Abstract

We demonstrate a novel InGaAsP/InP segmented waveguide photodetector based on directional couplers. By matching the imaginary parts of the propagation constants of the even and odd modes, we designed a photodetector with 6 elements, each with an absorber volume of only 19 μm3 and a bandwidth of 15 GHz, that has an internal quantum efficiency (QE) of 90% at 1550 nm wavelength corresponding to 1.13 A/W.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
A hybrid AlGaInAs-silicon evanescent waveguide photodetector

Hyundai Park, Alexander W. Fang, Richard Jones, Oded Cohen, Omri Raday, Matthew N. Sysak, Mario J. Paniccia, and John E. Bowers
Opt. Express 15(10) 6044-6052 (2007)

High-bandwidth uni-traveling carrier waveguide photodetector on an InP-membrane-on-silicon platform

L. Shen, Y. Jiao, W. Yao, Z. Cao, J. P. van Engelen, G. Roelkens, M. K. Smit, and J. J. G. M. van der Tol
Opt. Express 24(8) 8290-8301 (2016)

InAs/InP(100) quantum dot waveguide photodetectors for swept-source optical coherence tomography around 1.7 µm

Yuqing Jiao, Bauke W. Tilma, Junji Kotani, Richard Nötzel, Meint K. Smit, Sailing He, and Erwin A. J. M. Bente
Opt. Express 20(4) 3675-3692 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. Wake, T. P. Spooner, S. D. Perrin, and I. D. Henning, “50 GHz InGaAs edge-coupled PIN photodetector,” Electron. Lett. 27(12), 1073–1075 (1991).
    [Crossref]
  2. Y. Wang, Z. Wang, Q. Yu, X. Xie, T. Posavitz, M. Jacob-Mitos, A. Ramaswamy, E. Norberg, G. Fish, and A. Beling, “High-Power Photodiodes With 65 GHz Bandwidth Heterogeneously Integrated Onto Silicon-on-Insulator Nano-Waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–6 (2017).
  3. M. N. Draa, J. Bloch, D. Chen, D. C. Scott, N. Chen, S. B. Chen, X. Yu, W. S. Chang, and P. K. L. Yu, “Novel directional coupled waveguide photodiode-concept and preliminary results,” Opt. Express 18(17), 17729–17735 (2010).
    [Crossref] [PubMed]
  4. M. S. Islam, T. Jung, T. Itoh, M. Wu, D. L. Sivco, and Y. Cho, “Velocity-matched distributed photodetectors with pin photodiodes,” in International Topical Meeting on Microwave Photonics MWP 2000, pp. 217–220 (2000).
    [Crossref]
  5. R. Nehra, C. H. Chang, A. Beling, and O. Pfister, “Photon-number-resolving segmented avalanche-photodiode detectors,” arXiv:1708.09015 [physics.ins-det] (2017).
  6. F. J. Effenberger and A. M. Joshi, “Ultrafast, dual-depletion region, InGaAs/InP pin detector,” J. Lightwave Technol. 14(8), 1859–1864 (1996).
    [Crossref]
  7. Q. Li, K. Sun, K. Li, Q. Yu, P. Runge, W. Ebert, A. Beling, and J. C. Campbell, “High-Power Evanescently-coupled Waveguide MUTC Photodiode with >105 GHz bandwidth,” J. Lightwave Technol. 35(21), 4752–4757 (2017).
    [Crossref]
  8. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
    [Crossref]
  9. V. R. Chinni, T. C. Huang, P. K. Wai, C. R. Menyuk, and G. J. Simonis, “Crosstalk in a lossy directional coupler switch,” J. Lightwave Technol. 13(7), 1530–1535 (1995).
    [Crossref]
  10. D. Marcuse, “Theory of the Directional Coupler,” in Theory of Dielectric Optical Waveguides (1991).
  11. Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron. 46(5), 626–632 (2010).
    [Crossref]

2017 (2)

Y. Wang, Z. Wang, Q. Yu, X. Xie, T. Posavitz, M. Jacob-Mitos, A. Ramaswamy, E. Norberg, G. Fish, and A. Beling, “High-Power Photodiodes With 65 GHz Bandwidth Heterogeneously Integrated Onto Silicon-on-Insulator Nano-Waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–6 (2017).

Q. Li, K. Sun, K. Li, Q. Yu, P. Runge, W. Ebert, A. Beling, and J. C. Campbell, “High-Power Evanescently-coupled Waveguide MUTC Photodiode with >105 GHz bandwidth,” J. Lightwave Technol. 35(21), 4752–4757 (2017).
[Crossref]

2010 (2)

M. N. Draa, J. Bloch, D. Chen, D. C. Scott, N. Chen, S. B. Chen, X. Yu, W. S. Chang, and P. K. L. Yu, “Novel directional coupled waveguide photodiode-concept and preliminary results,” Opt. Express 18(17), 17729–17735 (2010).
[Crossref] [PubMed]

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron. 46(5), 626–632 (2010).
[Crossref]

1996 (1)

F. J. Effenberger and A. M. Joshi, “Ultrafast, dual-depletion region, InGaAs/InP pin detector,” J. Lightwave Technol. 14(8), 1859–1864 (1996).
[Crossref]

1995 (1)

V. R. Chinni, T. C. Huang, P. K. Wai, C. R. Menyuk, and G. J. Simonis, “Crosstalk in a lossy directional coupler switch,” J. Lightwave Technol. 13(7), 1530–1535 (1995).
[Crossref]

1991 (1)

D. Wake, T. P. Spooner, S. D. Perrin, and I. D. Henning, “50 GHz InGaAs edge-coupled PIN photodetector,” Electron. Lett. 27(12), 1073–1075 (1991).
[Crossref]

1973 (1)

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[Crossref]

Beling, A.

Y. Wang, Z. Wang, Q. Yu, X. Xie, T. Posavitz, M. Jacob-Mitos, A. Ramaswamy, E. Norberg, G. Fish, and A. Beling, “High-Power Photodiodes With 65 GHz Bandwidth Heterogeneously Integrated Onto Silicon-on-Insulator Nano-Waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–6 (2017).

Q. Li, K. Sun, K. Li, Q. Yu, P. Runge, W. Ebert, A. Beling, and J. C. Campbell, “High-Power Evanescently-coupled Waveguide MUTC Photodiode with >105 GHz bandwidth,” J. Lightwave Technol. 35(21), 4752–4757 (2017).
[Crossref]

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron. 46(5), 626–632 (2010).
[Crossref]

Bloch, J.

Campbell, J. C.

Q. Li, K. Sun, K. Li, Q. Yu, P. Runge, W. Ebert, A. Beling, and J. C. Campbell, “High-Power Evanescently-coupled Waveguide MUTC Photodiode with >105 GHz bandwidth,” J. Lightwave Technol. 35(21), 4752–4757 (2017).
[Crossref]

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron. 46(5), 626–632 (2010).
[Crossref]

Chang, W. S.

Chen, D.

Chen, H.

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron. 46(5), 626–632 (2010).
[Crossref]

Chen, N.

Chen, S. B.

Chinni, V. R.

V. R. Chinni, T. C. Huang, P. K. Wai, C. R. Menyuk, and G. J. Simonis, “Crosstalk in a lossy directional coupler switch,” J. Lightwave Technol. 13(7), 1530–1535 (1995).
[Crossref]

Cho, Y.

M. S. Islam, T. Jung, T. Itoh, M. Wu, D. L. Sivco, and Y. Cho, “Velocity-matched distributed photodetectors with pin photodiodes,” in International Topical Meeting on Microwave Photonics MWP 2000, pp. 217–220 (2000).
[Crossref]

Draa, M. N.

Ebert, W.

Effenberger, F. J.

F. J. Effenberger and A. M. Joshi, “Ultrafast, dual-depletion region, InGaAs/InP pin detector,” J. Lightwave Technol. 14(8), 1859–1864 (1996).
[Crossref]

Fish, G.

Y. Wang, Z. Wang, Q. Yu, X. Xie, T. Posavitz, M. Jacob-Mitos, A. Ramaswamy, E. Norberg, G. Fish, and A. Beling, “High-Power Photodiodes With 65 GHz Bandwidth Heterogeneously Integrated Onto Silicon-on-Insulator Nano-Waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–6 (2017).

Henning, I. D.

D. Wake, T. P. Spooner, S. D. Perrin, and I. D. Henning, “50 GHz InGaAs edge-coupled PIN photodetector,” Electron. Lett. 27(12), 1073–1075 (1991).
[Crossref]

Huang, T. C.

V. R. Chinni, T. C. Huang, P. K. Wai, C. R. Menyuk, and G. J. Simonis, “Crosstalk in a lossy directional coupler switch,” J. Lightwave Technol. 13(7), 1530–1535 (1995).
[Crossref]

Islam, M. S.

M. S. Islam, T. Jung, T. Itoh, M. Wu, D. L. Sivco, and Y. Cho, “Velocity-matched distributed photodetectors with pin photodiodes,” in International Topical Meeting on Microwave Photonics MWP 2000, pp. 217–220 (2000).
[Crossref]

Itoh, T.

M. S. Islam, T. Jung, T. Itoh, M. Wu, D. L. Sivco, and Y. Cho, “Velocity-matched distributed photodetectors with pin photodiodes,” in International Topical Meeting on Microwave Photonics MWP 2000, pp. 217–220 (2000).
[Crossref]

Jacob-Mitos, M.

Y. Wang, Z. Wang, Q. Yu, X. Xie, T. Posavitz, M. Jacob-Mitos, A. Ramaswamy, E. Norberg, G. Fish, and A. Beling, “High-Power Photodiodes With 65 GHz Bandwidth Heterogeneously Integrated Onto Silicon-on-Insulator Nano-Waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–6 (2017).

Joshi, A. M.

F. J. Effenberger and A. M. Joshi, “Ultrafast, dual-depletion region, InGaAs/InP pin detector,” J. Lightwave Technol. 14(8), 1859–1864 (1996).
[Crossref]

Jung, T.

M. S. Islam, T. Jung, T. Itoh, M. Wu, D. L. Sivco, and Y. Cho, “Velocity-matched distributed photodetectors with pin photodiodes,” in International Topical Meeting on Microwave Photonics MWP 2000, pp. 217–220 (2000).
[Crossref]

Li, K.

Li, Q.

Li, Z.

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron. 46(5), 626–632 (2010).
[Crossref]

Menyuk, C. R.

V. R. Chinni, T. C. Huang, P. K. Wai, C. R. Menyuk, and G. J. Simonis, “Crosstalk in a lossy directional coupler switch,” J. Lightwave Technol. 13(7), 1530–1535 (1995).
[Crossref]

Norberg, E.

Y. Wang, Z. Wang, Q. Yu, X. Xie, T. Posavitz, M. Jacob-Mitos, A. Ramaswamy, E. Norberg, G. Fish, and A. Beling, “High-Power Photodiodes With 65 GHz Bandwidth Heterogeneously Integrated Onto Silicon-on-Insulator Nano-Waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–6 (2017).

Pan, H.

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron. 46(5), 626–632 (2010).
[Crossref]

Perrin, S. D.

D. Wake, T. P. Spooner, S. D. Perrin, and I. D. Henning, “50 GHz InGaAs edge-coupled PIN photodetector,” Electron. Lett. 27(12), 1073–1075 (1991).
[Crossref]

Posavitz, T.

Y. Wang, Z. Wang, Q. Yu, X. Xie, T. Posavitz, M. Jacob-Mitos, A. Ramaswamy, E. Norberg, G. Fish, and A. Beling, “High-Power Photodiodes With 65 GHz Bandwidth Heterogeneously Integrated Onto Silicon-on-Insulator Nano-Waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–6 (2017).

Ramaswamy, A.

Y. Wang, Z. Wang, Q. Yu, X. Xie, T. Posavitz, M. Jacob-Mitos, A. Ramaswamy, E. Norberg, G. Fish, and A. Beling, “High-Power Photodiodes With 65 GHz Bandwidth Heterogeneously Integrated Onto Silicon-on-Insulator Nano-Waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–6 (2017).

Runge, P.

Scott, D. C.

Simonis, G. J.

V. R. Chinni, T. C. Huang, P. K. Wai, C. R. Menyuk, and G. J. Simonis, “Crosstalk in a lossy directional coupler switch,” J. Lightwave Technol. 13(7), 1530–1535 (1995).
[Crossref]

Sivco, D. L.

M. S. Islam, T. Jung, T. Itoh, M. Wu, D. L. Sivco, and Y. Cho, “Velocity-matched distributed photodetectors with pin photodiodes,” in International Topical Meeting on Microwave Photonics MWP 2000, pp. 217–220 (2000).
[Crossref]

Spooner, T. P.

D. Wake, T. P. Spooner, S. D. Perrin, and I. D. Henning, “50 GHz InGaAs edge-coupled PIN photodetector,” Electron. Lett. 27(12), 1073–1075 (1991).
[Crossref]

Sun, K.

Wai, P. K.

V. R. Chinni, T. C. Huang, P. K. Wai, C. R. Menyuk, and G. J. Simonis, “Crosstalk in a lossy directional coupler switch,” J. Lightwave Technol. 13(7), 1530–1535 (1995).
[Crossref]

Wake, D.

D. Wake, T. P. Spooner, S. D. Perrin, and I. D. Henning, “50 GHz InGaAs edge-coupled PIN photodetector,” Electron. Lett. 27(12), 1073–1075 (1991).
[Crossref]

Wang, Y.

Y. Wang, Z. Wang, Q. Yu, X. Xie, T. Posavitz, M. Jacob-Mitos, A. Ramaswamy, E. Norberg, G. Fish, and A. Beling, “High-Power Photodiodes With 65 GHz Bandwidth Heterogeneously Integrated Onto Silicon-on-Insulator Nano-Waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–6 (2017).

Wang, Z.

Y. Wang, Z. Wang, Q. Yu, X. Xie, T. Posavitz, M. Jacob-Mitos, A. Ramaswamy, E. Norberg, G. Fish, and A. Beling, “High-Power Photodiodes With 65 GHz Bandwidth Heterogeneously Integrated Onto Silicon-on-Insulator Nano-Waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–6 (2017).

Wu, M.

M. S. Islam, T. Jung, T. Itoh, M. Wu, D. L. Sivco, and Y. Cho, “Velocity-matched distributed photodetectors with pin photodiodes,” in International Topical Meeting on Microwave Photonics MWP 2000, pp. 217–220 (2000).
[Crossref]

Xie, X.

Y. Wang, Z. Wang, Q. Yu, X. Xie, T. Posavitz, M. Jacob-Mitos, A. Ramaswamy, E. Norberg, G. Fish, and A. Beling, “High-Power Photodiodes With 65 GHz Bandwidth Heterogeneously Integrated Onto Silicon-on-Insulator Nano-Waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–6 (2017).

Yariv, A.

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[Crossref]

Yu, P. K. L.

Yu, Q.

Q. Li, K. Sun, K. Li, Q. Yu, P. Runge, W. Ebert, A. Beling, and J. C. Campbell, “High-Power Evanescently-coupled Waveguide MUTC Photodiode with >105 GHz bandwidth,” J. Lightwave Technol. 35(21), 4752–4757 (2017).
[Crossref]

Y. Wang, Z. Wang, Q. Yu, X. Xie, T. Posavitz, M. Jacob-Mitos, A. Ramaswamy, E. Norberg, G. Fish, and A. Beling, “High-Power Photodiodes With 65 GHz Bandwidth Heterogeneously Integrated Onto Silicon-on-Insulator Nano-Waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–6 (2017).

Yu, X.

Electron. Lett. (1)

D. Wake, T. P. Spooner, S. D. Perrin, and I. D. Henning, “50 GHz InGaAs edge-coupled PIN photodetector,” Electron. Lett. 27(12), 1073–1075 (1991).
[Crossref]

IEEE J. Quantum Electron. (2)

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron. 46(5), 626–632 (2010).
[Crossref]

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Wang, Z. Wang, Q. Yu, X. Xie, T. Posavitz, M. Jacob-Mitos, A. Ramaswamy, E. Norberg, G. Fish, and A. Beling, “High-Power Photodiodes With 65 GHz Bandwidth Heterogeneously Integrated Onto Silicon-on-Insulator Nano-Waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–6 (2017).

J. Lightwave Technol. (3)

F. J. Effenberger and A. M. Joshi, “Ultrafast, dual-depletion region, InGaAs/InP pin detector,” J. Lightwave Technol. 14(8), 1859–1864 (1996).
[Crossref]

V. R. Chinni, T. C. Huang, P. K. Wai, C. R. Menyuk, and G. J. Simonis, “Crosstalk in a lossy directional coupler switch,” J. Lightwave Technol. 13(7), 1530–1535 (1995).
[Crossref]

Q. Li, K. Sun, K. Li, Q. Yu, P. Runge, W. Ebert, A. Beling, and J. C. Campbell, “High-Power Evanescently-coupled Waveguide MUTC Photodiode with >105 GHz bandwidth,” J. Lightwave Technol. 35(21), 4752–4757 (2017).
[Crossref]

Opt. Express (1)

Other (3)

D. Marcuse, “Theory of the Directional Coupler,” in Theory of Dielectric Optical Waveguides (1991).

M. S. Islam, T. Jung, T. Itoh, M. Wu, D. L. Sivco, and Y. Cho, “Velocity-matched distributed photodetectors with pin photodiodes,” in International Topical Meeting on Microwave Photonics MWP 2000, pp. 217–220 (2000).
[Crossref]

R. Nehra, C. H. Chang, A. Beling, and O. Pfister, “Photon-number-resolving segmented avalanche-photodiode detectors,” arXiv:1708.09015 [physics.ins-det] (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Cross-section of waveguide photodiode; (b) Light propagating in the segmented waveguide photodetector; (c) Intensity distribution of the anti-symmetric (odd) and symmetric (even) supermodes in the cross-section.
Fig. 2
Fig. 2 (a) Real part of propagation constant and mode beat length vs. WG2 thickness. (b) Imaginary part of propagation constants vs. WG2 thickness.
Fig. 3
Fig. 3 (a) Epitaxial layer structure for segmented waveguide photodetector. (b) Simulation of the total power in the segmented waveguide photodetector with 3 PDs and a width of 20 μm.
Fig. 4
Fig. 4 Fabrication process to achieve uniform width for WG1 and WG2.
Fig. 5
Fig. 5 (a) Microscope picture of fabricated segmented waveguide photodetector, (b) SEM pictures of PD and waveguide, (c) Bandwidth measurements of single photodiodes with different areas from the same wafer.
Fig. 6
Fig. 6 (a) Measured internal QE of single PDs with different widths vs. PD length. The simulated internal QE (dashed line) showed negligible dependence on PD width. (b) Total internal QE of the segmented waveguide photodetector at a reverse bias of 3 V. The error bars come from the uncertainty in measuring the external QE of several 300 μm-long PDs that were used to determine the fiber coupling loss.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

1 ( z )= a 1 φ e exp( i β e z )+ a 2 φ o exp( i β o z ) 2 ( z )= a 3 φ e exp( i β e z )+ a 4 φ o exp( i β o z )
2 ( 0 )= a 3 φ e + a 4 φ o =0
exp[ i( Δβ ) l pd ]=1
exp( Δ β i l pd )exp( iΔ β r l pd )=1.
l=2 /Δ β r .

Metrics