevier, 1976).

B. Cochenour and L. Mullen, “Free-space optical communications underwater” in Advanced Optical Wireless Communication Systems, J. B. S. Arnon, G. Karagiannidis, R. Schober, and M. Uysal, ed. (Cambridge University, 2012), pp. 201–239.

N. B. Divari, The Height of the Twilight Ray (Springer, 1970).

M. Lanzagorta, Underwater communications (Morgan & Claypool, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup: (a) block diagram indicating various parameters, and (b) an image of the setup.
Fig. 2
Fig. 2 (a) Received power and (b) Contour plot of path loss versus azimuth angles using 375-nm laser diode in clear water at a baseline distance of D = 35 cm.
Fig. 3
Fig. 3 (a) Received power and (b) Contour plot of path loss versus azimuth angles using 405-nm DPSS laser in clear water at a baseline distance of D = 35 cm.
Fig. 4
Fig. 4 Received power and path loss for 375-nm laser when propagating in clear water with a NLOS configuration at baseline distance D = {35, 32.5, 30, 27.5, 25, 22.5} cm under extreme case of φ Tx = 90°, φ Rx = 90°.
Fig. 5
Fig. 5 (a) Received power and path loss for 375-nm laser in four types of water with a baseline distance of D = 35 cm. (b) Photos of beam divergence and scattering under different water turbidity: (i) clear sea water; (ii) coastal water; (iii) harbor I; (iv) harbor II.

Tables (1)

Tables Icon

Table 1 Calculated Maalox amounts for simulating four different types of water.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

PL=10× log 10 ( P t P r )
I 1 λ 4

Metrics