Abstract

Developing the broadband controllable or tunable terahertz (THz) polarization and phase devices are in an urgent need. In this paper, we demonstrate a broadband controllable THz quarter-wave plate (QWP) with double layers of graphene grating and a layer of liquid crystals. The double layer graphene gratings can achieve a switchable QWP to switch between linear-to-linear and linear-to-circular polarization states with over 0.35THz bandwidth in the ON or OFF state by applying biased electric field on the graphene grating or not. Moreover, this QWP based on the structure of periodic gradient grating can significantly enhance the phase difference between two orthogonally polarized components compared to that based on equal-periodic grating structure because of the additional phase distribution of the gradient structures. Furthermore, we incorporate liquid crystals into the graphene grating to form a tunable QWP, of which operating frequency can be continuously tuned in a wide frequency range by electrically controlling the molecular director of the liquid crystals. The results show that the graphene periodic gradient grating with LCs not only broadens the operating bandwidth, but also reduces the external electric field. This device offers a further step in the development of THz polarization and phase devices for potential applications in THz polarized imaging, spectroscopy, and communication.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Switchable quarter-wave plate with graphene based metamaterial for broadband terahertz wave manipulation

Yin Zhang, Yijun Feng, Bo Zhu, Junming Zhao, and Tian Jiang
Opt. Express 23(21) 27230-27239 (2015)

Tunable terahertz wave-plate based on dual-frequency liquid crystal controlled by alternating electric field

Jian-Ping Yu, Sai Chen, Fei Fan, Jie-Rong Cheng, Shi-Tong Xu, Xiang-Hui Wang, and Sheng-Jiang Chang
Opt. Express 26(2) 663-673 (2018)

Liquid-crystal-based magnetically tunable terahertz achromatic quarter-wave plate

Cho-Fan Hsieh, Chan-Shan Yang, Fang-Cih Shih, Ru-Pin Pan, and Ci-Ling Pan
Opt. Express 27(7) 9933-9940 (2019)

References

  • View by:
  • |
  • |
  • |

  1. K. H. Jin, Y. G. Kim, S. H. Cho, J. C. Ye, and D. S. Yee, “High-speed terahertz reflection three-dimensional imaging for nondestructive evaluation,” Opt. Express 20(23), 25432–25440 (2012).
    [Crossref] [PubMed]
  2. W. L. Lu and A. Argyros, “Terahertz spectroscopy and imaging with flexible tube-lattice fiber probe,” J. Lightwave Technol. 32(23), 4019–4025 (2014).
  3. F. Fan, X. Zhang, S. Li, D. Deng, N. Wang, H. Zhang, and S. Chang, “Terahertz transmission and sensing properties of microstructured PMMA tube waveguide,” Opt. Express 23(21), 27204–27212 (2015).
    [Crossref] [PubMed]
  4. H. Shams, M. J. Fice, K. Balakier, C. C. Renaud, F. van Dijk, and A. J. Seeds, “Photonic generation for multichannel THz wireless communication,” Opt. Express 22(19), 23465–23472 (2014).
    [Crossref] [PubMed]
  5. G. C. Wang, J. N. Zhang, B. Zhang, T. He, Y. N. He, and J. L. Shen, “Photo-excited terahertz switch based on composite metamaterial structure,” Opt. Commun. 374, 64–68 (2016).
    [Crossref]
  6. J. Yang, C. Gong, L. Sun, P. Chen, L. Lin, and W. Liu, “Tunable reflecting terahertz filter based on chirped metamaterial structure,” Sci. Rep. 6(1), 38732 (2016).
    [Crossref] [PubMed]
  7. L. Q. Cong, N. N. Xu, W. L. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Opt. Mater. 3(9), 1176–1183 (2015).
    [Crossref]
  8. Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Realizing broadband and invertible linear-to-circular polarization converter with ultrathin single-layer metasurface,” Sci. Rep. 5(1), 18106 (2016).
    [Crossref] [PubMed]
  9. F. Fan, S. T. Xu, X. H. Wang, and S. J. Chang, “Terahertz polarization converter and one-way transmission based on double-layer magneto-plasmonics of magnetized InSb,” Opt. Express 24(23), 26431–26443 (2016).
    [Crossref] [PubMed]
  10. K. Altmann, M. Reuter, K. Garbat, M. Koch, R. Dabrowski, and I. Dierking, “Polymer stabilized liquid crystal phase shifter for terahertz waves,” Opt. Express 21(10), 12395–12400 (2013).
    [Crossref] [PubMed]
  11. Y.-Y. Ji, F. Fan, M. Chen, L. Yang, and S.-J. Chang, “Terahertz artificial birefringence and tunable phase shifter based on dielectric metasurface with compound lattice,” Opt. Express 25(10), 11405–11413 (2017).
    [Crossref] [PubMed]
  12. L. Wang, S. Ge, W. Hu, M. Nakajima, and Y. Lu, “Tunable reflective liquid crystal terahertz waveplates,” Opt. Mater. Express 7(6), 2023–2029 (2017).
    [Crossref]
  13. Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Switchable quarter-wave plate with graphene based metamaterial for broadband terahertz wave manipulation,” Opt. Express 23(21), 27230–27239 (2015).
    [Crossref] [PubMed]
  14. K. Wiesauer and C. Jordens, “Recent advances in birefringence studies at THz frequencies,” J. Infrared Millim. Tech. 34(11), 663–681 (2013).
    [Crossref]
  15. A. K. Kaveev, G. I. Kropotov, E. V. Tsygankova, I. A. Tzibizov, S. D. Ganichev, S. N. Danilov, P. Olbrich, C. Zoth, E. G. Kaveeva, A. I. Zhdanov, A. A. Ivanov, R. Z. Deyanov, and B. Redlich, “Terahertz polarization conversion with quartz waveplate sets,” Appl. Opt. 52(4), B60–B69 (2013).
    [Crossref] [PubMed]
  16. J. B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett. 31(2), 265–267 (2006).
    [Crossref] [PubMed]
  17. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
    [Crossref] [PubMed]
  18. D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
    [Crossref] [PubMed]
  19. L. Q. Cong, N. N. Xu, J. Q. Gu, R. Singh, J. G. Han, and W. L. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
    [Crossref]
  20. R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely Tunable Broadband Polarization Rotator for Terahertz Waves,” Adv. Mater. 27(7), 1201–1206 (2015).
    [Crossref] [PubMed]
  21. Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
    [Crossref]
  22. X. Y. Yu, X. Gao, W. Qiao, L. L. Wen, and W. L. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
    [Crossref]
  23. M. Chen, W. Sun, J. J. Cai, L. Z. Chang, and X. F. Xiao, “Frequency-tunable mid-infrared cross polarization converters based on graphene metasurface,” Plasmonics 12(3), 699–705 (2017).
    [Crossref]
  24. Z. Liu and B. Bai, “Ultra-thin and high-efficiency graphene metasurface for tunable terahertz wave manipulation,” Opt. Express 25(8), 8584–8592 (2017).
    [Crossref] [PubMed]
  25. H. Park, E. P. J. Parrott, F. Fan, M. Lim, H. Han, V. G. Chigrinov, and E. Pickwell-MacPherson, “Evaluating liquid crystal properties for use in terahertz devices,” Opt. Express 20(11), 11899–11905 (2012).
    [Crossref] [PubMed]
  26. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]
  27. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref] [PubMed]
  28. Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
    [Crossref] [PubMed]
  29. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [Crossref] [PubMed]
  30. D. Goldstein and D. H. Goldstein, “The Stokes Polarization Parameters,” in Polarized Light, Revised and Expanded (Marcel Dekker Inc., 2003), pp. 49–81.
  31. L. Wang, X. W. Lin, X. Liang, J. B. Wu, W. Hu, Z. G. Zheng, B. B. Jin, Y. Q. Qin, and Y. Q. Lu, “Large birefringence liquid crystal material in terahertz range,” Opt. Mater. Express 2(10), 1314–1319 (2012).
    [Crossref]
  32. L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
    [Crossref]
  33. I. C. Khoo, D. H. Werner, X. Liang, A. Diaz, and B. Weiner, “Nanosphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and terahertz regimes,” Opt. Lett. 31(17), 2592–2594 (2006).
    [Crossref] [PubMed]

2017 (4)

2016 (6)

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

X. Y. Yu, X. Gao, W. Qiao, L. L. Wen, and W. L. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

G. C. Wang, J. N. Zhang, B. Zhang, T. He, Y. N. He, and J. L. Shen, “Photo-excited terahertz switch based on composite metamaterial structure,” Opt. Commun. 374, 64–68 (2016).
[Crossref]

J. Yang, C. Gong, L. Sun, P. Chen, L. Lin, and W. Liu, “Tunable reflecting terahertz filter based on chirped metamaterial structure,” Sci. Rep. 6(1), 38732 (2016).
[Crossref] [PubMed]

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Realizing broadband and invertible linear-to-circular polarization converter with ultrathin single-layer metasurface,” Sci. Rep. 5(1), 18106 (2016).
[Crossref] [PubMed]

F. Fan, S. T. Xu, X. H. Wang, and S. J. Chang, “Terahertz polarization converter and one-way transmission based on double-layer magneto-plasmonics of magnetized InSb,” Opt. Express 24(23), 26431–26443 (2016).
[Crossref] [PubMed]

2015 (5)

L. Q. Cong, N. N. Xu, W. L. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Opt. Mater. 3(9), 1176–1183 (2015).
[Crossref]

F. Fan, X. Zhang, S. Li, D. Deng, N. Wang, H. Zhang, and S. Chang, “Terahertz transmission and sensing properties of microstructured PMMA tube waveguide,” Opt. Express 23(21), 27204–27212 (2015).
[Crossref] [PubMed]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Switchable quarter-wave plate with graphene based metamaterial for broadband terahertz wave manipulation,” Opt. Express 23(21), 27230–27239 (2015).
[Crossref] [PubMed]

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely Tunable Broadband Polarization Rotator for Terahertz Waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

2014 (5)

2013 (3)

2012 (4)

2011 (1)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

2008 (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

2007 (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

2006 (2)

Altmann, K.

Argyros, A.

Bai, B.

Balakier, K.

Brongersma, M. L.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Cai, J. J.

M. Chen, W. Sun, J. J. Cai, L. Z. Chang, and X. F. Xiao, “Frequency-tunable mid-infrared cross polarization converters based on graphene metasurface,” Plasmonics 12(3), 699–705 (2017).
[Crossref]

Cai, W. S.

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Chang, L. Z.

M. Chen, W. Sun, J. J. Cai, L. Z. Chang, and X. F. Xiao, “Frequency-tunable mid-infrared cross polarization converters based on graphene metasurface,” Plasmonics 12(3), 699–705 (2017).
[Crossref]

Chang, S.

Chang, S. J.

Chang, S.-J.

Chen, H. S.

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Chen, M.

M. Chen, W. Sun, J. J. Cai, L. Z. Chang, and X. F. Xiao, “Frequency-tunable mid-infrared cross polarization converters based on graphene metasurface,” Plasmonics 12(3), 699–705 (2017).
[Crossref]

Y.-Y. Ji, F. Fan, M. Chen, L. Yang, and S.-J. Chang, “Terahertz artificial birefringence and tunable phase shifter based on dielectric metasurface with compound lattice,” Opt. Express 25(10), 11405–11413 (2017).
[Crossref] [PubMed]

Chen, P.

J. Yang, C. Gong, L. Sun, P. Chen, L. Lin, and W. Liu, “Tunable reflecting terahertz filter based on chirped metamaterial structure,” Sci. Rep. 6(1), 38732 (2016).
[Crossref] [PubMed]

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Chen, S.

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Realizing broadband and invertible linear-to-circular polarization converter with ultrathin single-layer metasurface,” Sci. Rep. 5(1), 18106 (2016).
[Crossref] [PubMed]

Cheng, H.

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Realizing broadband and invertible linear-to-circular polarization converter with ultrathin single-layer metasurface,” Sci. Rep. 5(1), 18106 (2016).
[Crossref] [PubMed]

Chigrinov, V. G.

Cho, S. H.

Cong, L. Q.

L. Q. Cong, N. N. Xu, W. L. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Opt. Mater. 3(9), 1176–1183 (2015).
[Crossref]

L. Q. Cong, N. N. Xu, J. Q. Gu, R. Singh, J. G. Han, and W. L. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Dabrowski, R.

Danilov, S. N.

Deng, D.

Deyanov, R. Z.

Diaz, A.

Dierking, I.

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Fan, F.

Fan, P.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Fan, R. H.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely Tunable Broadband Polarization Rotator for Terahertz Waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Feng, Y.

Fice, M. J.

Gallot, G.

Ganichev, S. D.

Gao, X.

X. Y. Yu, X. Gao, W. Qiao, L. L. Wen, and W. L. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

Garbat, K.

Ge, S.

Geim, A. K.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Gong, C.

J. Yang, C. Gong, L. Sun, P. Chen, L. Lin, and W. Liu, “Tunable reflecting terahertz filter based on chirped metamaterial structure,” Sci. Rep. 6(1), 38732 (2016).
[Crossref] [PubMed]

Gu, J. Q.

L. Q. Cong, N. N. Xu, J. Q. Gu, R. Singh, J. G. Han, and W. L. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Han, H.

Han, J. G.

L. Q. Cong, N. N. Xu, J. Q. Gu, R. Singh, J. G. Han, and W. L. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

Hasman, E.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

He, T.

G. C. Wang, J. N. Zhang, B. Zhang, T. He, Y. N. He, and J. L. Shen, “Photo-excited terahertz switch based on composite metamaterial structure,” Opt. Commun. 374, 64–68 (2016).
[Crossref]

He, Y. N.

G. C. Wang, J. N. Zhang, B. Zhang, T. He, Y. N. He, and J. L. Shen, “Photo-excited terahertz switch based on composite metamaterial structure,” Opt. Commun. 374, 64–68 (2016).
[Crossref]

Hu, W.

L. Wang, S. Ge, W. Hu, M. Nakajima, and Y. Lu, “Tunable reflective liquid crystal terahertz waveplates,” Opt. Mater. Express 7(6), 2023–2029 (2017).
[Crossref]

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

L. Wang, X. W. Lin, X. Liang, J. B. Wu, W. Hu, Z. G. Zheng, B. B. Jin, Y. Q. Qin, and Y. Q. Lu, “Large birefringence liquid crystal material in terahertz range,” Opt. Mater. Express 2(10), 1314–1319 (2012).
[Crossref]

Huang, X. R.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely Tunable Broadband Polarization Rotator for Terahertz Waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Ivanov, A. A.

Ji, Y.-Y.

Jia, H.

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Jiang, S. C.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely Tunable Broadband Polarization Rotator for Terahertz Waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Jiang, T.

Jin, B. B.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

L. Wang, X. W. Lin, X. Liang, J. B. Wu, W. Hu, Z. G. Zheng, B. B. Jin, Y. Q. Qin, and Y. Q. Lu, “Large birefringence liquid crystal material in terahertz range,” Opt. Mater. Express 2(10), 1314–1319 (2012).
[Crossref]

Jin, K. H.

Jordens, C.

K. Wiesauer and C. Jordens, “Recent advances in birefringence studies at THz frequencies,” J. Infrared Millim. Tech. 34(11), 663–681 (2013).
[Crossref]

Kaveev, A. K.

Kaveeva, E. G.

Khoo, I. C.

Kim, Y. G.

Kivshar, Y. S.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Koch, M.

Kropotov, G. I.

Li, S.

Li, Z.

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Realizing broadband and invertible linear-to-circular polarization converter with ultrathin single-layer metasurface,” Sci. Rep. 5(1), 18106 (2016).
[Crossref] [PubMed]

Liang, L. J.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Liang, X.

Lim, M.

Lin, D.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Lin, L.

J. Yang, C. Gong, L. Sun, P. Chen, L. Lin, and W. Liu, “Tunable reflecting terahertz filter based on chirped metamaterial structure,” Sci. Rep. 6(1), 38732 (2016).
[Crossref] [PubMed]

Lin, X. W.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

L. Wang, X. W. Lin, X. Liang, J. B. Wu, W. Hu, Z. G. Zheng, B. B. Jin, Y. Q. Qin, and Y. Q. Lu, “Large birefringence liquid crystal material in terahertz range,” Opt. Mater. Express 2(10), 1314–1319 (2012).
[Crossref]

Liu, W.

J. Yang, C. Gong, L. Sun, P. Chen, L. Lin, and W. Liu, “Tunable reflecting terahertz filter based on chirped metamaterial structure,” Sci. Rep. 6(1), 38732 (2016).
[Crossref] [PubMed]

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Realizing broadband and invertible linear-to-circular polarization converter with ultrathin single-layer metasurface,” Sci. Rep. 5(1), 18106 (2016).
[Crossref] [PubMed]

Liu, Y. M.

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Liu, Z.

Lu, W. L.

Lu, Y.

Lu, Y. N.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Lu, Y. Q.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

L. Wang, X. W. Lin, X. Liang, J. B. Wu, W. Hu, Z. G. Zheng, B. B. Jin, Y. Q. Qin, and Y. Q. Lu, “Large birefringence liquid crystal material in terahertz range,” Opt. Mater. Express 2(10), 1314–1319 (2012).
[Crossref]

Masson, J. B.

Nakajima, M.

Novoselov, K. S.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Olbrich, P.

Park, H.

Parrott, E. P. J.

Peng, R. W.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely Tunable Broadband Polarization Rotator for Terahertz Waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Pickwell-MacPherson, E.

Qian, H.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Qiao, W.

X. Y. Yu, X. Gao, W. Qiao, L. L. Wen, and W. L. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

Qin, Y. Q.

Redlich, B.

Ren, X. P.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely Tunable Broadband Polarization Rotator for Terahertz Waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Renaud, C. C.

Reuter, M.

Seeds, A. J.

Shams, H.

Shao, G. H.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Shen, J. L.

G. C. Wang, J. N. Zhang, B. Zhang, T. He, Y. N. He, and J. L. Shen, “Photo-excited terahertz switch based on composite metamaterial structure,” Opt. Commun. 374, 64–68 (2016).
[Crossref]

Singh, R.

L. Q. Cong, N. N. Xu, W. L. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Opt. Mater. 3(9), 1176–1183 (2015).
[Crossref]

L. Q. Cong, N. N. Xu, J. Q. Gu, R. Singh, J. G. Han, and W. L. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Sun, L.

J. Yang, C. Gong, L. Sun, P. Chen, L. Lin, and W. Liu, “Tunable reflecting terahertz filter based on chirped metamaterial structure,” Sci. Rep. 6(1), 38732 (2016).
[Crossref] [PubMed]

Sun, W.

M. Chen, W. Sun, J. J. Cai, L. Z. Chang, and X. F. Xiao, “Frequency-tunable mid-infrared cross polarization converters based on graphene metasurface,” Plasmonics 12(3), 699–705 (2017).
[Crossref]

Tian, J.

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Realizing broadband and invertible linear-to-circular polarization converter with ultrathin single-layer metasurface,” Sci. Rep. 5(1), 18106 (2016).
[Crossref] [PubMed]

Tsygankova, E. V.

Tzibizov, I. A.

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

van Dijk, F.

Wang, G. C.

G. C. Wang, J. N. Zhang, B. Zhang, T. He, Y. N. He, and J. L. Shen, “Photo-excited terahertz switch based on composite metamaterial structure,” Opt. Commun. 374, 64–68 (2016).
[Crossref]

Wang, L.

L. Wang, S. Ge, W. Hu, M. Nakajima, and Y. Lu, “Tunable reflective liquid crystal terahertz waveplates,” Opt. Mater. Express 7(6), 2023–2029 (2017).
[Crossref]

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

L. Wang, X. W. Lin, X. Liang, J. B. Wu, W. Hu, Z. G. Zheng, B. B. Jin, Y. Q. Qin, and Y. Q. Lu, “Large birefringence liquid crystal material in terahertz range,” Opt. Mater. Express 2(10), 1314–1319 (2012).
[Crossref]

Wang, M.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely Tunable Broadband Polarization Rotator for Terahertz Waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Wang, N.

Wang, X. H.

Wang, Z. J.

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Weiner, B.

Wen, L. L.

X. Y. Yu, X. Gao, W. Qiao, L. L. Wen, and W. L. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

Werner, D. H.

Wiesauer, K.

K. Wiesauer and C. Jordens, “Recent advances in birefringence studies at THz frequencies,” J. Infrared Millim. Tech. 34(11), 663–681 (2013).
[Crossref]

Wu, J. B.

Wu, P. H.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Xiao, X. F.

M. Chen, W. Sun, J. J. Cai, L. Z. Chang, and X. F. Xiao, “Frequency-tunable mid-infrared cross polarization converters based on graphene metasurface,” Plasmonics 12(3), 699–705 (2017).
[Crossref]

Xiong, X.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely Tunable Broadband Polarization Rotator for Terahertz Waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Xu, D. H.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely Tunable Broadband Polarization Rotator for Terahertz Waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Xu, N. N.

L. Q. Cong, N. N. Xu, W. L. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Opt. Mater. 3(9), 1176–1183 (2015).
[Crossref]

L. Q. Cong, N. N. Xu, J. Q. Gu, R. Singh, J. G. Han, and W. L. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Xu, S. T.

Yang, J.

J. Yang, C. Gong, L. Sun, P. Chen, L. Lin, and W. Liu, “Tunable reflecting terahertz filter based on chirped metamaterial structure,” Sci. Rep. 6(1), 38732 (2016).
[Crossref] [PubMed]

Yang, L.

Yang, W. L.

X. Y. Yu, X. Gao, W. Qiao, L. L. Wen, and W. L. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

Yao, K.

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Ye, J. C.

Yee, D. S.

Yu, X. Y.

X. Y. Yu, X. Gao, W. Qiao, L. L. Wen, and W. L. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

Zhang, B.

G. C. Wang, J. N. Zhang, B. Zhang, T. He, Y. N. He, and J. L. Shen, “Photo-excited terahertz switch based on composite metamaterial structure,” Opt. Commun. 374, 64–68 (2016).
[Crossref]

Zhang, H.

Zhang, J. N.

G. C. Wang, J. N. Zhang, B. Zhang, T. He, Y. N. He, and J. L. Shen, “Photo-excited terahertz switch based on composite metamaterial structure,” Opt. Commun. 374, 64–68 (2016).
[Crossref]

Zhang, W. L.

L. Q. Cong, N. N. Xu, W. L. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Opt. Mater. 3(9), 1176–1183 (2015).
[Crossref]

L. Q. Cong, N. N. Xu, J. Q. Gu, R. Singh, J. G. Han, and W. L. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Zhang, X.

Zhang, Y.

Zhao, J.

Zhdanov, A. I.

Zheludev, N. I.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Zheng, Z. G.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

L. Wang, X. W. Lin, X. Liang, J. B. Wu, W. Hu, Z. G. Zheng, B. B. Jin, Y. Q. Qin, and Y. Q. Lu, “Large birefringence liquid crystal material in terahertz range,” Opt. Mater. Express 2(10), 1314–1319 (2012).
[Crossref]

Zhou, Y.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely Tunable Broadband Polarization Rotator for Terahertz Waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Zhu, B.

Zoth, C.

ACS Photonics (1)

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Adv. Mater. (1)

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely Tunable Broadband Polarization Rotator for Terahertz Waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

L. Q. Cong, N. N. Xu, W. L. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Opt. Mater. 3(9), 1176–1183 (2015).
[Crossref]

Appl. Opt. (1)

IEEE Photonics Technol. Lett. (1)

X. Y. Yu, X. Gao, W. Qiao, L. L. Wen, and W. L. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

J. Appl. Phys. (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

J. Infrared Millim. Tech. (1)

K. Wiesauer and C. Jordens, “Recent advances in birefringence studies at THz frequencies,” J. Infrared Millim. Tech. 34(11), 663–681 (2013).
[Crossref]

J. Lightwave Technol. (1)

Laser Photonics Rev. (1)

L. Q. Cong, N. N. Xu, J. Q. Gu, R. Singh, J. G. Han, and W. L. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Light Sci. Appl. (1)

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Nat. Mater. (2)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Opt. Commun. (1)

G. C. Wang, J. N. Zhang, B. Zhang, T. He, Y. N. He, and J. L. Shen, “Photo-excited terahertz switch based on composite metamaterial structure,” Opt. Commun. 374, 64–68 (2016).
[Crossref]

Opt. Express (10)

F. Fan, X. Zhang, S. Li, D. Deng, N. Wang, H. Zhang, and S. Chang, “Terahertz transmission and sensing properties of microstructured PMMA tube waveguide,” Opt. Express 23(21), 27204–27212 (2015).
[Crossref] [PubMed]

H. Shams, M. J. Fice, K. Balakier, C. C. Renaud, F. van Dijk, and A. J. Seeds, “Photonic generation for multichannel THz wireless communication,” Opt. Express 22(19), 23465–23472 (2014).
[Crossref] [PubMed]

F. Fan, S. T. Xu, X. H. Wang, and S. J. Chang, “Terahertz polarization converter and one-way transmission based on double-layer magneto-plasmonics of magnetized InSb,” Opt. Express 24(23), 26431–26443 (2016).
[Crossref] [PubMed]

K. Altmann, M. Reuter, K. Garbat, M. Koch, R. Dabrowski, and I. Dierking, “Polymer stabilized liquid crystal phase shifter for terahertz waves,” Opt. Express 21(10), 12395–12400 (2013).
[Crossref] [PubMed]

Y.-Y. Ji, F. Fan, M. Chen, L. Yang, and S.-J. Chang, “Terahertz artificial birefringence and tunable phase shifter based on dielectric metasurface with compound lattice,” Opt. Express 25(10), 11405–11413 (2017).
[Crossref] [PubMed]

K. H. Jin, Y. G. Kim, S. H. Cho, J. C. Ye, and D. S. Yee, “High-speed terahertz reflection three-dimensional imaging for nondestructive evaluation,” Opt. Express 20(23), 25432–25440 (2012).
[Crossref] [PubMed]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Switchable quarter-wave plate with graphene based metamaterial for broadband terahertz wave manipulation,” Opt. Express 23(21), 27230–27239 (2015).
[Crossref] [PubMed]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
[Crossref] [PubMed]

Z. Liu and B. Bai, “Ultra-thin and high-efficiency graphene metasurface for tunable terahertz wave manipulation,” Opt. Express 25(8), 8584–8592 (2017).
[Crossref] [PubMed]

H. Park, E. P. J. Parrott, F. Fan, M. Lim, H. Han, V. G. Chigrinov, and E. Pickwell-MacPherson, “Evaluating liquid crystal properties for use in terahertz devices,” Opt. Express 20(11), 11899–11905 (2012).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Mater. Express (2)

Plasmonics (1)

M. Chen, W. Sun, J. J. Cai, L. Z. Chang, and X. F. Xiao, “Frequency-tunable mid-infrared cross polarization converters based on graphene metasurface,” Plasmonics 12(3), 699–705 (2017).
[Crossref]

Sci. Rep. (2)

J. Yang, C. Gong, L. Sun, P. Chen, L. Lin, and W. Liu, “Tunable reflecting terahertz filter based on chirped metamaterial structure,” Sci. Rep. 6(1), 38732 (2016).
[Crossref] [PubMed]

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Realizing broadband and invertible linear-to-circular polarization converter with ultrathin single-layer metasurface,” Sci. Rep. 5(1), 18106 (2016).
[Crossref] [PubMed]

Science (2)

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Other (1)

D. Goldstein and D. H. Goldstein, “The Stokes Polarization Parameters,” in Polarized Light, Revised and Expanded (Marcel Dekker Inc., 2003), pp. 49–81.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The schematic diagram of the graphene gratings operating as switchable QWP: (a) EPG; (b) PGG, and the parameters are the following: W = 12μm, g = 8μm, P = 200μm, W1 = 24μm, W2 = 28μm, W3 = 32μm, W4 = 36μm, t1 = 10μm, td = 50nm. The structure of the graphene electrodes is also inserted in this figure.
Fig. 2
Fig. 2 Co-polarized and cross-polarized amplitude transmissions, polarization azimuth angles, and the corresponding ellipticities of the graphene gratings in the OFF state: (a) EPG; (b) PGG.
Fig. 3
Fig. 3 Co-polarized and cross-polarized amplitude transmissions, phase differences between orthogonal components, and the corresponding ellipticities of the graphene gratings in the ON state: (a) EPG; (b) PGG.
Fig. 4
Fig. 4 Schematic diagram of the broadband tunable QWP based on graphene grating with LCs: (a) EPGLC; (b) PGGLC, and the thickness of LCs layer is t2 = 250μm.
Fig. 5
Fig. 5 Phase difference of the graphene grating with LCs oriented different director angles at different frequencies in the ON state: (a) EPGLC; (b) PGGLC. The red solid lines and blue dashed lines indicate the phase difference is just equal to 0.5π and 1.5π. (c) Comparison of operating curves of these two QWPs.
Fig. 6
Fig. 6 Transmissions, phase differences and the corresponding ellipticities of these two QWPs in the ON state at different operating frequencies: (a) EPGLC, f = 0.9THz; (b) EPGLC, f = 1.6THz; (c) PGGLC, f = 0.7THz; (d) PGGLC, f = 1.6THz.
Fig. 7
Fig. 7 Transmissions, phase differences and the corresponding ellipticities of the broadband tunable QWP based on the PGGLC structure in the ON state at different operating frequencies: (a) f = 1.45THz; (b) f = 1.6THz.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

σ = σ i n t e r ( ω , Γ , μ c , T ) + σ i n t r a ( ω , Γ , μ c , T ) σ i n t e r ( ω , Γ , μ c , T ) = i e 2 π 2 ( ω i 2 Γ ) 0 ε [ f d ( ε ) ε f d ( ε ) ε ] d ε , σ i n t r a ( ω , Γ , μ c , T ) = i e 2 ( ω i 2 Γ ) π 2 0 f d ( ε ) f d ( ε ) ( ω i 2 Γ ) 2 4 ( ε / ) 2 d ε
μ c = E F υ f π ε d ε 0 V g e t d ,
S 0 = T x x 2 + T y x 2 S 1 = T x x 2 T y x 2 . S 2 = 2 T x x T y x cos φ S 3 = 2 T x x T y x sin φ
Δ k = Δ k g + Δ k a = Δ n e f f ω c ,
n L C = [ n x x = n e f f x 0 0 0 n y y = n e f f y 0 0 0 n z z = n o ] , n e f f x ( θ ) = n o n e / n o 2 cos 2 θ + n e 2 sin 2 θ , n e f f y ( θ ) = n o n e / n o 2 sin 2 θ + n e 2 cos 2 θ .
φ = φ 0 + 2 × ( n e f f y n e f f x ) × t 2 / ( c / f ) ,

Metrics