Abstract

We report a novel scheme for monolithic integration of a nanoisland laser with a shifted-air-hole waveguide by employing selective etching techniques. An active L3 laser cavity and passive shifted-air-hole waveguide are simultaneously formed through a single fabrication step. In the shifted-air-hole waveguide, the air-hole position is adjusted to be compatible with selective etching. The spectral overlap between the L3 laser resonance and guided mode is achieved by introducing small air holes at the nodes of the shifted-air-hole waveguide. Experiments show that >60% of the light is coupled from the nanoisland laser to the end of the 12-μm-long waveguide.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Self-aligned nanoislands nanobeam bandedge lasers

Putu Pramudita, Hoon Jang, Indra Karnadi, Hwi-Min Kim, and Yong-Hee Lee
Opt. Express 25(6) 6311-6319 (2017)

Monolithically integrated InGaN/GaN light-emitting diodes, photodetectors, and waveguides on Si substrate

K. H. Li, W. Y. Fu, Y. F. Cheung, K. K. Y. Wong, Y. Wang, K. M. Lau, and H. W. Choi
Optica 5(5) 564-569 (2018)

Efficient on-chip integration of a colloidal quantum dot photonic crystal band-edge laser with a coplanar waveguide

Hyunho Jung, Myungjae Lee, Changhyun Han, Yeonsang Park, Kyung-Sang Cho, and Heonsu Jeon
Opt. Express 25(26) 32919-32930 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. Kurata, “High-speed optical transceiver and systems for optical interconnects,” in Conference on Optical Fiber Communication (OFC/NFOEC), (Collocated National Fiber Optic Engineers Conference, 2010), paper OThS3.
    [Crossref]
  2. W. H. Hofmann, P. Moser, and D. Bimberg, “Energy-efficient VCSELs for interconnects,” IEEE Photonics J. 4(2), 652–656 (2012).
    [Crossref]
  3. F. Karinou, N. Stojanovic, A. Daly, C. Neumeyr, and M. Ortsiefer, “1.55-μm long-wavelength VCSEL-based optical interconnects for short-reach networks,” J. Lightwave Technol. 34(12), 2897–2904 (2016).
    [Crossref]
  4. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
    [Crossref]
  5. S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
    [Crossref]
  6. H. Watanabe and T. Baba, “High-efficiency photonic crystal microlaser integrated with a passive waveguide,” Opt. Express 16(4), 2694–2698 (2008).
    [Crossref] [PubMed]
  7. K. Nozaki, H. Watanabe, and T. Baba, “Photonic crystal nanolaser monolithically integrated with passive waveguide for effective light extraction,” Appl. Phys. Lett. 92(2), 021108 (2008).
    [Crossref]
  8. K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
    [Crossref]
  9. S. Matsuo, A. Shinya, C. H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19(3), 2242–2250 (2011).
    [Crossref] [PubMed]
  10. L. Lu, A. Mock, M. Bagheri, E. H. Hwang, J. O’Brien, and P. D. Dapkus, “Double-heterostructure photonic crystal lasers with lower thresholds and higher slope efficiencies obtained by quantum well intermixing,” Opt. Express 16(22), 17342–17347 (2008).
    [Crossref] [PubMed]
  11. E. J. Skogen, J. S. Barton, S. P. Denbaars, and L. A. Coldren, “A quantum-well-intermixing process for wavelength-agile photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 8(4), 863–869 (2002).
    [Crossref]
  12. L. Hou and J. H. Marsh, “Photonic integrated circuits based on quantum-well intermixing techniques,” Procedia Eng. 140, 107–114 (2016).
    [Crossref]
  13. P. Pramudita, H. Jang, I. Karnadi, H. M. Kim, and Y. H. Lee, “Self-aligned nanoislands nanobeam bandedge lasers,” Opt. Express 25(6), 6311–6319 (2017).
    [Crossref] [PubMed]
  14. H. Jang, I. Karnadi, P. Pramudita, J. H. Song, K. S. Kim, and Y. H. Lee, “Sub-microwatt threshold nanoisland lasers,” Nat. Commun. 6(1), 8276 (2015).
    [Crossref] [PubMed]
  15. D. Y. Oh, S. H. Kim, J. Huang, A. Scofield, D. Huffaker, and A. Scherer, “Self-aligned active quantum nanostructures in photonic crystals via selective wet-chemical etching,” Nanotechnology 24(26), 265201 (2013).
    [Crossref] [PubMed]
  16. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
    [Crossref] [PubMed]
  17. D. Englund, I. Fushman, and J. Vucković, “General recipe for designing photonic crystal cavities,” Opt. Express 13(16), 5961–5975 (2005).
    [Crossref] [PubMed]
  18. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vucković, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16(16), 12154–12162 (2008).
    [Crossref] [PubMed]

2017 (1)

2016 (2)

2015 (1)

H. Jang, I. Karnadi, P. Pramudita, J. H. Song, K. S. Kim, and Y. H. Lee, “Sub-microwatt threshold nanoisland lasers,” Nat. Commun. 6(1), 8276 (2015).
[Crossref] [PubMed]

2013 (2)

D. Y. Oh, S. H. Kim, J. Huang, A. Scofield, D. Huffaker, and A. Scherer, “Self-aligned active quantum nanostructures in photonic crystals via selective wet-chemical etching,” Nanotechnology 24(26), 265201 (2013).
[Crossref] [PubMed]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

2012 (1)

W. H. Hofmann, P. Moser, and D. Bimberg, “Energy-efficient VCSELs for interconnects,” IEEE Photonics J. 4(2), 652–656 (2012).
[Crossref]

2011 (1)

2010 (1)

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

2009 (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

2008 (4)

2005 (1)

2003 (1)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

2002 (1)

E. J. Skogen, J. S. Barton, S. P. Denbaars, and L. A. Coldren, “A quantum-well-intermixing process for wavelength-agile photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 8(4), 863–869 (2002).
[Crossref]

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Asano, T.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Baba, T.

H. Watanabe and T. Baba, “High-efficiency photonic crystal microlaser integrated with a passive waveguide,” Opt. Express 16(4), 2694–2698 (2008).
[Crossref] [PubMed]

K. Nozaki, H. Watanabe, and T. Baba, “Photonic crystal nanolaser monolithically integrated with passive waveguide for effective light extraction,” Appl. Phys. Lett. 92(2), 021108 (2008).
[Crossref]

Bagheri, M.

Barton, J. S.

E. J. Skogen, J. S. Barton, S. P. Denbaars, and L. A. Coldren, “A quantum-well-intermixing process for wavelength-agile photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 8(4), 863–869 (2002).
[Crossref]

Bimberg, D.

W. H. Hofmann, P. Moser, and D. Bimberg, “Energy-efficient VCSELs for interconnects,” IEEE Photonics J. 4(2), 652–656 (2012).
[Crossref]

Chen, C. H.

Coldren, L. A.

E. J. Skogen, J. S. Barton, S. P. Denbaars, and L. A. Coldren, “A quantum-well-intermixing process for wavelength-agile photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 8(4), 863–869 (2002).
[Crossref]

Daly, A.

Dapkus, P. D.

Denbaars, S. P.

E. J. Skogen, J. S. Barton, S. P. Denbaars, and L. A. Coldren, “A quantum-well-intermixing process for wavelength-agile photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 8(4), 863–869 (2002).
[Crossref]

Englund, D.

Faraon, A.

Fushman, I.

Hasebe, K.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

Hofmann, W. H.

W. H. Hofmann, P. Moser, and D. Bimberg, “Energy-efficient VCSELs for interconnects,” IEEE Photonics J. 4(2), 652–656 (2012).
[Crossref]

Hou, L.

L. Hou and J. H. Marsh, “Photonic integrated circuits based on quantum-well intermixing techniques,” Procedia Eng. 140, 107–114 (2016).
[Crossref]

Huang, J.

D. Y. Oh, S. H. Kim, J. Huang, A. Scofield, D. Huffaker, and A. Scherer, “Self-aligned active quantum nanostructures in photonic crystals via selective wet-chemical etching,” Nanotechnology 24(26), 265201 (2013).
[Crossref] [PubMed]

Huffaker, D.

D. Y. Oh, S. H. Kim, J. Huang, A. Scofield, D. Huffaker, and A. Scherer, “Self-aligned active quantum nanostructures in photonic crystals via selective wet-chemical etching,” Nanotechnology 24(26), 265201 (2013).
[Crossref] [PubMed]

Hwang, E. H.

Jang, H.

P. Pramudita, H. Jang, I. Karnadi, H. M. Kim, and Y. H. Lee, “Self-aligned nanoislands nanobeam bandedge lasers,” Opt. Express 25(6), 6311–6319 (2017).
[Crossref] [PubMed]

H. Jang, I. Karnadi, P. Pramudita, J. H. Song, K. S. Kim, and Y. H. Lee, “Sub-microwatt threshold nanoisland lasers,” Nat. Commun. 6(1), 8276 (2015).
[Crossref] [PubMed]

Kakitsuka, T.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Karinou, F.

Karnadi, I.

P. Pramudita, H. Jang, I. Karnadi, H. M. Kim, and Y. H. Lee, “Self-aligned nanoislands nanobeam bandedge lasers,” Opt. Express 25(6), 6311–6319 (2017).
[Crossref] [PubMed]

H. Jang, I. Karnadi, P. Pramudita, J. H. Song, K. S. Kim, and Y. H. Lee, “Sub-microwatt threshold nanoisland lasers,” Nat. Commun. 6(1), 8276 (2015).
[Crossref] [PubMed]

Kawaguchi, Y.

S. Matsuo, A. Shinya, C. H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19(3), 2242–2250 (2011).
[Crossref] [PubMed]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Kim, H. M.

Kim, K. S.

H. Jang, I. Karnadi, P. Pramudita, J. H. Song, K. S. Kim, and Y. H. Lee, “Sub-microwatt threshold nanoisland lasers,” Nat. Commun. 6(1), 8276 (2015).
[Crossref] [PubMed]

Kim, S. H.

D. Y. Oh, S. H. Kim, J. Huang, A. Scofield, D. Huffaker, and A. Scherer, “Self-aligned active quantum nanostructures in photonic crystals via selective wet-chemical etching,” Nanotechnology 24(26), 265201 (2013).
[Crossref] [PubMed]

Kobayashi, W.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

Lee, Y. H.

P. Pramudita, H. Jang, I. Karnadi, H. M. Kim, and Y. H. Lee, “Self-aligned nanoislands nanobeam bandedge lasers,” Opt. Express 25(6), 6311–6319 (2017).
[Crossref] [PubMed]

H. Jang, I. Karnadi, P. Pramudita, J. H. Song, K. S. Kim, and Y. H. Lee, “Sub-microwatt threshold nanoisland lasers,” Nat. Commun. 6(1), 8276 (2015).
[Crossref] [PubMed]

Lu, L.

Marsh, J. H.

L. Hou and J. H. Marsh, “Photonic integrated circuits based on quantum-well intermixing techniques,” Procedia Eng. 140, 107–114 (2016).
[Crossref]

Matsuo, S.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

S. Matsuo, A. Shinya, C. H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19(3), 2242–2250 (2011).
[Crossref] [PubMed]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Miller, D. A. B.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Mock, A.

Moser, P.

W. H. Hofmann, P. Moser, and D. Bimberg, “Energy-efficient VCSELs for interconnects,” IEEE Photonics J. 4(2), 652–656 (2012).
[Crossref]

Neumeyr, C.

Noda, S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Notomi, M.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

S. Matsuo, A. Shinya, C. H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19(3), 2242–2250 (2011).
[Crossref] [PubMed]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Nozaki, K.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

S. Matsuo, A. Shinya, C. H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19(3), 2242–2250 (2011).
[Crossref] [PubMed]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

K. Nozaki, H. Watanabe, and T. Baba, “Photonic crystal nanolaser monolithically integrated with passive waveguide for effective light extraction,” Appl. Phys. Lett. 92(2), 021108 (2008).
[Crossref]

O’Brien, J.

Oh, D. Y.

D. Y. Oh, S. H. Kim, J. Huang, A. Scofield, D. Huffaker, and A. Scherer, “Self-aligned active quantum nanostructures in photonic crystals via selective wet-chemical etching,” Nanotechnology 24(26), 265201 (2013).
[Crossref] [PubMed]

Ortsiefer, M.

Petroff, P.

Pramudita, P.

P. Pramudita, H. Jang, I. Karnadi, H. M. Kim, and Y. H. Lee, “Self-aligned nanoislands nanobeam bandedge lasers,” Opt. Express 25(6), 6311–6319 (2017).
[Crossref] [PubMed]

H. Jang, I. Karnadi, P. Pramudita, J. H. Song, K. S. Kim, and Y. H. Lee, “Sub-microwatt threshold nanoisland lasers,” Nat. Commun. 6(1), 8276 (2015).
[Crossref] [PubMed]

Sato, T.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

S. Matsuo, A. Shinya, C. H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19(3), 2242–2250 (2011).
[Crossref] [PubMed]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Scherer, A.

D. Y. Oh, S. H. Kim, J. Huang, A. Scofield, D. Huffaker, and A. Scherer, “Self-aligned active quantum nanostructures in photonic crystals via selective wet-chemical etching,” Nanotechnology 24(26), 265201 (2013).
[Crossref] [PubMed]

Scofield, A.

D. Y. Oh, S. H. Kim, J. Huang, A. Scofield, D. Huffaker, and A. Scherer, “Self-aligned active quantum nanostructures in photonic crystals via selective wet-chemical etching,” Nanotechnology 24(26), 265201 (2013).
[Crossref] [PubMed]

Segawa, T.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Shinya, A.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

S. Matsuo, A. Shinya, C. H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19(3), 2242–2250 (2011).
[Crossref] [PubMed]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Skogen, E. J.

E. J. Skogen, J. S. Barton, S. P. Denbaars, and L. A. Coldren, “A quantum-well-intermixing process for wavelength-agile photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 8(4), 863–869 (2002).
[Crossref]

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Song, J. H.

H. Jang, I. Karnadi, P. Pramudita, J. H. Song, K. S. Kim, and Y. H. Lee, “Sub-microwatt threshold nanoisland lasers,” Nat. Commun. 6(1), 8276 (2015).
[Crossref] [PubMed]

Stojanovic, N.

Stoltz, N.

Takeda, K.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

Taniyama, H.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

S. Matsuo, A. Shinya, C. H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19(3), 2242–2250 (2011).
[Crossref] [PubMed]

Vuckovic, J.

Watanabe, H.

H. Watanabe and T. Baba, “High-efficiency photonic crystal microlaser integrated with a passive waveguide,” Opt. Express 16(4), 2694–2698 (2008).
[Crossref] [PubMed]

K. Nozaki, H. Watanabe, and T. Baba, “Photonic crystal nanolaser monolithically integrated with passive waveguide for effective light extraction,” Appl. Phys. Lett. 92(2), 021108 (2008).
[Crossref]

Appl. Phys. Lett. (1)

K. Nozaki, H. Watanabe, and T. Baba, “Photonic crystal nanolaser monolithically integrated with passive waveguide for effective light extraction,” Appl. Phys. Lett. 92(2), 021108 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

E. J. Skogen, J. S. Barton, S. P. Denbaars, and L. A. Coldren, “A quantum-well-intermixing process for wavelength-agile photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 8(4), 863–869 (2002).
[Crossref]

IEEE Photonics J. (1)

W. H. Hofmann, P. Moser, and D. Bimberg, “Energy-efficient VCSELs for interconnects,” IEEE Photonics J. 4(2), 652–656 (2012).
[Crossref]

J. Lightwave Technol. (1)

Nanotechnology (1)

D. Y. Oh, S. H. Kim, J. Huang, A. Scofield, D. Huffaker, and A. Scherer, “Self-aligned active quantum nanostructures in photonic crystals via selective wet-chemical etching,” Nanotechnology 24(26), 265201 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

H. Jang, I. Karnadi, P. Pramudita, J. H. Song, K. S. Kim, and Y. H. Lee, “Sub-microwatt threshold nanoisland lasers,” Nat. Commun. 6(1), 8276 (2015).
[Crossref] [PubMed]

Nat. Photonics (2)

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

Nature (1)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Opt. Express (6)

Proc. IEEE (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Procedia Eng. (1)

L. Hou and J. H. Marsh, “Photonic integrated circuits based on quantum-well intermixing techniques,” Procedia Eng. 140, 107–114 (2016).
[Crossref]

Other (1)

K. Kurata, “High-speed optical transceiver and systems for optical interconnects,” in Conference on Optical Fiber Communication (OFC/NFOEC), (Collocated National Fiber Optic Engineers Conference, 2010), paper OThS3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic of the L3 resonator coupled with a shifted-air-hole waveguide. Even after a selective etching, the QW remains unetched in the resonator. An air pocket is formed around the QW, represented in blue. (b) Triangular air pocket is assumed. The upper and lower InP slabs stick together outside the air pocket region.
Fig. 2
Fig. 2 (a) Quality factor Q and confinement factor Г of the 0th and 1st modes as a function of L. (b) |E|2 field profiles of the 0th- and 1st-order modes with L = 520 nm. The white rectangle represents the QW nanoisland. (c) |E|2 field profile of the 0th mode in the XZ-plane.
Fig. 3
Fig. 3 Calculated log|E|2 profiles when the L3 cavity is connected to an (a) NAW, (b) CAW, and (c) SAW. (d) Dispersion curves of each waveguide. The green dashed line represents the 0th mode. (e) |E|2 field profiles at the corresponding cut-off frequencies.
Fig. 4
Fig. 4 Dispersion curves of the (a) CAW and (b) SAW with rw = 0a, 0.1a, 0,15a, and 0.2a. The green dashed line represents the resonant frequency of the 0th mode. The orange rectangular area indicates the guiding bandwidth, rw = 0.15a. The |E|2 profile of each waveguide mode at the cut-off frequency is obtained with rw = 0.15a.
Fig. 5
Fig. 5 (a) Design of the coupled device (N = 4). (b) Quality factor and coupling efficiency as a function of N. (c) Calculated log|E|2 field profiles for N = 1 and 4.
Fig. 6
Fig. 6 (a) Schematic of the selective etching processes. (b) Top view of the fabricated device when N = 6. (c) Post-processed scanning electron microscopy (SEM) image of the remaining nanoisland in the cavity. (d) The length of the air pocket L is 480–560 nm.
Fig. 7
Fig. 7 (a) and (b) [Top] CCD images of the laser emission for the CAW- and SAW-coupled cavities, respectively. The incident pump power is 440 μW. [Bottom] Calculated time-averaged Poynting vector (Pz) profiles (1 μm above the structure). (c) and (d) Output powers collected from the cavity area and vertical coupler, for N = 1 and 4, respectively. The inset in (c) shows the normalized spectrums at the incident pump power of 220 μW (blue curve) and 300 μW (black curve), respectively.
Fig. 8
Fig. 8 Measured (a) thresholds and (b) power ratios for 5 different samples. The infinity value of N corresponds to a stand-alone cavity. The threshold represents the absorbed peak pump power. The theoretical power ratio is represented with the black curve. (c) Illustration of the theoretical power ratio employed in the 3D-FDTD simulation. (d) Coupling efficiency η as a function of the theoretical power ratio. The red dashed line represents the expected η when the measured power ratio is 6.8.

Metrics