Abstract

A novel method to detect different sizes of micro-particles using a fiber Bragg grating Fabry-Pérot (FBG-FP) flow cytometer is presented. The chip is composed of a FBG-FP cavity integrated in a microfluidic channel. Solution with three different sizes of polystyrene particles flowing through the channel induces variations in the transmission spectrum of the FBG-FP cavity. Theoretical and experimental data show that different sizes of particles reveal different resonant wavelengths with a good resonance shift sensitivity of 10-5. Additionally, the chip is easy to fabricate and features with non-contact and label-free operation. This study demonstrates a promising potential of the FBG-FP flow cytometer in medical and biological sensing.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Refractometer based on fiber Bragg grating Fabry-Pérot cavity embedded with a narrow microchannel

Kaiming Zhou, Zhijun Yan, Lin Zhang, and Ian Bennion
Opt. Express 19(12) 11769-11779 (2011)

Microfluidic flowmeter based on micro “hot-wire” sandwiched Fabry-Perot interferometer

Ying Li, Guofeng Yan, Liang Zhang, and Sailing He
Opt. Express 23(7) 9483-9493 (2015)

Micro flow cytometer with self-aligned 3D hydrodynamic focusing

Genni Testa, Gianluca Persichetti, and Romeo Bernini
Biomed. Opt. Express 6(1) 54-62 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. G. Ferreira and A. D. Andricopulo, “From Protein Structure to Small-Molecules: Recent Advances and Applications to Fragment-Based Drug Discovery,” Curr. Top. Med. Chem. 17(20), 2260–2270 (2017).
    [Crossref] [PubMed]
  2. O. Dietrich, A. Hubert, and S. Heiland, “Imaging cell size and permeability in biological tissue using the diffusion-time dependence of the apparent diffusion coefficient,” Phys. Med. Biol. 59(12), 3081–3096 (2014).
    [Crossref] [PubMed]
  3. T. Devkota, M. S. Devadas, A. Brown, J. Talghader, and G. V. Hartland, “Spatial modulation spectroscopy imaging of nano-objects of different sizes and shapes,” Appl. Opt. 55(4), 796–801 (2016).
    [Crossref] [PubMed]
  4. D. J. Collins, A. Neild, and Y. Ai, “Highly focused high-frequency travelling surface acoustic waves (SAW) for rapid single-particle sorting,” Lab Chip 16(3), 471–479 (2016).
    [Crossref] [PubMed]
  5. M. E. Warkiani, L. Wu, A. K. P. Tay, and J. Han, “Large-Volume Microfluidic Cell Sorting for Biomedical Applications,” Annu. Rev. Biomed. Eng. 17(1), 1–34 (2015).
    [Crossref] [PubMed]
  6. Y. Yang, C. L. Long, H. P. Li, Q. Wang, and Z. G. Yang, “Analysis of silver and gold nanoparticles in environmental water using single particle-inductively coupled plasma-mass spectrometry,” Sci. Total Environ. 563-564, 996–1007 (2016).
    [Crossref] [PubMed]
  7. N. T. Huang, H. L. Zhang, M. T. Chung, J. H. Seo, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14(7), 1230–1245 (2014).
    [Crossref] [PubMed]
  8. T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
    [Crossref] [PubMed]
  9. W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89(20), 203901 (2006).
    [Crossref]
  10. N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Live cell refractometry using microfluidic devices,” Opt. Lett. 31(18), 2759–2761 (2006).
    [Crossref] [PubMed]
  11. H. Shao, D. Kumar, and K. L. Lear, “Single cell detection using optofluidic intracavity spectroscopy,” IEEE Sens. J. 6(6), 1543–1550 (2006).
    [Crossref]
  12. H. Shao, W. Wang, S. E. Lana, and K. L. Lear, “Optofluidic intracavity spectroscopy of canine lymphoma and lymphocytes,” IEEE Photonics Technol. Lett. 20(7), 493–495 (2008).
    [Crossref]
  13. G. Breton, J. Lee, K. Liu, and M. C. Nussenzweig, “Defining human dendritic cell progenitors by multiparametric flow cytometry,” Nat. Protoc. 10(9), 1407–1422 (2015).
    [Crossref] [PubMed]
  14. E. van der Pol, F. A. Coumans, A. E. Grootemaat, C. Gardiner, I. L. Sargent, P. Harrison, A. Sturk, T. G. van Leeuwen, and R. Nieuwland, “Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing,” J. Thromb. Haemost. 12(7), 1182–1192 (2014).
    [Crossref] [PubMed]
  15. L. Kong, J. Tang, and M. Cui, “Multicolor multiphoton in vivo imaging flow cytometry,” Opt. Express 24(6), 6126–6135 (2016).
    [Crossref] [PubMed]
  16. C. E. Pedreira, E. S. Costa, Q. Lecrevisse, J. J. van Dongen, and A. Orfao, “Overview of clinical flow cytometry data analysis: recent advances and future challenges,” Trends Biotechnol. 31(7), 415–425 (2013).
    [Crossref] [PubMed]
  17. P. Fei, Z. Chen, Y. Men, A. Li, Y. Shen, and Y. Huang, “A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides,” Lab Chip 12(19), 3700–3706 (2012).
    [Crossref] [PubMed]
  18. A. Kotnala and R. Gordon, “Quantification of High-Efficiency Trapping of Nanoparticles in a Double Nanohole Optical Tweezer,” Nano Lett. 14(2), 853–856 (2014).
    [Crossref] [PubMed]
  19. R. M. Cooper, D. C. Leslie, K. Domansky, A. Jain, C. Yung, M. Cho, S. Workman, M. Super, and D. E. Ingber, “A microdevice for rapid optical detection of magnetically captured rare blood pathogens,” Lab Chip 14(1), 182–188 (2014).
    [Crossref] [PubMed]
  20. H. Wang, N. Sobahi, and A. Han, “Impedance spectroscopy-based cell/particle position detection in microfluidic systems,” Lab Chip 17(7), 1264–1269 (2017).
    [Crossref] [PubMed]
  21. R. Kishor, Z. Mac, S. Sreejithd, Y. P. Seahe, H. Wang, Y. Ai, Z. Wange, T. Limf, and Y. Zheng, “Real time size-dependent particle segregation and quantitative detection in a surface acoustic wave-photoacoustic integrated microfluidic system,” Sens. Actuators B Chem. 252, 568–576 (2017).
    [Crossref]
  22. P. Malara, C. E. Campanella, A. Giorgini, S. Avino, and G. Gagliardi, “Fiber Bragg grating laser sensor with direct radio-frequency readout,” Opt. Lett. 41(7), 1420–1422 (2016).
    [Crossref] [PubMed]
  23. C. Liao, L. Xu, C. Wang, D. N. Wang, Y. Wang, Q. Wang, K. Yang, Z. Li, X. Zhong, J. Zhou, and Y. Liu, “Tunable phase-shifted fiber Bragg grating based on femtosecond laser fabricated in-grating bubble,” Opt. Lett. 38(21), 4473–4476 (2013).
    [Crossref] [PubMed]
  24. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University, 2006).
  25. G. P. Agrawal and S. Radic, “Phase-shift fiber Bragg grating and their application for wavelength demultiplexing,” IEEE Photonics Technol. Lett. 6(8), 995–997 (1994).
    [Crossref]

2017 (3)

L. G. Ferreira and A. D. Andricopulo, “From Protein Structure to Small-Molecules: Recent Advances and Applications to Fragment-Based Drug Discovery,” Curr. Top. Med. Chem. 17(20), 2260–2270 (2017).
[Crossref] [PubMed]

H. Wang, N. Sobahi, and A. Han, “Impedance spectroscopy-based cell/particle position detection in microfluidic systems,” Lab Chip 17(7), 1264–1269 (2017).
[Crossref] [PubMed]

R. Kishor, Z. Mac, S. Sreejithd, Y. P. Seahe, H. Wang, Y. Ai, Z. Wange, T. Limf, and Y. Zheng, “Real time size-dependent particle segregation and quantitative detection in a surface acoustic wave-photoacoustic integrated microfluidic system,” Sens. Actuators B Chem. 252, 568–576 (2017).
[Crossref]

2016 (5)

P. Malara, C. E. Campanella, A. Giorgini, S. Avino, and G. Gagliardi, “Fiber Bragg grating laser sensor with direct radio-frequency readout,” Opt. Lett. 41(7), 1420–1422 (2016).
[Crossref] [PubMed]

T. Devkota, M. S. Devadas, A. Brown, J. Talghader, and G. V. Hartland, “Spatial modulation spectroscopy imaging of nano-objects of different sizes and shapes,” Appl. Opt. 55(4), 796–801 (2016).
[Crossref] [PubMed]

D. J. Collins, A. Neild, and Y. Ai, “Highly focused high-frequency travelling surface acoustic waves (SAW) for rapid single-particle sorting,” Lab Chip 16(3), 471–479 (2016).
[Crossref] [PubMed]

Y. Yang, C. L. Long, H. P. Li, Q. Wang, and Z. G. Yang, “Analysis of silver and gold nanoparticles in environmental water using single particle-inductively coupled plasma-mass spectrometry,” Sci. Total Environ. 563-564, 996–1007 (2016).
[Crossref] [PubMed]

L. Kong, J. Tang, and M. Cui, “Multicolor multiphoton in vivo imaging flow cytometry,” Opt. Express 24(6), 6126–6135 (2016).
[Crossref] [PubMed]

2015 (3)

G. Breton, J. Lee, K. Liu, and M. C. Nussenzweig, “Defining human dendritic cell progenitors by multiparametric flow cytometry,” Nat. Protoc. 10(9), 1407–1422 (2015).
[Crossref] [PubMed]

M. E. Warkiani, L. Wu, A. K. P. Tay, and J. Han, “Large-Volume Microfluidic Cell Sorting for Biomedical Applications,” Annu. Rev. Biomed. Eng. 17(1), 1–34 (2015).
[Crossref] [PubMed]

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref] [PubMed]

2014 (5)

O. Dietrich, A. Hubert, and S. Heiland, “Imaging cell size and permeability in biological tissue using the diffusion-time dependence of the apparent diffusion coefficient,” Phys. Med. Biol. 59(12), 3081–3096 (2014).
[Crossref] [PubMed]

E. van der Pol, F. A. Coumans, A. E. Grootemaat, C. Gardiner, I. L. Sargent, P. Harrison, A. Sturk, T. G. van Leeuwen, and R. Nieuwland, “Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing,” J. Thromb. Haemost. 12(7), 1182–1192 (2014).
[Crossref] [PubMed]

N. T. Huang, H. L. Zhang, M. T. Chung, J. H. Seo, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14(7), 1230–1245 (2014).
[Crossref] [PubMed]

A. Kotnala and R. Gordon, “Quantification of High-Efficiency Trapping of Nanoparticles in a Double Nanohole Optical Tweezer,” Nano Lett. 14(2), 853–856 (2014).
[Crossref] [PubMed]

R. M. Cooper, D. C. Leslie, K. Domansky, A. Jain, C. Yung, M. Cho, S. Workman, M. Super, and D. E. Ingber, “A microdevice for rapid optical detection of magnetically captured rare blood pathogens,” Lab Chip 14(1), 182–188 (2014).
[Crossref] [PubMed]

2013 (2)

C. E. Pedreira, E. S. Costa, Q. Lecrevisse, J. J. van Dongen, and A. Orfao, “Overview of clinical flow cytometry data analysis: recent advances and future challenges,” Trends Biotechnol. 31(7), 415–425 (2013).
[Crossref] [PubMed]

C. Liao, L. Xu, C. Wang, D. N. Wang, Y. Wang, Q. Wang, K. Yang, Z. Li, X. Zhong, J. Zhou, and Y. Liu, “Tunable phase-shifted fiber Bragg grating based on femtosecond laser fabricated in-grating bubble,” Opt. Lett. 38(21), 4473–4476 (2013).
[Crossref] [PubMed]

2012 (1)

P. Fei, Z. Chen, Y. Men, A. Li, Y. Shen, and Y. Huang, “A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides,” Lab Chip 12(19), 3700–3706 (2012).
[Crossref] [PubMed]

2008 (1)

H. Shao, W. Wang, S. E. Lana, and K. L. Lear, “Optofluidic intracavity spectroscopy of canine lymphoma and lymphocytes,” IEEE Photonics Technol. Lett. 20(7), 493–495 (2008).
[Crossref]

2006 (3)

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89(20), 203901 (2006).
[Crossref]

N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Live cell refractometry using microfluidic devices,” Opt. Lett. 31(18), 2759–2761 (2006).
[Crossref] [PubMed]

H. Shao, D. Kumar, and K. L. Lear, “Single cell detection using optofluidic intracavity spectroscopy,” IEEE Sens. J. 6(6), 1543–1550 (2006).
[Crossref]

1994 (1)

G. P. Agrawal and S. Radic, “Phase-shift fiber Bragg grating and their application for wavelength demultiplexing,” IEEE Photonics Technol. Lett. 6(8), 995–997 (1994).
[Crossref]

Agrawal, G. P.

G. P. Agrawal and S. Radic, “Phase-shift fiber Bragg grating and their application for wavelength demultiplexing,” IEEE Photonics Technol. Lett. 6(8), 995–997 (1994).
[Crossref]

Ai, Y.

R. Kishor, Z. Mac, S. Sreejithd, Y. P. Seahe, H. Wang, Y. Ai, Z. Wange, T. Limf, and Y. Zheng, “Real time size-dependent particle segregation and quantitative detection in a surface acoustic wave-photoacoustic integrated microfluidic system,” Sens. Actuators B Chem. 252, 568–576 (2017).
[Crossref]

D. J. Collins, A. Neild, and Y. Ai, “Highly focused high-frequency travelling surface acoustic waves (SAW) for rapid single-particle sorting,” Lab Chip 16(3), 471–479 (2016).
[Crossref] [PubMed]

Andricopulo, A. D.

L. G. Ferreira and A. D. Andricopulo, “From Protein Structure to Small-Molecules: Recent Advances and Applications to Fragment-Based Drug Discovery,” Curr. Top. Med. Chem. 17(20), 2260–2270 (2017).
[Crossref] [PubMed]

Avino, S.

Badizadegan, K.

Bragheri, F.

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref] [PubMed]

Breton, G.

G. Breton, J. Lee, K. Liu, and M. C. Nussenzweig, “Defining human dendritic cell progenitors by multiparametric flow cytometry,” Nat. Protoc. 10(9), 1407–1422 (2015).
[Crossref] [PubMed]

Brown, A.

Campanella, C. E.

Chen, Z.

P. Fei, Z. Chen, Y. Men, A. Li, Y. Shen, and Y. Huang, “A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides,” Lab Chip 12(19), 3700–3706 (2012).
[Crossref] [PubMed]

Cho, M.

R. M. Cooper, D. C. Leslie, K. Domansky, A. Jain, C. Yung, M. Cho, S. Workman, M. Super, and D. E. Ingber, “A microdevice for rapid optical detection of magnetically captured rare blood pathogens,” Lab Chip 14(1), 182–188 (2014).
[Crossref] [PubMed]

Chung, M. T.

N. T. Huang, H. L. Zhang, M. T. Chung, J. H. Seo, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14(7), 1230–1245 (2014).
[Crossref] [PubMed]

Collins, D. J.

D. J. Collins, A. Neild, and Y. Ai, “Highly focused high-frequency travelling surface acoustic waves (SAW) for rapid single-particle sorting,” Lab Chip 16(3), 471–479 (2016).
[Crossref] [PubMed]

Cooper, R. M.

R. M. Cooper, D. C. Leslie, K. Domansky, A. Jain, C. Yung, M. Cho, S. Workman, M. Super, and D. E. Ingber, “A microdevice for rapid optical detection of magnetically captured rare blood pathogens,” Lab Chip 14(1), 182–188 (2014).
[Crossref] [PubMed]

Costa, E. S.

C. E. Pedreira, E. S. Costa, Q. Lecrevisse, J. J. van Dongen, and A. Orfao, “Overview of clinical flow cytometry data analysis: recent advances and future challenges,” Trends Biotechnol. 31(7), 415–425 (2013).
[Crossref] [PubMed]

Coumans, F. A.

E. van der Pol, F. A. Coumans, A. E. Grootemaat, C. Gardiner, I. L. Sargent, P. Harrison, A. Sturk, T. G. van Leeuwen, and R. Nieuwland, “Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing,” J. Thromb. Haemost. 12(7), 1182–1192 (2014).
[Crossref] [PubMed]

Cristiani, I.

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref] [PubMed]

Cui, M.

Dasari, R. R.

Devadas, M. S.

Devkota, T.

Di Tano, M.

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref] [PubMed]

Dietrich, O.

O. Dietrich, A. Hubert, and S. Heiland, “Imaging cell size and permeability in biological tissue using the diffusion-time dependence of the apparent diffusion coefficient,” Phys. Med. Biol. 59(12), 3081–3096 (2014).
[Crossref] [PubMed]

Domansky, K.

R. M. Cooper, D. C. Leslie, K. Domansky, A. Jain, C. Yung, M. Cho, S. Workman, M. Super, and D. E. Ingber, “A microdevice for rapid optical detection of magnetically captured rare blood pathogens,” Lab Chip 14(1), 182–188 (2014).
[Crossref] [PubMed]

Fei, P.

P. Fei, Z. Chen, Y. Men, A. Li, Y. Shen, and Y. Huang, “A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides,” Lab Chip 12(19), 3700–3706 (2012).
[Crossref] [PubMed]

Feld, M. S.

Ferreira, L. G.

L. G. Ferreira and A. D. Andricopulo, “From Protein Structure to Small-Molecules: Recent Advances and Applications to Fragment-Based Drug Discovery,” Curr. Top. Med. Chem. 17(20), 2260–2270 (2017).
[Crossref] [PubMed]

Gagliardi, G.

Gardiner, C.

E. van der Pol, F. A. Coumans, A. E. Grootemaat, C. Gardiner, I. L. Sargent, P. Harrison, A. Sturk, T. G. van Leeuwen, and R. Nieuwland, “Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing,” J. Thromb. Haemost. 12(7), 1182–1192 (2014).
[Crossref] [PubMed]

Giorgini, A.

Gordon, R.

A. Kotnala and R. Gordon, “Quantification of High-Efficiency Trapping of Nanoparticles in a Double Nanohole Optical Tweezer,” Nano Lett. 14(2), 853–856 (2014).
[Crossref] [PubMed]

Grootemaat, A. E.

E. van der Pol, F. A. Coumans, A. E. Grootemaat, C. Gardiner, I. L. Sargent, P. Harrison, A. Sturk, T. G. van Leeuwen, and R. Nieuwland, “Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing,” J. Thromb. Haemost. 12(7), 1182–1192 (2014).
[Crossref] [PubMed]

Han, A.

H. Wang, N. Sobahi, and A. Han, “Impedance spectroscopy-based cell/particle position detection in microfluidic systems,” Lab Chip 17(7), 1264–1269 (2017).
[Crossref] [PubMed]

Han, J.

M. E. Warkiani, L. Wu, A. K. P. Tay, and J. Han, “Large-Volume Microfluidic Cell Sorting for Biomedical Applications,” Annu. Rev. Biomed. Eng. 17(1), 1–34 (2015).
[Crossref] [PubMed]

Harrison, P.

E. van der Pol, F. A. Coumans, A. E. Grootemaat, C. Gardiner, I. L. Sargent, P. Harrison, A. Sturk, T. G. van Leeuwen, and R. Nieuwland, “Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing,” J. Thromb. Haemost. 12(7), 1182–1192 (2014).
[Crossref] [PubMed]

Hartland, G. V.

Heiland, S.

O. Dietrich, A. Hubert, and S. Heiland, “Imaging cell size and permeability in biological tissue using the diffusion-time dependence of the apparent diffusion coefficient,” Phys. Med. Biol. 59(12), 3081–3096 (2014).
[Crossref] [PubMed]

Hosseini, H. M. M.

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89(20), 203901 (2006).
[Crossref]

Huang, N. T.

N. T. Huang, H. L. Zhang, M. T. Chung, J. H. Seo, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14(7), 1230–1245 (2014).
[Crossref] [PubMed]

Huang, Y.

P. Fei, Z. Chen, Y. Men, A. Li, Y. Shen, and Y. Huang, “A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides,” Lab Chip 12(19), 3700–3706 (2012).
[Crossref] [PubMed]

Hubert, A.

O. Dietrich, A. Hubert, and S. Heiland, “Imaging cell size and permeability in biological tissue using the diffusion-time dependence of the apparent diffusion coefficient,” Phys. Med. Biol. 59(12), 3081–3096 (2014).
[Crossref] [PubMed]

Ikeda, T.

Ingber, D. E.

R. M. Cooper, D. C. Leslie, K. Domansky, A. Jain, C. Yung, M. Cho, S. Workman, M. Super, and D. E. Ingber, “A microdevice for rapid optical detection of magnetically captured rare blood pathogens,” Lab Chip 14(1), 182–188 (2014).
[Crossref] [PubMed]

Jain, A.

R. M. Cooper, D. C. Leslie, K. Domansky, A. Jain, C. Yung, M. Cho, S. Workman, M. Super, and D. E. Ingber, “A microdevice for rapid optical detection of magnetically captured rare blood pathogens,” Lab Chip 14(1), 182–188 (2014).
[Crossref] [PubMed]

Kishor, R.

R. Kishor, Z. Mac, S. Sreejithd, Y. P. Seahe, H. Wang, Y. Ai, Z. Wange, T. Limf, and Y. Zheng, “Real time size-dependent particle segregation and quantitative detection in a surface acoustic wave-photoacoustic integrated microfluidic system,” Sens. Actuators B Chem. 252, 568–576 (2017).
[Crossref]

Kong, L.

Kotnala, A.

A. Kotnala and R. Gordon, “Quantification of High-Efficiency Trapping of Nanoparticles in a Double Nanohole Optical Tweezer,” Nano Lett. 14(2), 853–856 (2014).
[Crossref] [PubMed]

Kumar, D.

H. Shao, D. Kumar, and K. L. Lear, “Single cell detection using optofluidic intracavity spectroscopy,” IEEE Sens. J. 6(6), 1543–1550 (2006).
[Crossref]

Kurabayashi, K.

N. T. Huang, H. L. Zhang, M. T. Chung, J. H. Seo, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14(7), 1230–1245 (2014).
[Crossref] [PubMed]

Lana, S. E.

H. Shao, W. Wang, S. E. Lana, and K. L. Lear, “Optofluidic intracavity spectroscopy of canine lymphoma and lymphocytes,” IEEE Photonics Technol. Lett. 20(7), 493–495 (2008).
[Crossref]

Lear, K. L.

H. Shao, W. Wang, S. E. Lana, and K. L. Lear, “Optofluidic intracavity spectroscopy of canine lymphoma and lymphocytes,” IEEE Photonics Technol. Lett. 20(7), 493–495 (2008).
[Crossref]

H. Shao, D. Kumar, and K. L. Lear, “Single cell detection using optofluidic intracavity spectroscopy,” IEEE Sens. J. 6(6), 1543–1550 (2006).
[Crossref]

Lecrevisse, Q.

C. E. Pedreira, E. S. Costa, Q. Lecrevisse, J. J. van Dongen, and A. Orfao, “Overview of clinical flow cytometry data analysis: recent advances and future challenges,” Trends Biotechnol. 31(7), 415–425 (2013).
[Crossref] [PubMed]

Lee, J.

G. Breton, J. Lee, K. Liu, and M. C. Nussenzweig, “Defining human dendritic cell progenitors by multiparametric flow cytometry,” Nat. Protoc. 10(9), 1407–1422 (2015).
[Crossref] [PubMed]

Leslie, D. C.

R. M. Cooper, D. C. Leslie, K. Domansky, A. Jain, C. Yung, M. Cho, S. Workman, M. Super, and D. E. Ingber, “A microdevice for rapid optical detection of magnetically captured rare blood pathogens,” Lab Chip 14(1), 182–188 (2014).
[Crossref] [PubMed]

Li, A.

P. Fei, Z. Chen, Y. Men, A. Li, Y. Shen, and Y. Huang, “A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides,” Lab Chip 12(19), 3700–3706 (2012).
[Crossref] [PubMed]

Li, H. P.

Y. Yang, C. L. Long, H. P. Li, Q. Wang, and Z. G. Yang, “Analysis of silver and gold nanoparticles in environmental water using single particle-inductively coupled plasma-mass spectrometry,” Sci. Total Environ. 563-564, 996–1007 (2016).
[Crossref] [PubMed]

Li, Z.

Liao, C.

Lim, C. S.

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89(20), 203901 (2006).
[Crossref]

Limf, T.

R. Kishor, Z. Mac, S. Sreejithd, Y. P. Seahe, H. Wang, Y. Ai, Z. Wange, T. Limf, and Y. Zheng, “Real time size-dependent particle segregation and quantitative detection in a surface acoustic wave-photoacoustic integrated microfluidic system,” Sens. Actuators B Chem. 252, 568–576 (2017).
[Crossref]

Liu, A. Q.

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89(20), 203901 (2006).
[Crossref]

Liu, K.

G. Breton, J. Lee, K. Liu, and M. C. Nussenzweig, “Defining human dendritic cell progenitors by multiparametric flow cytometry,” Nat. Protoc. 10(9), 1407–1422 (2015).
[Crossref] [PubMed]

Liu, Y.

Long, C. L.

Y. Yang, C. L. Long, H. P. Li, Q. Wang, and Z. G. Yang, “Analysis of silver and gold nanoparticles in environmental water using single particle-inductively coupled plasma-mass spectrometry,” Sci. Total Environ. 563-564, 996–1007 (2016).
[Crossref] [PubMed]

Lue, N.

Mac, Z.

R. Kishor, Z. Mac, S. Sreejithd, Y. P. Seahe, H. Wang, Y. Ai, Z. Wange, T. Limf, and Y. Zheng, “Real time size-dependent particle segregation and quantitative detection in a surface acoustic wave-photoacoustic integrated microfluidic system,” Sens. Actuators B Chem. 252, 568–576 (2017).
[Crossref]

Malara, P.

Martinez Vazquez, R.

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref] [PubMed]

Men, Y.

P. Fei, Z. Chen, Y. Men, A. Li, Y. Shen, and Y. Huang, “A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides,” Lab Chip 12(19), 3700–3706 (2012).
[Crossref] [PubMed]

Minzioni, P.

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref] [PubMed]

Mondello, C.

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref] [PubMed]

Nava, G.

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref] [PubMed]

Neild, A.

D. J. Collins, A. Neild, and Y. Ai, “Highly focused high-frequency travelling surface acoustic waves (SAW) for rapid single-particle sorting,” Lab Chip 16(3), 471–479 (2016).
[Crossref] [PubMed]

Nieuwland, R.

E. van der Pol, F. A. Coumans, A. E. Grootemaat, C. Gardiner, I. L. Sargent, P. Harrison, A. Sturk, T. G. van Leeuwen, and R. Nieuwland, “Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing,” J. Thromb. Haemost. 12(7), 1182–1192 (2014).
[Crossref] [PubMed]

Nussenzweig, M. C.

G. Breton, J. Lee, K. Liu, and M. C. Nussenzweig, “Defining human dendritic cell progenitors by multiparametric flow cytometry,” Nat. Protoc. 10(9), 1407–1422 (2015).
[Crossref] [PubMed]

Orfao, A.

C. E. Pedreira, E. S. Costa, Q. Lecrevisse, J. J. van Dongen, and A. Orfao, “Overview of clinical flow cytometry data analysis: recent advances and future challenges,” Trends Biotechnol. 31(7), 415–425 (2013).
[Crossref] [PubMed]

Osellame, R.

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref] [PubMed]

Paiè, P.

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref] [PubMed]

Pedreira, C. E.

C. E. Pedreira, E. S. Costa, Q. Lecrevisse, J. J. van Dongen, and A. Orfao, “Overview of clinical flow cytometry data analysis: recent advances and future challenges,” Trends Biotechnol. 31(7), 415–425 (2013).
[Crossref] [PubMed]

Popescu, G.

Radic, S.

G. P. Agrawal and S. Radic, “Phase-shift fiber Bragg grating and their application for wavelength demultiplexing,” IEEE Photonics Technol. Lett. 6(8), 995–997 (1994).
[Crossref]

Sargent, I. L.

E. van der Pol, F. A. Coumans, A. E. Grootemaat, C. Gardiner, I. L. Sargent, P. Harrison, A. Sturk, T. G. van Leeuwen, and R. Nieuwland, “Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing,” J. Thromb. Haemost. 12(7), 1182–1192 (2014).
[Crossref] [PubMed]

Seahe, Y. P.

R. Kishor, Z. Mac, S. Sreejithd, Y. P. Seahe, H. Wang, Y. Ai, Z. Wange, T. Limf, and Y. Zheng, “Real time size-dependent particle segregation and quantitative detection in a surface acoustic wave-photoacoustic integrated microfluidic system,” Sens. Actuators B Chem. 252, 568–576 (2017).
[Crossref]

Seo, J. H.

N. T. Huang, H. L. Zhang, M. T. Chung, J. H. Seo, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14(7), 1230–1245 (2014).
[Crossref] [PubMed]

Shao, H.

H. Shao, W. Wang, S. E. Lana, and K. L. Lear, “Optofluidic intracavity spectroscopy of canine lymphoma and lymphocytes,” IEEE Photonics Technol. Lett. 20(7), 493–495 (2008).
[Crossref]

H. Shao, D. Kumar, and K. L. Lear, “Single cell detection using optofluidic intracavity spectroscopy,” IEEE Sens. J. 6(6), 1543–1550 (2006).
[Crossref]

Shen, Y.

P. Fei, Z. Chen, Y. Men, A. Li, Y. Shen, and Y. Huang, “A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides,” Lab Chip 12(19), 3700–3706 (2012).
[Crossref] [PubMed]

Sobahi, N.

H. Wang, N. Sobahi, and A. Han, “Impedance spectroscopy-based cell/particle position detection in microfluidic systems,” Lab Chip 17(7), 1264–1269 (2017).
[Crossref] [PubMed]

Song, W. Z.

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89(20), 203901 (2006).
[Crossref]

Sreejithd, S.

R. Kishor, Z. Mac, S. Sreejithd, Y. P. Seahe, H. Wang, Y. Ai, Z. Wange, T. Limf, and Y. Zheng, “Real time size-dependent particle segregation and quantitative detection in a surface acoustic wave-photoacoustic integrated microfluidic system,” Sens. Actuators B Chem. 252, 568–576 (2017).
[Crossref]

Sturk, A.

E. van der Pol, F. A. Coumans, A. E. Grootemaat, C. Gardiner, I. L. Sargent, P. Harrison, A. Sturk, T. G. van Leeuwen, and R. Nieuwland, “Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing,” J. Thromb. Haemost. 12(7), 1182–1192 (2014).
[Crossref] [PubMed]

Super, M.

R. M. Cooper, D. C. Leslie, K. Domansky, A. Jain, C. Yung, M. Cho, S. Workman, M. Super, and D. E. Ingber, “A microdevice for rapid optical detection of magnetically captured rare blood pathogens,” Lab Chip 14(1), 182–188 (2014).
[Crossref] [PubMed]

Talghader, J.

Tang, J.

Tay, A. K. P.

M. E. Warkiani, L. Wu, A. K. P. Tay, and J. Han, “Large-Volume Microfluidic Cell Sorting for Biomedical Applications,” Annu. Rev. Biomed. Eng. 17(1), 1–34 (2015).
[Crossref] [PubMed]

van der Pol, E.

E. van der Pol, F. A. Coumans, A. E. Grootemaat, C. Gardiner, I. L. Sargent, P. Harrison, A. Sturk, T. G. van Leeuwen, and R. Nieuwland, “Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing,” J. Thromb. Haemost. 12(7), 1182–1192 (2014).
[Crossref] [PubMed]

van Dongen, J. J.

C. E. Pedreira, E. S. Costa, Q. Lecrevisse, J. J. van Dongen, and A. Orfao, “Overview of clinical flow cytometry data analysis: recent advances and future challenges,” Trends Biotechnol. 31(7), 415–425 (2013).
[Crossref] [PubMed]

van Leeuwen, T. G.

E. van der Pol, F. A. Coumans, A. E. Grootemaat, C. Gardiner, I. L. Sargent, P. Harrison, A. Sturk, T. G. van Leeuwen, and R. Nieuwland, “Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing,” J. Thromb. Haemost. 12(7), 1182–1192 (2014).
[Crossref] [PubMed]

Veglione, M.

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref] [PubMed]

Wang, C.

Wang, D. N.

Wang, H.

H. Wang, N. Sobahi, and A. Han, “Impedance spectroscopy-based cell/particle position detection in microfluidic systems,” Lab Chip 17(7), 1264–1269 (2017).
[Crossref] [PubMed]

R. Kishor, Z. Mac, S. Sreejithd, Y. P. Seahe, H. Wang, Y. Ai, Z. Wange, T. Limf, and Y. Zheng, “Real time size-dependent particle segregation and quantitative detection in a surface acoustic wave-photoacoustic integrated microfluidic system,” Sens. Actuators B Chem. 252, 568–576 (2017).
[Crossref]

Wang, Q.

Y. Yang, C. L. Long, H. P. Li, Q. Wang, and Z. G. Yang, “Analysis of silver and gold nanoparticles in environmental water using single particle-inductively coupled plasma-mass spectrometry,” Sci. Total Environ. 563-564, 996–1007 (2016).
[Crossref] [PubMed]

C. Liao, L. Xu, C. Wang, D. N. Wang, Y. Wang, Q. Wang, K. Yang, Z. Li, X. Zhong, J. Zhou, and Y. Liu, “Tunable phase-shifted fiber Bragg grating based on femtosecond laser fabricated in-grating bubble,” Opt. Lett. 38(21), 4473–4476 (2013).
[Crossref] [PubMed]

Wang, W.

H. Shao, W. Wang, S. E. Lana, and K. L. Lear, “Optofluidic intracavity spectroscopy of canine lymphoma and lymphocytes,” IEEE Photonics Technol. Lett. 20(7), 493–495 (2008).
[Crossref]

Wang, Y.

Wange, Z.

R. Kishor, Z. Mac, S. Sreejithd, Y. P. Seahe, H. Wang, Y. Ai, Z. Wange, T. Limf, and Y. Zheng, “Real time size-dependent particle segregation and quantitative detection in a surface acoustic wave-photoacoustic integrated microfluidic system,” Sens. Actuators B Chem. 252, 568–576 (2017).
[Crossref]

Warkiani, M. E.

M. E. Warkiani, L. Wu, A. K. P. Tay, and J. Han, “Large-Volume Microfluidic Cell Sorting for Biomedical Applications,” Annu. Rev. Biomed. Eng. 17(1), 1–34 (2015).
[Crossref] [PubMed]

Workman, S.

R. M. Cooper, D. C. Leslie, K. Domansky, A. Jain, C. Yung, M. Cho, S. Workman, M. Super, and D. E. Ingber, “A microdevice for rapid optical detection of magnetically captured rare blood pathogens,” Lab Chip 14(1), 182–188 (2014).
[Crossref] [PubMed]

Wu, L.

M. E. Warkiani, L. Wu, A. K. P. Tay, and J. Han, “Large-Volume Microfluidic Cell Sorting for Biomedical Applications,” Annu. Rev. Biomed. Eng. 17(1), 1–34 (2015).
[Crossref] [PubMed]

Xu, L.

Yang, K.

Yang, T.

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, C. L. Long, H. P. Li, Q. Wang, and Z. G. Yang, “Analysis of silver and gold nanoparticles in environmental water using single particle-inductively coupled plasma-mass spectrometry,” Sci. Total Environ. 563-564, 996–1007 (2016).
[Crossref] [PubMed]

Yang, Z. G.

Y. Yang, C. L. Long, H. P. Li, Q. Wang, and Z. G. Yang, “Analysis of silver and gold nanoparticles in environmental water using single particle-inductively coupled plasma-mass spectrometry,” Sci. Total Environ. 563-564, 996–1007 (2016).
[Crossref] [PubMed]

Yap, P. H.

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89(20), 203901 (2006).
[Crossref]

Yung, C.

R. M. Cooper, D. C. Leslie, K. Domansky, A. Jain, C. Yung, M. Cho, S. Workman, M. Super, and D. E. Ingber, “A microdevice for rapid optical detection of magnetically captured rare blood pathogens,” Lab Chip 14(1), 182–188 (2014).
[Crossref] [PubMed]

Zhang, H. L.

N. T. Huang, H. L. Zhang, M. T. Chung, J. H. Seo, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14(7), 1230–1245 (2014).
[Crossref] [PubMed]

Zhang, X. M.

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89(20), 203901 (2006).
[Crossref]

Zheng, Y.

R. Kishor, Z. Mac, S. Sreejithd, Y. P. Seahe, H. Wang, Y. Ai, Z. Wange, T. Limf, and Y. Zheng, “Real time size-dependent particle segregation and quantitative detection in a surface acoustic wave-photoacoustic integrated microfluidic system,” Sens. Actuators B Chem. 252, 568–576 (2017).
[Crossref]

Zhong, X.

Zhou, J.

Annu. Rev. Biomed. Eng. (1)

M. E. Warkiani, L. Wu, A. K. P. Tay, and J. Han, “Large-Volume Microfluidic Cell Sorting for Biomedical Applications,” Annu. Rev. Biomed. Eng. 17(1), 1–34 (2015).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89(20), 203901 (2006).
[Crossref]

Curr. Top. Med. Chem. (1)

L. G. Ferreira and A. D. Andricopulo, “From Protein Structure to Small-Molecules: Recent Advances and Applications to Fragment-Based Drug Discovery,” Curr. Top. Med. Chem. 17(20), 2260–2270 (2017).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (2)

H. Shao, W. Wang, S. E. Lana, and K. L. Lear, “Optofluidic intracavity spectroscopy of canine lymphoma and lymphocytes,” IEEE Photonics Technol. Lett. 20(7), 493–495 (2008).
[Crossref]

G. P. Agrawal and S. Radic, “Phase-shift fiber Bragg grating and their application for wavelength demultiplexing,” IEEE Photonics Technol. Lett. 6(8), 995–997 (1994).
[Crossref]

IEEE Sens. J. (1)

H. Shao, D. Kumar, and K. L. Lear, “Single cell detection using optofluidic intracavity spectroscopy,” IEEE Sens. J. 6(6), 1543–1550 (2006).
[Crossref]

J. Thromb. Haemost. (1)

E. van der Pol, F. A. Coumans, A. E. Grootemaat, C. Gardiner, I. L. Sargent, P. Harrison, A. Sturk, T. G. van Leeuwen, and R. Nieuwland, “Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing,” J. Thromb. Haemost. 12(7), 1182–1192 (2014).
[Crossref] [PubMed]

Lab Chip (6)

P. Fei, Z. Chen, Y. Men, A. Li, Y. Shen, and Y. Huang, “A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides,” Lab Chip 12(19), 3700–3706 (2012).
[Crossref] [PubMed]

D. J. Collins, A. Neild, and Y. Ai, “Highly focused high-frequency travelling surface acoustic waves (SAW) for rapid single-particle sorting,” Lab Chip 16(3), 471–479 (2016).
[Crossref] [PubMed]

N. T. Huang, H. L. Zhang, M. T. Chung, J. H. Seo, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14(7), 1230–1245 (2014).
[Crossref] [PubMed]

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref] [PubMed]

R. M. Cooper, D. C. Leslie, K. Domansky, A. Jain, C. Yung, M. Cho, S. Workman, M. Super, and D. E. Ingber, “A microdevice for rapid optical detection of magnetically captured rare blood pathogens,” Lab Chip 14(1), 182–188 (2014).
[Crossref] [PubMed]

H. Wang, N. Sobahi, and A. Han, “Impedance spectroscopy-based cell/particle position detection in microfluidic systems,” Lab Chip 17(7), 1264–1269 (2017).
[Crossref] [PubMed]

Nano Lett. (1)

A. Kotnala and R. Gordon, “Quantification of High-Efficiency Trapping of Nanoparticles in a Double Nanohole Optical Tweezer,” Nano Lett. 14(2), 853–856 (2014).
[Crossref] [PubMed]

Nat. Protoc. (1)

G. Breton, J. Lee, K. Liu, and M. C. Nussenzweig, “Defining human dendritic cell progenitors by multiparametric flow cytometry,” Nat. Protoc. 10(9), 1407–1422 (2015).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Phys. Med. Biol. (1)

O. Dietrich, A. Hubert, and S. Heiland, “Imaging cell size and permeability in biological tissue using the diffusion-time dependence of the apparent diffusion coefficient,” Phys. Med. Biol. 59(12), 3081–3096 (2014).
[Crossref] [PubMed]

Sci. Total Environ. (1)

Y. Yang, C. L. Long, H. P. Li, Q. Wang, and Z. G. Yang, “Analysis of silver and gold nanoparticles in environmental water using single particle-inductively coupled plasma-mass spectrometry,” Sci. Total Environ. 563-564, 996–1007 (2016).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

R. Kishor, Z. Mac, S. Sreejithd, Y. P. Seahe, H. Wang, Y. Ai, Z. Wange, T. Limf, and Y. Zheng, “Real time size-dependent particle segregation and quantitative detection in a surface acoustic wave-photoacoustic integrated microfluidic system,” Sens. Actuators B Chem. 252, 568–576 (2017).
[Crossref]

Trends Biotechnol. (1)

C. E. Pedreira, E. S. Costa, Q. Lecrevisse, J. J. van Dongen, and A. Orfao, “Overview of clinical flow cytometry data analysis: recent advances and future challenges,” Trends Biotechnol. 31(7), 415–425 (2013).
[Crossref] [PubMed]

Other (1)

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University, 2006).

Supplementary Material (1)

NameDescription
» Visualization 1       An easy fabricated, simple control and label-free micro-detection system was demonstrated in a PDMS chip and a new method to distinguish particle’ size in a FBG-FP cavity is exhibited. In our experiment, The period of FBG is 535.5 nm and the left and

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic of the optofluidic chip. (b)Top view of the cruciform fluidic channel with two FBGs. (c) Photograph of the 15 μm and 25 μm particles flowing through the FBG-FP cavity.
Fig. 2
Fig. 2 Measured and simulated transmission spectra in response to different particles’ sizes. (a) Measured transmission spectrum of the FBG-FP cavity when the cavity RI is 1.333. Experimental transmission spectrum of the FBG-FP cavity with a resonant wavelength variations caused by the particle with diameter of (b) 15 μm, (c) 20 μm and (d) 25 μm, respectively. (e) simulated transmission spectrum of the FBG-FP cavity when the cavity filled with pure DI water without any particle. Simulated transmission spectrum of the FBG-FP cavity contained a particle with diameter of (f) 15 μm, (g) 20 μm and (h) 25 μm, respectively.
Fig. 3
Fig. 3 Linear relationship between the resonance shift and particle size for theoretical result (solid line) and experimental result (dashed line) with a slope of 10−5.
Fig. 4
Fig. 4 Illustration of various light signal generation. (a) Triangle signal generation when a 15 μm particle flows through the cavity. (b) Deeper triangle signal generation when a 25 μm particle flows through the cavity. (c) Schematic illustration of the experimental setup. The black arrows indicate the directions of light propagation. (d) Experiment result of light signal by injecting the solution contained 15, 20 and 25 μm particles at the flowing rate of 5μL hr −1.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( a out b out )= ( A B C D ) M ( e i k 1 l 0 0 e i k 1 l ) ( A B C D ) N ( a in b in ),

Metrics