Abstract

Beyond the wave manipulation at a single frequency, efficiency bandwidth control and functional dispersion engineering over metasurfaces are key challenges towards practical applications. Here we propose a type of wideband dielectric metasurfaces made of ultra-thin and layered high-index dielectric patches. The inclusions can be considered as effective material with designable effective refractive index and dispersion. Beam-deflection metasurfaces composed of such inclusions are characterized with the bandwidth approaching and surpassing the limit of conventional blazed gratings in transmission and reflection manners. The bandwidths are more than twice of that in popular single-layer dielectric metasurfaces made of pillar and disk building blocks. In addition, the proposed design benefits from operation over wide range of incident angles and with large tolerance to fabrication errors. More complicated beam manipulation can be fulfilled similarly with great potential for wideband planar optics.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings

Philippe Lalanne, Simion Astilean, Pierre Chavel, Edmond Cambril, and Huguette Launois
Opt. Lett. 23(14) 1081-1083 (1998)

Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces

Ehsan Arbabi, Amir Arbabi, Seyedeh Mahsa Kamali, Yu Horie, and Andrei Faraon
Optica 4(6) 625-632 (2017)

Perfect blazing for transmission gratings

M. Nevière, D. Maystre, and J. P. Laude
J. Opt. Soc. Am. A 7(9) 1736-1739 (1990)

References

  • View by:
  • |
  • |
  • |

  1. P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017).
    [Crossref]
  2. S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
    [Crossref]
  3. C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials,” IEEE Antennas and Propagation Magazine 54, 10–35 (2012).
    [Crossref]
  4. Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84, 205428 (2011).
    [Crossref]
  5. X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nature Communications 4, 2807 (2013).
    [Crossref]
  6. E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352, 1202–1206 (2016).
    [Crossref] [PubMed]
  7. S. Chen, F. Fan, X. Wang, P. Wu, H. Zhang, and S. Chang, “Terahertz isolator based on nonreciprocal magneto-metasurface,” Opt. Express 23, 1015–1024 (2015).
    [Crossref] [PubMed]
  8. J. Cheng, S. Inampudi, and H. Mosallaei, “Optimization-based dielectric metasurfaces for angle-selective multifunctional beam deflection,” Sci. Rep. 7, 12228 (2017).
    [Crossref] [PubMed]
  9. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
    [Crossref] [PubMed]
  10. A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nature Communications 6, 7069 (2015).
    [Crossref] [PubMed]
  11. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
    [Crossref] [PubMed]
  12. R. Paniagua-dominguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with near-unity numerical aperture,” Nano Letters 18, 2124–2132 (2018).
    [Crossref]
  13. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nature Nanotechnology 10, 308–312 (2015).
    [Crossref]
  14. E. Cambril, H. Launois, P. Lalanne, P. Chavel, and S. Astilean, “Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff,” J. Opt. Soc. Am. A 16, 1143–1156 (1999).
    [Crossref]
  15. Z. L. Mei, J. Bai, and T. J. Cui, “Gradient index metamaterials realized by drilling hole arrays,” J. Phys. D: Applied Physics 43, 055404 (2010).
    [Crossref]
  16. M. Li and N. Behdad, “Wideband true-time-delay microwave lenses based on metallo-dielectric and all-dielectric lowpass frequency selective surfaces,” IEEE Transactions on Antennas and Propagation 61, 4109–4119 (2013).
    [Crossref]
  17. J. Cheng and H. Mosallaei, “Truly achromatic optical metasurfaces: a filter circuit theory-based design,” J. Opt. Soc. Am. B 32, 2115–2121 (2015).
    [Crossref]
  18. Y. Li, I. Liberal, and N. Engheta, “Dispersion synthesis with multi-ordered metatronic filters,” Opt. Express 25, 1937–1948 (2017).
    [Crossref]
  19. S. Dor, V. Doc, K. Tam, and S. Cam, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
    [Crossref]
  20. E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules,” Optica 3, 628–633 (2016).
    [Crossref]
  21. J. Cheng, D. Ansari-Oghol-Beig, and H. Mosallaei, “Wave manipulation with designer dielectric metasurfaces,” Opt. Lett. 39, 6285–6288 (2014).
    [Crossref] [PubMed]
  22. M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
    [Crossref]
  23. Y. F. Yu, A. Y. Zhu, R. Paniagua-Dominguez, Y. H. Fu, B. Luk’Yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Reviews 9, 412–418 (2015).
    [Crossref]
  24. R. Bräuer and O. Bryngdahl, “Design of antireflection gratings with approximate and rigorous methods,” Appl. Opt. 33, 7875–7882 (1994).
    [Crossref] [PubMed]
  25. G. J. Swanson, “Binary optics technology: The theory and design of multi-level diffractive optical elements,” MIT Technical Report854 (1989).
  26. M. Moharam, E. B. Grann, D. A. Pommet, and T. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
    [Crossref]
  27. S. Inampudi, D. Adams, T. Ribaudo, D. Slocum, S. Vangala, W. Goodhue, D. Wasserman, and V. Podolskiy, “ε-near-zero enhanced light transmission through a subwavelength slit,” Physical Review B 89, 125119 (2014).
    [Crossref]
  28. S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, and T. Pertsch, “Resonantly enhanced second-harmonic generation using iii–v semiconductor all-dielectric metasurfaces,” Nano Letters 16, 5426–5432 (2016).
    [Crossref]
  29. S. Liu, G. A. Keeler, J. L. Reno, M. B. Sinclair, and I. Brener, “III–V semiconductor nanoresonators - new strategy for passive, active, and nonlinear all-dielectric metamaterials,” Adv. Opt. Mater. 4, 1457–1462 (2016).
    [Crossref]
  30. C. Sauvan, P. Lalanne, and M.-S. L. Lee, “Broadband blazing with artificial dielectrics,” Opt. Lett. 29, 1593–1595 (2004).
    [Crossref] [PubMed]
  31. C. Ribot, M.-S. L. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, and P. Lalanne, “Broadband and efficient diffraction,” Adv. Opt. Mater. 1, 489–493 (2013).
    [Crossref]
  32. E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces,” Optica 4, 625–632 (2017).
    [Crossref]
  33. S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, and et al., “A broadband achromatic metalens in the visible,” Nature nanotechnology 13, 227 (2018).
    [Crossref] [PubMed]
  34. W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nature nanotechnology p. 1 (2018).

2018 (2)

R. Paniagua-dominguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with near-unity numerical aperture,” Nano Letters 18, 2124–2132 (2018).
[Crossref]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, and et al., “A broadband achromatic metalens in the visible,” Nature nanotechnology 13, 227 (2018).
[Crossref] [PubMed]

2017 (4)

2016 (6)

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352, 1202–1206 (2016).
[Crossref] [PubMed]

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref] [PubMed]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules,” Optica 3, 628–633 (2016).
[Crossref]

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, and T. Pertsch, “Resonantly enhanced second-harmonic generation using iii–v semiconductor all-dielectric metasurfaces,” Nano Letters 16, 5426–5432 (2016).
[Crossref]

S. Liu, G. A. Keeler, J. L. Reno, M. B. Sinclair, and I. Brener, “III–V semiconductor nanoresonators - new strategy for passive, active, and nonlinear all-dielectric metamaterials,” Adv. Opt. Mater. 4, 1457–1462 (2016).
[Crossref]

2015 (6)

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Y. F. Yu, A. Y. Zhu, R. Paniagua-Dominguez, Y. H. Fu, B. Luk’Yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Reviews 9, 412–418 (2015).
[Crossref]

J. Cheng and H. Mosallaei, “Truly achromatic optical metasurfaces: a filter circuit theory-based design,” J. Opt. Soc. Am. B 32, 2115–2121 (2015).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nature Nanotechnology 10, 308–312 (2015).
[Crossref]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nature Communications 6, 7069 (2015).
[Crossref] [PubMed]

S. Chen, F. Fan, X. Wang, P. Wu, H. Zhang, and S. Chang, “Terahertz isolator based on nonreciprocal magneto-metasurface,” Opt. Express 23, 1015–1024 (2015).
[Crossref] [PubMed]

2014 (2)

S. Inampudi, D. Adams, T. Ribaudo, D. Slocum, S. Vangala, W. Goodhue, D. Wasserman, and V. Podolskiy, “ε-near-zero enhanced light transmission through a subwavelength slit,” Physical Review B 89, 125119 (2014).
[Crossref]

J. Cheng, D. Ansari-Oghol-Beig, and H. Mosallaei, “Wave manipulation with designer dielectric metasurfaces,” Opt. Lett. 39, 6285–6288 (2014).
[Crossref] [PubMed]

2013 (3)

C. Ribot, M.-S. L. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, and P. Lalanne, “Broadband and efficient diffraction,” Adv. Opt. Mater. 1, 489–493 (2013).
[Crossref]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nature Communications 4, 2807 (2013).
[Crossref]

M. Li and N. Behdad, “Wideband true-time-delay microwave lenses based on metallo-dielectric and all-dielectric lowpass frequency selective surfaces,” IEEE Transactions on Antennas and Propagation 61, 4109–4119 (2013).
[Crossref]

2012 (1)

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials,” IEEE Antennas and Propagation Magazine 54, 10–35 (2012).
[Crossref]

2011 (2)

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84, 205428 (2011).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

2010 (1)

Z. L. Mei, J. Bai, and T. J. Cui, “Gradient index metamaterials realized by drilling hole arrays,” J. Phys. D: Applied Physics 43, 055404 (2010).
[Crossref]

2005 (1)

S. Dor, V. Doc, K. Tam, and S. Cam, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[Crossref]

2004 (1)

1999 (1)

1995 (1)

1994 (1)

Adams, D.

S. Inampudi, D. Adams, T. Ribaudo, D. Slocum, S. Vangala, W. Goodhue, D. Wasserman, and V. Podolskiy, “ε-near-zero enhanced light transmission through a subwavelength slit,” Physical Review B 89, 125119 (2014).
[Crossref]

Aieta, F.

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Alù, A.

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84, 205428 (2011).
[Crossref]

Ansari-Oghol-Beig, D.

Arbabi, A.

Arbabi, E.

Astilean, S.

Bagheri, M.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nature Communications 6, 7069 (2015).
[Crossref] [PubMed]

Bai, J.

Z. L. Mei, J. Bai, and T. J. Cui, “Gradient index metamaterials realized by drilling hole arrays,” J. Phys. D: Applied Physics 43, 055404 (2010).
[Crossref]

Bakker, R. M.

R. Paniagua-dominguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with near-unity numerical aperture,” Nano Letters 18, 2124–2132 (2018).
[Crossref]

Ball, A. J.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nature Communications 6, 7069 (2015).
[Crossref] [PubMed]

Bansropun, S.

C. Ribot, M.-S. L. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, and P. Lalanne, “Broadband and efficient diffraction,” Adv. Opt. Mater. 1, 489–493 (2013).
[Crossref]

Behdad, N.

M. Li and N. Behdad, “Wideband true-time-delay microwave lenses based on metallo-dielectric and all-dielectric lowpass frequency selective surfaces,” IEEE Transactions on Antennas and Propagation 61, 4109–4119 (2013).
[Crossref]

Belov, P. A.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Booth, J.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials,” IEEE Antennas and Propagation Magazine 54, 10–35 (2012).
[Crossref]

Bräuer, R.

Brener, I.

S. Liu, G. A. Keeler, J. L. Reno, M. B. Sinclair, and I. Brener, “III–V semiconductor nanoresonators - new strategy for passive, active, and nonlinear all-dielectric metamaterials,” Adv. Opt. Mater. 4, 1457–1462 (2016).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Brongersma, M. L.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352, 1202–1206 (2016).
[Crossref] [PubMed]

Bryngdahl, O.

Cam, S.

S. Dor, V. Doc, K. Tam, and S. Cam, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[Crossref]

Cambril, E.

Capasso, F.

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nature nanotechnology p. 1 (2018).

Cassette, S.

C. Ribot, M.-S. L. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, and P. Lalanne, “Broadband and efficient diffraction,” Adv. Opt. Mater. 1, 489–493 (2013).
[Crossref]

Chang, S.

Chavel, P.

Chen, B. H.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, and et al., “A broadband achromatic metalens in the visible,” Nature nanotechnology 13, 227 (2018).
[Crossref] [PubMed]

Chen, M.-K.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, and et al., “A broadband achromatic metalens in the visible,” Nature nanotechnology 13, 227 (2018).
[Crossref] [PubMed]

Chen, S.

Chen, W. T.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref] [PubMed]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nature nanotechnology p. 1 (2018).

Chen, Y. H.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, and et al., “A broadband achromatic metalens in the visible,” Nature nanotechnology 13, 227 (2018).
[Crossref] [PubMed]

Cheng, J.

Choi, S.

R. Paniagua-dominguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with near-unity numerical aperture,” Nano Letters 18, 2124–2132 (2018).
[Crossref]

Collin, S.

C. Ribot, M.-S. L. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, and P. Lalanne, “Broadband and efficient diffraction,” Adv. Opt. Mater. 1, 489–493 (2013).
[Crossref]

Cui, T. J.

Z. L. Mei, J. Bai, and T. J. Cui, “Gradient index metamaterials realized by drilling hole arrays,” J. Phys. D: Applied Physics 43, 055404 (2010).
[Crossref]

Decker, M.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Devlin, R.

Devlin, R. C.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref] [PubMed]

Doc, V.

S. Dor, V. Doc, K. Tam, and S. Cam, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[Crossref]

Dominguez, J.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Dor, S.

S. Dor, V. Doc, K. Tam, and S. Cam, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[Crossref]

Engheta, N.

Falkner, M.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Fan, F.

Faraon, A.

Fu, Y. H.

R. Paniagua-dominguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with near-unity numerical aperture,” Nano Letters 18, 2124–2132 (2018).
[Crossref]

Y. F. Yu, A. Y. Zhu, R. Paniagua-Dominguez, Y. H. Fu, B. Luk’Yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Reviews 9, 412–418 (2015).
[Crossref]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Gaylord, T.

Genevet, P.

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Glybovski, S. B.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Goodhue, W.

S. Inampudi, D. Adams, T. Ribaudo, D. Slocum, S. Vangala, W. Goodhue, D. Wasserman, and V. Podolskiy, “ε-near-zero enhanced light transmission through a subwavelength slit,” Physical Review B 89, 125119 (2014).
[Crossref]

Gordon, J. A.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials,” IEEE Antennas and Propagation Magazine 54, 10–35 (2012).
[Crossref]

Grann, E. B.

Hasman, E.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352, 1202–1206 (2016).
[Crossref] [PubMed]

Holloway, C. L.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials,” IEEE Antennas and Propagation Magazine 54, 10–35 (2012).
[Crossref]

Horie, Y.

Huang, T.-T.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, and et al., “A broadband achromatic metalens in the visible,” Nature nanotechnology 13, 227 (2018).
[Crossref] [PubMed]

Inampudi, S.

J. Cheng, S. Inampudi, and H. Mosallaei, “Optimization-based dielectric metasurfaces for angle-selective multifunctional beam deflection,” Sci. Rep. 7, 12228 (2017).
[Crossref] [PubMed]

S. Inampudi, D. Adams, T. Ribaudo, D. Slocum, S. Vangala, W. Goodhue, D. Wasserman, and V. Podolskiy, “ε-near-zero enhanced light transmission through a subwavelength slit,” Physical Review B 89, 125119 (2014).
[Crossref]

Kamali, S. M.

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Keeler, G. A.

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, and T. Pertsch, “Resonantly enhanced second-harmonic generation using iii–v semiconductor all-dielectric metasurfaces,” Nano Letters 16, 5426–5432 (2016).
[Crossref]

S. Liu, G. A. Keeler, J. L. Reno, M. B. Sinclair, and I. Brener, “III–V semiconductor nanoresonators - new strategy for passive, active, and nonlinear all-dielectric metamaterials,” Adv. Opt. Mater. 4, 1457–1462 (2016).
[Crossref]

Kenney, M.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nature Nanotechnology 10, 308–312 (2015).
[Crossref]

Khaidarov, E.

R. Paniagua-dominguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with near-unity numerical aperture,” Nano Letters 18, 2124–2132 (2018).
[Crossref]

Khorasaninejad, M.

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref] [PubMed]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nature nanotechnology p. 1 (2018).

Kildishev, A. V.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nature Communications 4, 2807 (2013).
[Crossref]

Kivshar, Y. S.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Kleiner, V.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352, 1202–1206 (2016).
[Crossref] [PubMed]

Krivitsky, L. A.

R. Paniagua-dominguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with near-unity numerical aperture,” Nano Letters 18, 2124–2132 (2018).
[Crossref]

Kuester, E. F.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials,” IEEE Antennas and Propagation Magazine 54, 10–35 (2012).
[Crossref]

Kuo, H. Y.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, and et al., “A broadband achromatic metalens in the visible,” Nature nanotechnology 13, 227 (2018).
[Crossref] [PubMed]

Kuznetsov, A. I.

R. Paniagua-dominguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with near-unity numerical aperture,” Nano Letters 18, 2124–2132 (2018).
[Crossref]

Y. F. Yu, A. Y. Zhu, R. Paniagua-Dominguez, Y. H. Fu, B. Luk’Yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Reviews 9, 412–418 (2015).
[Crossref]

Lai, Y.-C.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, and et al., “A broadband achromatic metalens in the visible,” Nature nanotechnology 13, 227 (2018).
[Crossref] [PubMed]

Lalanne, P.

Launois, H.

Lee, E.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nature nanotechnology p. 1 (2018).

Lee, M.-S. L.

C. Ribot, M.-S. L. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, and P. Lalanne, “Broadband and efficient diffraction,” Adv. Opt. Mater. 1, 489–493 (2013).
[Crossref]

C. Sauvan, P. Lalanne, and M.-S. L. Lee, “Broadband blazing with artificial dielectrics,” Opt. Lett. 29, 1593–1595 (2004).
[Crossref] [PubMed]

Leong, V.

R. Paniagua-dominguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with near-unity numerical aperture,” Nano Letters 18, 2124–2132 (2018).
[Crossref]

Li, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nature Nanotechnology 10, 308–312 (2015).
[Crossref]

Li, M.

M. Li and N. Behdad, “Wideband true-time-delay microwave lenses based on metallo-dielectric and all-dielectric lowpass frequency selective surfaces,” IEEE Transactions on Antennas and Propagation 61, 4109–4119 (2013).
[Crossref]

Li, Y.

Liang, X.

R. Paniagua-dominguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with near-unity numerical aperture,” Nano Letters 18, 2124–2132 (2018).
[Crossref]

Liberal, I.

Liu, S.

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, and T. Pertsch, “Resonantly enhanced second-harmonic generation using iii–v semiconductor all-dielectric metasurfaces,” Nano Letters 16, 5426–5432 (2016).
[Crossref]

S. Liu, G. A. Keeler, J. L. Reno, M. B. Sinclair, and I. Brener, “III–V semiconductor nanoresonators - new strategy for passive, active, and nonlinear all-dielectric metamaterials,” Adv. Opt. Mater. 4, 1457–1462 (2016).
[Crossref]

Loiseaux, B.

C. Ribot, M.-S. L. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, and P. Lalanne, “Broadband and efficient diffraction,” Adv. Opt. Mater. 1, 489–493 (2013).
[Crossref]

Luk’Yanchuk, B.

Y. F. Yu, A. Y. Zhu, R. Paniagua-Dominguez, Y. H. Fu, B. Luk’Yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Reviews 9, 412–418 (2015).
[Crossref]

Maguid, E.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352, 1202–1206 (2016).
[Crossref] [PubMed]

Mei, Z. L.

Z. L. Mei, J. Bai, and T. J. Cui, “Gradient index metamaterials realized by drilling hole arrays,” J. Phys. D: Applied Physics 43, 055404 (2010).
[Crossref]

Moharam, M.

Mosallaei, H.

Mühlenbernd, H.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nature Nanotechnology 10, 308–312 (2015).
[Crossref]

Neshev, D. N.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Ni, X.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nature Communications 4, 2807 (2013).
[Crossref]

O’Hara, J.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials,” IEEE Antennas and Propagation Magazine 54, 10–35 (2012).
[Crossref]

Oh, J.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref] [PubMed]

Paniagua-dominguez, R.

R. Paniagua-dominguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with near-unity numerical aperture,” Nano Letters 18, 2124–2132 (2018).
[Crossref]

Y. F. Yu, A. Y. Zhu, R. Paniagua-Dominguez, Y. H. Fu, B. Luk’Yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Reviews 9, 412–418 (2015).
[Crossref]

Peake, G. M.

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, and T. Pertsch, “Resonantly enhanced second-harmonic generation using iii–v semiconductor all-dielectric metasurfaces,” Nano Letters 16, 5426–5432 (2016).
[Crossref]

Pertsch, T.

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, and T. Pertsch, “Resonantly enhanced second-harmonic generation using iii–v semiconductor all-dielectric metasurfaces,” Nano Letters 16, 5426–5432 (2016).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Plouhinec, P.

C. Ribot, M.-S. L. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, and P. Lalanne, “Broadband and efficient diffraction,” Adv. Opt. Mater. 1, 489–493 (2013).
[Crossref]

Podolskiy, V.

S. Inampudi, D. Adams, T. Ribaudo, D. Slocum, S. Vangala, W. Goodhue, D. Wasserman, and V. Podolskiy, “ε-near-zero enhanced light transmission through a subwavelength slit,” Physical Review B 89, 125119 (2014).
[Crossref]

Pommet, D. A.

Reno, J.

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, and T. Pertsch, “Resonantly enhanced second-harmonic generation using iii–v semiconductor all-dielectric metasurfaces,” Nano Letters 16, 5426–5432 (2016).
[Crossref]

Reno, J. L.

S. Liu, G. A. Keeler, J. L. Reno, M. B. Sinclair, and I. Brener, “III–V semiconductor nanoresonators - new strategy for passive, active, and nonlinear all-dielectric metamaterials,” Adv. Opt. Mater. 4, 1457–1462 (2016).
[Crossref]

Ribaudo, T.

S. Inampudi, D. Adams, T. Ribaudo, D. Slocum, S. Vangala, W. Goodhue, D. Wasserman, and V. Podolskiy, “ε-near-zero enhanced light transmission through a subwavelength slit,” Physical Review B 89, 125119 (2014).
[Crossref]

Ribot, C.

C. Ribot, M.-S. L. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, and P. Lalanne, “Broadband and efficient diffraction,” Adv. Opt. Mater. 1, 489–493 (2013).
[Crossref]

Sanjeev, V.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nature nanotechnology p. 1 (2018).

Saravi, S.

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, and T. Pertsch, “Resonantly enhanced second-harmonic generation using iii–v semiconductor all-dielectric metasurfaces,” Nano Letters 16, 5426–5432 (2016).
[Crossref]

Sauvan, C.

Setzpfandt, F.

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, and T. Pertsch, “Resonantly enhanced second-harmonic generation using iii–v semiconductor all-dielectric metasurfaces,” Nano Letters 16, 5426–5432 (2016).
[Crossref]

Shalaev, V. M.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nature Communications 4, 2807 (2013).
[Crossref]

Shi, Z.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nature nanotechnology p. 1 (2018).

Simovski, C. R.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Sinclair, M. B.

S. Liu, G. A. Keeler, J. L. Reno, M. B. Sinclair, and I. Brener, “III–V semiconductor nanoresonators - new strategy for passive, active, and nonlinear all-dielectric metamaterials,” Adv. Opt. Mater. 4, 1457–1462 (2016).
[Crossref]

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, and T. Pertsch, “Resonantly enhanced second-harmonic generation using iii–v semiconductor all-dielectric metasurfaces,” Nano Letters 16, 5426–5432 (2016).
[Crossref]

Slocum, D.

S. Inampudi, D. Adams, T. Ribaudo, D. Slocum, S. Vangala, W. Goodhue, D. Wasserman, and V. Podolskiy, “ε-near-zero enhanced light transmission through a subwavelength slit,” Physical Review B 89, 125119 (2014).
[Crossref]

Smith, D. R.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials,” IEEE Antennas and Propagation Magazine 54, 10–35 (2012).
[Crossref]

Staude, I.

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, and T. Pertsch, “Resonantly enhanced second-harmonic generation using iii–v semiconductor all-dielectric metasurfaces,” Nano Letters 16, 5426–5432 (2016).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Su, V.-C.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, and et al., “A broadband achromatic metalens in the visible,” Nature nanotechnology 13, 227 (2018).
[Crossref] [PubMed]

Swanson, G. J.

G. J. Swanson, “Binary optics technology: The theory and design of multi-level diffractive optical elements,” MIT Technical Report854 (1989).

Tam, K.

S. Dor, V. Doc, K. Tam, and S. Cam, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[Crossref]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Thenot, D.

C. Ribot, M.-S. L. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, and P. Lalanne, “Broadband and efficient diffraction,” Adv. Opt. Mater. 1, 489–493 (2013).
[Crossref]

Tretyakov, S. A.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Valuckas, V.

R. Paniagua-dominguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with near-unity numerical aperture,” Nano Letters 18, 2124–2132 (2018).
[Crossref]

Vangala, S.

S. Inampudi, D. Adams, T. Ribaudo, D. Slocum, S. Vangala, W. Goodhue, D. Wasserman, and V. Podolskiy, “ε-near-zero enhanced light transmission through a subwavelength slit,” Physical Review B 89, 125119 (2014).
[Crossref]

Veksler, D.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352, 1202–1206 (2016).
[Crossref] [PubMed]

Wang, J.-H.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, and et al., “A broadband achromatic metalens in the visible,” Nature nanotechnology 13, 227 (2018).
[Crossref] [PubMed]

Wang, S.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, and et al., “A broadband achromatic metalens in the visible,” Nature nanotechnology 13, 227 (2018).
[Crossref] [PubMed]

Wang, X.

Wasserman, D.

S. Inampudi, D. Adams, T. Ribaudo, D. Slocum, S. Vangala, W. Goodhue, D. Wasserman, and V. Podolskiy, “ε-near-zero enhanced light transmission through a subwavelength slit,” Physical Review B 89, 125119 (2014).
[Crossref]

Wu, P.

Wu, P. C.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, and et al., “A broadband achromatic metalens in the visible,” Nature nanotechnology 13, 227 (2018).
[Crossref] [PubMed]

Yang, Y.

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, and T. Pertsch, “Resonantly enhanced second-harmonic generation using iii–v semiconductor all-dielectric metasurfaces,” Nano Letters 16, 5426–5432 (2016).
[Crossref]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Yu, Y. F.

R. Paniagua-dominguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with near-unity numerical aperture,” Nano Letters 18, 2124–2132 (2018).
[Crossref]

Y. F. Yu, A. Y. Zhu, R. Paniagua-Dominguez, Y. H. Fu, B. Luk’Yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Reviews 9, 412–418 (2015).
[Crossref]

Yulevich, I.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352, 1202–1206 (2016).
[Crossref] [PubMed]

Zentgraf, T.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nature Nanotechnology 10, 308–312 (2015).
[Crossref]

Zhang, H.

Zhang, S.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nature Nanotechnology 10, 308–312 (2015).
[Crossref]

Zhao, Y.

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84, 205428 (2011).
[Crossref]

Zheng, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nature Nanotechnology 10, 308–312 (2015).
[Crossref]

Zhu, A. Y.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref] [PubMed]

Y. F. Yu, A. Y. Zhu, R. Paniagua-Dominguez, Y. H. Fu, B. Luk’Yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Reviews 9, 412–418 (2015).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nature nanotechnology p. 1 (2018).

Adv. Opt. Mater. (3)

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

S. Liu, G. A. Keeler, J. L. Reno, M. B. Sinclair, and I. Brener, “III–V semiconductor nanoresonators - new strategy for passive, active, and nonlinear all-dielectric metamaterials,” Adv. Opt. Mater. 4, 1457–1462 (2016).
[Crossref]

C. Ribot, M.-S. L. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, and P. Lalanne, “Broadband and efficient diffraction,” Adv. Opt. Mater. 1, 489–493 (2013).
[Crossref]

Appl. Opt. (1)

IEEE Antennas and Propagation Magazine (1)

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials,” IEEE Antennas and Propagation Magazine 54, 10–35 (2012).
[Crossref]

IEEE Transactions on Antennas and Propagation (1)

M. Li and N. Behdad, “Wideband true-time-delay microwave lenses based on metallo-dielectric and all-dielectric lowpass frequency selective surfaces,” IEEE Transactions on Antennas and Propagation 61, 4109–4119 (2013).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

J. Phys. D: Applied Physics (1)

Z. L. Mei, J. Bai, and T. J. Cui, “Gradient index metamaterials realized by drilling hole arrays,” J. Phys. D: Applied Physics 43, 055404 (2010).
[Crossref]

Laser Photonics Reviews (1)

Y. F. Yu, A. Y. Zhu, R. Paniagua-Dominguez, Y. H. Fu, B. Luk’Yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Reviews 9, 412–418 (2015).
[Crossref]

Nano Letters (2)

R. Paniagua-dominguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with near-unity numerical aperture,” Nano Letters 18, 2124–2132 (2018).
[Crossref]

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, and T. Pertsch, “Resonantly enhanced second-harmonic generation using iii–v semiconductor all-dielectric metasurfaces,” Nano Letters 16, 5426–5432 (2016).
[Crossref]

Nature Communications (2)

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nature Communications 6, 7069 (2015).
[Crossref] [PubMed]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nature Communications 4, 2807 (2013).
[Crossref]

Nature Nanotechnology (1)

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nature Nanotechnology 10, 308–312 (2015).
[Crossref]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, and et al., “A broadband achromatic metalens in the visible,” Nature nanotechnology 13, 227 (2018).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Optica (3)

Phys. Rep. (1)

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Phys. Rev. B (1)

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84, 205428 (2011).
[Crossref]

Phys. Rev. E (1)

S. Dor, V. Doc, K. Tam, and S. Cam, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[Crossref]

Physical Review B (1)

S. Inampudi, D. Adams, T. Ribaudo, D. Slocum, S. Vangala, W. Goodhue, D. Wasserman, and V. Podolskiy, “ε-near-zero enhanced light transmission through a subwavelength slit,” Physical Review B 89, 125119 (2014).
[Crossref]

Sci. Rep. (1)

J. Cheng, S. Inampudi, and H. Mosallaei, “Optimization-based dielectric metasurfaces for angle-selective multifunctional beam deflection,” Sci. Rep. 7, 12228 (2017).
[Crossref] [PubMed]

Science (3)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352, 1202–1206 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref] [PubMed]

Other (2)

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nature nanotechnology p. 1 (2018).

G. J. Swanson, “Binary optics technology: The theory and design of multi-level diffractive optical elements,” MIT Technical Report854 (1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) The layered inclusion studied in this work and the designs using dielectric thick pillar (b) and thin disk (c). The periodicity and the thickness information is marked relative to the center wavelength.
Fig. 2
Fig. 2 Transmission spectrum of phase shifters made of layered structures (a), pillars (b), and disks (c). The solid lines are for amplitude and dash lines for phase. Different elements are represented by different colors. (d)–(f) Variation of the effective refractive index of the inclusions with frequency retrieved from the responses in (a)–(c). Only real part is considered.
Fig. 3
Fig. 3 (a) Field profile in the layered π phase shifter. (b) Total field profile in the pillar π phase shifter and the two guided modes in it. (c) Total field profile in the disk π element and the two guided modes in it. Magnetic component Hx in the y–z plane is plotted with the excitation of Ey and kz. The dash lines indicate the edges of the Si patterns.
Fig. 4
Fig. 4 (a–c) Angular response of the layered, pillar and disk inclusions. The solid lines are for amplitude and dash lines for phase. Different elements are represented by different colors. (d–f) Effective refractive index as a function of the incident angle.
Fig. 5
Fig. 5 (a) Schematic illustration of the three metasurfaces by repeating two supercells in each. (b) Efficiency spectrum of the metasurfaces for 15° beam deflection. Solid line is from Eq. (2). Dot line, plus line and cross line are for layered, pillar and disk metasurfaces, respectively. (c) Variation of ΔΦ in the supcercell over frequency with the same legend as in (b). (d) Transmission amplitude and phase of the first (red) and the last elements (blue) in the layered supercell. Solid lines are amplitude and star markers are phase.
Fig. 6
Fig. 6 Beam deflection in layered, pillar and disk metasurfaces at the center frequency f0 and 1.2 f0. Real part of Hx is plotted before and after the metasurface supercell.
Fig. 7
Fig. 7 (a) Angular bandwidth of the metasurfaces. (b) Near field (real part of Hx) in layered, pillar and disk metasurface supercells with 45° excitation.
Fig. 8
Fig. 8 Beam deflection efficiency of the devices when introducing different amount of the width error (a), the thickness error (b), and the registration error (c) at the center frequency with the normal excitation. The results are averaged for 30 times calculations.
Fig. 9
Fig. 9 Examples of ideal phase spectrum of elements at the two ends of the supercell for unity-efficiency deflection.
Fig. 10
Fig. 10 (a) Geometry of the reflective layered inclusion. (b) Deflection efficiency of the reflective layered design over frequency as the dot line. The solid line is from Eq. (2). (c) Phase spectrum of 8 elements in a supercell. (d) Efficiency for beam deflection over incident angle. Dot line for layered metasurface. Solid line for effective-medium grating with the same thickness. (d) Reflected near field (Hx) by the layered metasurface at different frequencies and with different incident angles. Position of the metasurface is shown as the dash line, and incident field is not shown for clarity.

Tables (1)

Tables Icon

Table 1 Diameters of phase shifters normalized to λ0

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T = 2 2 cos ( ϕ ) + j ( η + 1 η ) sin ( ϕ )
E = sinc 2 ( 1 f f 0 )

Metrics