Abstract

The planar compound eye has the advantages of simple structure and no requirement for complex relay optical elements, but the field of view (FOV) is very difficult to expand. Overcoming the limitation of FOV, especially with simple structures, is a great challenge for the development of planar compound eyes. Different from the existing designs that only considering refraction, this article proposes a catadioptric planar compound eye based on the reflection and refraction to expand the FOV. In the proposed design, the incident light from a large angle is reflected into the lenslet array by two rotationally symmetric mirrors whose surface equations are optimized by mathematical and optical softwares. The FOV of the proposed catadioptric planar compound eye theoretically can reach 96.6°, which is much wider than the opening record of 70°. Moreover, no distortion of the imaging system can be obtained theoretically in this design. Simulation results show a linearity of better than 99% for the most of the incident angles. The verification experiments show that the FOV of the proposed device can reach 90.7° while the FOV of the corresponding planar compound eye without mirrors is 41.6°. The proposed catadioptric planar compound eye has the great potential in monitoring, detection and virtual reality since the FOV has been widen significantly.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
SCECam: a spherical compound eye camera for fast location and recognition of objects at a large field of view

Chengyong Shi, Yuanyuan Wang, Chenyang Liu, Taisheng Wang, Hongxin Zhang, Wuxia Liao, Zhijun Xu, and Weixing Yu
Opt. Express 25(26) 32333-32345 (2017)

Compound eye and retina-like combination sensor with a large field of view based on a space-variant curved micro lens array

Yang Cheng, Jie Cao, Qun Hao, Fanghua Zhang, Shaopu Wang, Wenze Xia, Lingtong Meng, Yangkun Zhang, and Haoyong Yu
Appl. Opt. 56(12) 3502-3509 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Duparre, P. Schreiber, A. Matthes, E. Pshenay-Severin, A. Brauer, A. Tunnermann, R. Volkel, M. Eisner, and T. Scharf, “Microoptical telescope compound eye,” Opt. Express 13(3), 889–903 (2005).
    [Crossref] [PubMed]
  2. J. Duparre, P. Dannberg, P. Schreiber, A. Brauer, and A. Tunnermann, “Thin compound-eye camera,” Appl. Opt. 44(15), 2949–2956 (2005).
    [Crossref] [PubMed]
  3. A. Brueckner, J. Duparre, R. Leitel, P. Dannberg, A. Braeuer, and A. Tuennermann, “Thin wafer-level camera lenses inspired by insect compound eyes,” Opt. Express 18(24), 24379–24394 (2010).
    [Crossref]
  4. H. R. Fallah and A. Karimzadeh, “Design and simulation of a high-resolution superposition compound eye,” J. Mod. Opt. 54(1), 67–76 (2007).
    [Crossref]
  5. M. Shankar, R. Willett, N. Pitsianis, T. Schulz, R. Gibbons, R. T. Kolste, J. Carriere, C. Chen, D. Prather, and D. Brady, “Thin infrared imaging systems through multichannel sampling,” Appl. Opt. 47(10), B1–B10 (2008).
    [Crossref] [PubMed]
  6. G. Druart, N. Guerineau, R. Haidar, S. Thetas, J. Taboury, S. Rommeluere, J. Primot, and M. Fendler, “Demonstration of an infrared microcamera inspired by Xenos peckii vision,” Appl. Opt. 48(18), 3368–3374 (2009).
    [Crossref] [PubMed]
  7. T. Wang, W. Yu, C. Li, H. Zhang, Z. Xu, Z. Lu, and Q. Sun, “Biomimetic compound eye with a high numerical aperture and anti-reflective nanostructures on curved surfaces,” Opt. Lett. 37(12), 2397–2399 (2012).
    [Crossref] [PubMed]
  8. R. Horisaki and J. Tanida, “Compact compound-eye projector using superresolved projection,” Opt. Lett. 36(2), 121–123 (2011).
    [Crossref] [PubMed]
  9. J. W. Duparre and F. C. Wippermann, “Micro-optical artificial compound eyes,” Bioinspir. Biomim. 1(1), R1–R16 (2006).
    [Crossref]
  10. Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
    [Crossref] [PubMed]
  11. L. Li and A. Y. Yi, “Development of a 3D artificial compound eye,” Opt. Express 18(17), 18125–18137 (2010).
    [Crossref] [PubMed]
  12. M. Ma, F. Guo, Z. Cao, and K. Wang, “Development of an artificial compound eye system for three-dimensional object detection,” Appl. Opt. 53(6), 1166–1172 (2014).
    [Crossref] [PubMed]
  13. H. Yoo, “Depth extraction for 3D objects via windowing technique in computational integral imaging with a lenslet array,” Opt. Lasers Eng. 51(7), 912–915 (2013).
    [Crossref]
  14. Y. Piao, M. Zhang, J.-J. Lee, D. Shin, and B.-G. Lee, “Orthoscopic integral imaging display by use of the computational method based on lenslet model,” Opt. Lasers Eng. 52(1), 184–188 (2014).
    [Crossref]
  15. L. Li and A. Y. Yi, “Design and fabrication of a freeform microlens array for a compact large-field-of-view compound-eye camera,” Appl. Opt. 51(12), 1843–1852 (2012).
    [Crossref] [PubMed]
  16. K. Jeong, J. Kim, and L. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
    [Crossref] [PubMed]
  17. J. Kim, K. Jeong, and L. Lee, “Artificial ommatidia by self-aligned microlenses and waveguides,” Opt. Lett. 30(1), 5–7 (2005).
    [Crossref] [PubMed]
  18. J. Duparre, P. Dannberg, P. Schreiber, A. Brauer, and A. Tunnermann, “Artificial apposition compound eye fabricated by micro-optics technology,” Appl. Opt. 43(22), 4303–4310 (2004).
    [Crossref] [PubMed]
  19. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimentalverification,” Appl. Opt. 40(11), 1806–1813 (2001).
    [Crossref]
  20. F. Fan, Q. Hao, and X. Cheng, “Retina-like sensor based on a lens array with a large field of view,” Appl. Opt. 54(36), 10692–10697 (2015).
    [Crossref]
  21. H. R. Fallah and A. Karimzadeh, “MTF of compound eye,” Opt. Express 18(12), 12304–12310 (2010).
    [Crossref] [PubMed]
  22. A. Brueckner, J. Duparre, P. Dannberg, R. Leitel, and A. Braeuer, “Driving microoptical imaging systems towards miniature camera applications,” Proc. SPIE 7716, 77160J (2010).
    [Crossref]
  23. J. Duparre, P. Schreiber, and R. Volkel, “Theoretical analysis of an artificial superposition compound eye for application in ultra flat digital image acquisition devices,” Proc. SPIE 5249, 408–418 (2004).
    [Crossref]
  24. S. Wu, T. Jiang, G. Zhang, B. Schoenemann, F. Neri, M. Zhu, C. Bu, J. Han, and K.-D. Kuhnert, “Artificial compound eye: a survey of the state-of-the-art,” Artif. Intell. Rev. 48(4), 573–603 (2017).
    [Crossref]
  25. A. Brueckner, J. Duparre, P. Dannberg, A. Braeuer, and A. Tuennermann, “Artificial neural superposition eye,” Opt. Express 15(19), 11922–11933 (2007).
    [Crossref]
  26. E. Koese and R. K. Perline, “Double-mirror catadioptric sensors with ultrawide field of view and no distortion,” Appl. Opt. 53(4), 528–536 (2014).
    [Crossref]
  27. S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
    [Crossref] [PubMed]
  28. T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multilens objectives,” Nat. Photonics 10, 554–560 (2016).
    [Crossref]
  29. S. Juodkazis, “Manufacturing: 3D printed micro-optics,” Nat. Photonics 10, 449–501 (2016).
    [Crossref]
  30. K. M. He, J. Sun, and X. O. Tang, “Single image haze removal using dark channel prior,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011).
    [Crossref]
  31. Z. Rahman, D. J. Jobson, and G. A. Woodell, “Multi-scale retinex for color image enhancement,” in Proceedings of IEEE Conference on Image Processing (IEEE, 1996), pp. 1003–1006.
    [Crossref]
  32. D. J. Jobson, Z. Rahman, and G. A. Woodell, “A multiscale retinex for bridging the gap between color images and the human observation of scenes,” IEEE Trans. Image Process. 6(7), 965–976 (1997).
    [Crossref] [PubMed]

2017 (2)

S. Wu, T. Jiang, G. Zhang, B. Schoenemann, F. Neri, M. Zhu, C. Bu, J. Han, and K.-D. Kuhnert, “Artificial compound eye: a survey of the state-of-the-art,” Artif. Intell. Rev. 48(4), 573–603 (2017).
[Crossref]

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
[Crossref] [PubMed]

2016 (2)

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multilens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

S. Juodkazis, “Manufacturing: 3D printed micro-optics,” Nat. Photonics 10, 449–501 (2016).
[Crossref]

2015 (1)

2014 (3)

2013 (2)

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

H. Yoo, “Depth extraction for 3D objects via windowing technique in computational integral imaging with a lenslet array,” Opt. Lasers Eng. 51(7), 912–915 (2013).
[Crossref]

2012 (2)

2011 (2)

R. Horisaki and J. Tanida, “Compact compound-eye projector using superresolved projection,” Opt. Lett. 36(2), 121–123 (2011).
[Crossref] [PubMed]

K. M. He, J. Sun, and X. O. Tang, “Single image haze removal using dark channel prior,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011).
[Crossref]

2010 (4)

2009 (1)

2008 (1)

2007 (2)

A. Brueckner, J. Duparre, P. Dannberg, A. Braeuer, and A. Tuennermann, “Artificial neural superposition eye,” Opt. Express 15(19), 11922–11933 (2007).
[Crossref]

H. R. Fallah and A. Karimzadeh, “Design and simulation of a high-resolution superposition compound eye,” J. Mod. Opt. 54(1), 67–76 (2007).
[Crossref]

2006 (2)

J. W. Duparre and F. C. Wippermann, “Micro-optical artificial compound eyes,” Bioinspir. Biomim. 1(1), R1–R16 (2006).
[Crossref]

K. Jeong, J. Kim, and L. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
[Crossref] [PubMed]

2005 (3)

2004 (2)

J. Duparre, P. Dannberg, P. Schreiber, A. Brauer, and A. Tunnermann, “Artificial apposition compound eye fabricated by micro-optics technology,” Appl. Opt. 43(22), 4303–4310 (2004).
[Crossref] [PubMed]

J. Duparre, P. Schreiber, and R. Volkel, “Theoretical analysis of an artificial superposition compound eye for application in ultra flat digital image acquisition devices,” Proc. SPIE 5249, 408–418 (2004).
[Crossref]

2001 (1)

1997 (1)

D. J. Jobson, Z. Rahman, and G. A. Woodell, “A multiscale retinex for bridging the gap between color images and the human observation of scenes,” IEEE Trans. Image Process. 6(7), 965–976 (1997).
[Crossref] [PubMed]

Arzenbacher, K.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
[Crossref] [PubMed]

Brady, D.

Braeuer, A.

Brauer, A.

Brueckner, A.

Bu, C.

S. Wu, T. Jiang, G. Zhang, B. Schoenemann, F. Neri, M. Zhu, C. Bu, J. Han, and K.-D. Kuhnert, “Artificial compound eye: a survey of the state-of-the-art,” Artif. Intell. Rev. 48(4), 573–603 (2017).
[Crossref]

Cao, Z.

Carriere, J.

Chen, C.

Cheng, X.

Choi, K.-J.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Crozier, K. B.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Dannberg, P.

Druart, G.

Duparre, J.

Duparre, J. W.

J. W. Duparre and F. C. Wippermann, “Micro-optical artificial compound eyes,” Bioinspir. Biomim. 1(1), R1–R16 (2006).
[Crossref]

Eisner, M.

Fallah, H. R.

H. R. Fallah and A. Karimzadeh, “MTF of compound eye,” Opt. Express 18(12), 12304–12310 (2010).
[Crossref] [PubMed]

H. R. Fallah and A. Karimzadeh, “Design and simulation of a high-resolution superposition compound eye,” J. Mod. Opt. 54(1), 67–76 (2007).
[Crossref]

Fan, F.

Fendler, M.

Gibbons, R.

Giessen, H.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
[Crossref] [PubMed]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multilens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

Gissibl, T.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
[Crossref] [PubMed]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multilens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

Guerineau, N.

Guo, F.

Haidar, R.

Han, J.

S. Wu, T. Jiang, G. Zhang, B. Schoenemann, F. Neri, M. Zhu, C. Bu, J. Han, and K.-D. Kuhnert, “Artificial compound eye: a survey of the state-of-the-art,” Artif. Intell. Rev. 48(4), 573–603 (2017).
[Crossref]

Hao, Q.

He, K. M.

K. M. He, J. Sun, and X. O. Tang, “Single image haze removal using dark channel prior,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011).
[Crossref]

Herkommer, A.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multilens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

Herkommer, A. M.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
[Crossref] [PubMed]

Horisaki, R.

Huang, Y.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Ichioka, Y.

Ishida, K.

Jeong, K.

K. Jeong, J. Kim, and L. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
[Crossref] [PubMed]

J. Kim, K. Jeong, and L. Lee, “Artificial ommatidia by self-aligned microlenses and waveguides,” Opt. Lett. 30(1), 5–7 (2005).
[Crossref] [PubMed]

Jiang, T.

S. Wu, T. Jiang, G. Zhang, B. Schoenemann, F. Neri, M. Zhu, C. Bu, J. Han, and K.-D. Kuhnert, “Artificial compound eye: a survey of the state-of-the-art,” Artif. Intell. Rev. 48(4), 573–603 (2017).
[Crossref]

Jobson, D. J.

D. J. Jobson, Z. Rahman, and G. A. Woodell, “A multiscale retinex for bridging the gap between color images and the human observation of scenes,” IEEE Trans. Image Process. 6(7), 965–976 (1997).
[Crossref] [PubMed]

Z. Rahman, D. J. Jobson, and G. A. Woodell, “Multi-scale retinex for color image enhancement,” in Proceedings of IEEE Conference on Image Processing (IEEE, 1996), pp. 1003–1006.
[Crossref]

Jung, I.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Juodkazis, S.

S. Juodkazis, “Manufacturing: 3D printed micro-optics,” Nat. Photonics 10, 449–501 (2016).
[Crossref]

Karimzadeh, A.

H. R. Fallah and A. Karimzadeh, “MTF of compound eye,” Opt. Express 18(12), 12304–12310 (2010).
[Crossref] [PubMed]

H. R. Fallah and A. Karimzadeh, “Design and simulation of a high-resolution superposition compound eye,” J. Mod. Opt. 54(1), 67–76 (2007).
[Crossref]

Kim, J.

K. Jeong, J. Kim, and L. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
[Crossref] [PubMed]

J. Kim, K. Jeong, and L. Lee, “Artificial ommatidia by self-aligned microlenses and waveguides,” Opt. Lett. 30(1), 5–7 (2005).
[Crossref] [PubMed]

Kim, R.-H.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Koese, E.

Kolste, R. T.

Kondou, N.

Kuhnert, K.-D.

S. Wu, T. Jiang, G. Zhang, B. Schoenemann, F. Neri, M. Zhu, C. Bu, J. Han, and K.-D. Kuhnert, “Artificial compound eye: a survey of the state-of-the-art,” Artif. Intell. Rev. 48(4), 573–603 (2017).
[Crossref]

Kumagai, T.

Lee, B.-G.

Y. Piao, M. Zhang, J.-J. Lee, D. Shin, and B.-G. Lee, “Orthoscopic integral imaging display by use of the computational method based on lenslet model,” Opt. Lasers Eng. 52(1), 184–188 (2014).
[Crossref]

Lee, J.-J.

Y. Piao, M. Zhang, J.-J. Lee, D. Shin, and B.-G. Lee, “Orthoscopic integral imaging display by use of the computational method based on lenslet model,” Opt. Lasers Eng. 52(1), 184–188 (2014).
[Crossref]

Lee, L.

K. Jeong, J. Kim, and L. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
[Crossref] [PubMed]

J. Kim, K. Jeong, and L. Lee, “Artificial ommatidia by self-aligned microlenses and waveguides,” Opt. Lett. 30(1), 5–7 (2005).
[Crossref] [PubMed]

Leitel, R.

A. Brueckner, J. Duparre, R. Leitel, P. Dannberg, A. Braeuer, and A. Tuennermann, “Thin wafer-level camera lenses inspired by insect compound eyes,” Opt. Express 18(24), 24379–24394 (2010).
[Crossref]

A. Brueckner, J. Duparre, P. Dannberg, R. Leitel, and A. Braeuer, “Driving microoptical imaging systems towards miniature camera applications,” Proc. SPIE 7716, 77160J (2010).
[Crossref]

Li, C.

Li, L.

Li, R.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Liu, Z.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Lu, C.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Lu, Z.

Ma, M.

Malyarchuk, V.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Matthes, A.

Miyatake, S.

Miyazaki, D.

Morimoto, T.

Neri, F.

S. Wu, T. Jiang, G. Zhang, B. Schoenemann, F. Neri, M. Zhu, C. Bu, J. Han, and K.-D. Kuhnert, “Artificial compound eye: a survey of the state-of-the-art,” Artif. Intell. Rev. 48(4), 573–603 (2017).
[Crossref]

Park, H.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Perline, R. K.

Piao, Y.

Y. Piao, M. Zhang, J.-J. Lee, D. Shin, and B.-G. Lee, “Orthoscopic integral imaging display by use of the computational method based on lenslet model,” Opt. Lasers Eng. 52(1), 184–188 (2014).
[Crossref]

Pitsianis, N.

Prather, D.

Primot, J.

Pshenay-Severin, E.

Rahman, Z.

D. J. Jobson, Z. Rahman, and G. A. Woodell, “A multiscale retinex for bridging the gap between color images and the human observation of scenes,” IEEE Trans. Image Process. 6(7), 965–976 (1997).
[Crossref] [PubMed]

Z. Rahman, D. J. Jobson, and G. A. Woodell, “Multi-scale retinex for color image enhancement,” in Proceedings of IEEE Conference on Image Processing (IEEE, 1996), pp. 1003–1006.
[Crossref]

Rogers, J. A.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Rommeluere, S.

Scharf, T.

Schoenemann, B.

S. Wu, T. Jiang, G. Zhang, B. Schoenemann, F. Neri, M. Zhu, C. Bu, J. Han, and K.-D. Kuhnert, “Artificial compound eye: a survey of the state-of-the-art,” Artif. Intell. Rev. 48(4), 573–603 (2017).
[Crossref]

Schreiber, P.

Schulz, T.

Shankar, M.

Shin, D.

Y. Piao, M. Zhang, J.-J. Lee, D. Shin, and B.-G. Lee, “Orthoscopic integral imaging display by use of the computational method based on lenslet model,” Opt. Lasers Eng. 52(1), 184–188 (2014).
[Crossref]

Song, Y. M.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Sun, J.

K. M. He, J. Sun, and X. O. Tang, “Single image haze removal using dark channel prior,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011).
[Crossref]

Sun, Q.

Taboury, J.

Tang, X. O.

K. M. He, J. Sun, and X. O. Tang, “Single image haze removal using dark channel prior,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011).
[Crossref]

Tanida, J.

Thetas, S.

Thiele, S.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
[Crossref] [PubMed]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multilens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

Tuennermann, A.

Tunnermann, A.

Volkel, R.

J. Duparre, P. Schreiber, A. Matthes, E. Pshenay-Severin, A. Brauer, A. Tunnermann, R. Volkel, M. Eisner, and T. Scharf, “Microoptical telescope compound eye,” Opt. Express 13(3), 889–903 (2005).
[Crossref] [PubMed]

J. Duparre, P. Schreiber, and R. Volkel, “Theoretical analysis of an artificial superposition compound eye for application in ultra flat digital image acquisition devices,” Proc. SPIE 5249, 408–418 (2004).
[Crossref]

Wang, K.

Wang, T.

Willett, R.

Wippermann, F. C.

J. W. Duparre and F. C. Wippermann, “Micro-optical artificial compound eyes,” Bioinspir. Biomim. 1(1), R1–R16 (2006).
[Crossref]

Woodell, G. A.

D. J. Jobson, Z. Rahman, and G. A. Woodell, “A multiscale retinex for bridging the gap between color images and the human observation of scenes,” IEEE Trans. Image Process. 6(7), 965–976 (1997).
[Crossref] [PubMed]

Z. Rahman, D. J. Jobson, and G. A. Woodell, “Multi-scale retinex for color image enhancement,” in Proceedings of IEEE Conference on Image Processing (IEEE, 1996), pp. 1003–1006.
[Crossref]

Wu, S.

S. Wu, T. Jiang, G. Zhang, B. Schoenemann, F. Neri, M. Zhu, C. Bu, J. Han, and K.-D. Kuhnert, “Artificial compound eye: a survey of the state-of-the-art,” Artif. Intell. Rev. 48(4), 573–603 (2017).
[Crossref]

Xiao, J.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Xie, Y.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Xu, Z.

Yamada, K.

Yi, A. Y.

Yoo, H.

H. Yoo, “Depth extraction for 3D objects via windowing technique in computational integral imaging with a lenslet array,” Opt. Lasers Eng. 51(7), 912–915 (2013).
[Crossref]

Yu, W.

Zhang, G.

S. Wu, T. Jiang, G. Zhang, B. Schoenemann, F. Neri, M. Zhu, C. Bu, J. Han, and K.-D. Kuhnert, “Artificial compound eye: a survey of the state-of-the-art,” Artif. Intell. Rev. 48(4), 573–603 (2017).
[Crossref]

Zhang, H.

Zhang, M.

Y. Piao, M. Zhang, J.-J. Lee, D. Shin, and B.-G. Lee, “Orthoscopic integral imaging display by use of the computational method based on lenslet model,” Opt. Lasers Eng. 52(1), 184–188 (2014).
[Crossref]

Zhu, M.

S. Wu, T. Jiang, G. Zhang, B. Schoenemann, F. Neri, M. Zhu, C. Bu, J. Han, and K.-D. Kuhnert, “Artificial compound eye: a survey of the state-of-the-art,” Artif. Intell. Rev. 48(4), 573–603 (2017).
[Crossref]

Appl. Opt. (9)

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimentalverification,” Appl. Opt. 40(11), 1806–1813 (2001).
[Crossref]

J. Duparre, P. Dannberg, P. Schreiber, A. Brauer, and A. Tunnermann, “Artificial apposition compound eye fabricated by micro-optics technology,” Appl. Opt. 43(22), 4303–4310 (2004).
[Crossref] [PubMed]

M. Shankar, R. Willett, N. Pitsianis, T. Schulz, R. Gibbons, R. T. Kolste, J. Carriere, C. Chen, D. Prather, and D. Brady, “Thin infrared imaging systems through multichannel sampling,” Appl. Opt. 47(10), B1–B10 (2008).
[Crossref] [PubMed]

G. Druart, N. Guerineau, R. Haidar, S. Thetas, J. Taboury, S. Rommeluere, J. Primot, and M. Fendler, “Demonstration of an infrared microcamera inspired by Xenos peckii vision,” Appl. Opt. 48(18), 3368–3374 (2009).
[Crossref] [PubMed]

J. Duparre, P. Dannberg, P. Schreiber, A. Brauer, and A. Tunnermann, “Thin compound-eye camera,” Appl. Opt. 44(15), 2949–2956 (2005).
[Crossref] [PubMed]

L. Li and A. Y. Yi, “Design and fabrication of a freeform microlens array for a compact large-field-of-view compound-eye camera,” Appl. Opt. 51(12), 1843–1852 (2012).
[Crossref] [PubMed]

E. Koese and R. K. Perline, “Double-mirror catadioptric sensors with ultrawide field of view and no distortion,” Appl. Opt. 53(4), 528–536 (2014).
[Crossref]

M. Ma, F. Guo, Z. Cao, and K. Wang, “Development of an artificial compound eye system for three-dimensional object detection,” Appl. Opt. 53(6), 1166–1172 (2014).
[Crossref] [PubMed]

F. Fan, Q. Hao, and X. Cheng, “Retina-like sensor based on a lens array with a large field of view,” Appl. Opt. 54(36), 10692–10697 (2015).
[Crossref]

Artif. Intell. Rev. (1)

S. Wu, T. Jiang, G. Zhang, B. Schoenemann, F. Neri, M. Zhu, C. Bu, J. Han, and K.-D. Kuhnert, “Artificial compound eye: a survey of the state-of-the-art,” Artif. Intell. Rev. 48(4), 573–603 (2017).
[Crossref]

Bioinspir. Biomim. (1)

J. W. Duparre and F. C. Wippermann, “Micro-optical artificial compound eyes,” Bioinspir. Biomim. 1(1), R1–R16 (2006).
[Crossref]

IEEE Trans. Image Process. (1)

D. J. Jobson, Z. Rahman, and G. A. Woodell, “A multiscale retinex for bridging the gap between color images and the human observation of scenes,” IEEE Trans. Image Process. 6(7), 965–976 (1997).
[Crossref] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

K. M. He, J. Sun, and X. O. Tang, “Single image haze removal using dark channel prior,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011).
[Crossref]

J. Mod. Opt. (1)

H. R. Fallah and A. Karimzadeh, “Design and simulation of a high-resolution superposition compound eye,” J. Mod. Opt. 54(1), 67–76 (2007).
[Crossref]

Nat. Photonics (2)

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multilens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

S. Juodkazis, “Manufacturing: 3D printed micro-optics,” Nat. Photonics 10, 449–501 (2016).
[Crossref]

Nature (1)

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lasers Eng. (2)

H. Yoo, “Depth extraction for 3D objects via windowing technique in computational integral imaging with a lenslet array,” Opt. Lasers Eng. 51(7), 912–915 (2013).
[Crossref]

Y. Piao, M. Zhang, J.-J. Lee, D. Shin, and B.-G. Lee, “Orthoscopic integral imaging display by use of the computational method based on lenslet model,” Opt. Lasers Eng. 52(1), 184–188 (2014).
[Crossref]

Opt. Lett. (3)

Proc. SPIE (2)

A. Brueckner, J. Duparre, P. Dannberg, R. Leitel, and A. Braeuer, “Driving microoptical imaging systems towards miniature camera applications,” Proc. SPIE 7716, 77160J (2010).
[Crossref]

J. Duparre, P. Schreiber, and R. Volkel, “Theoretical analysis of an artificial superposition compound eye for application in ultra flat digital image acquisition devices,” Proc. SPIE 5249, 408–418 (2004).
[Crossref]

Sci. Adv. (1)

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
[Crossref] [PubMed]

Science (1)

K. Jeong, J. Kim, and L. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
[Crossref] [PubMed]

Other (1)

Z. Rahman, D. J. Jobson, and G. A. Woodell, “Multi-scale retinex for color image enhancement,” in Proceedings of IEEE Conference on Image Processing (IEEE, 1996), pp. 1003–1006.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 Conceptual design of the catadioptric planar compound eye.
Fig. 2
Fig. 2 The diagram of light distribution of the design.
Fig. 3
Fig. 3 The simulation of incident light.
Fig. 4
Fig. 4 The quantified simulation of different incident light.
Fig. 5
Fig. 5 The primary and secondary mirror(a) and Lenslet array(b).
Fig. 6
Fig. 6 The simulation of single lenslet and lenslet array
Fig. 7
Fig. 7 The simulation of the combination of the lenslet array and the designed reflecting mirrors.
Fig. 8
Fig. 8 3D diagram of assembly.
Fig. 9
Fig. 9 The prototype and the corresponding simple planar compound eye
Fig. 10
Fig. 10 The FOV of the design proposed(red) and the simple planar compound eye(blue).
Fig. 11
Fig. 11 The picture captured by the simple planar compound eye.
Fig. 12
Fig. 12 The raw picture captured by the catadioptric planar compound eye.
Fig. 13
Fig. 13 The stitching results of letters and numbers on the target
Fig. 14
Fig. 14 The picture of Chinese characters captured by the catadioptric compound eye.
Fig. 15
Fig. 15 The stitched picture by compositing different channels.

Tables (1)

Tables Icon

Table 1 Comparison of incident light in different positions

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

y = 1 4 p ( x h ) 2 + k
{ k + p = 0 1 4 p h 2 + k = 0
{ p = k h = 2 k
y = 1 4 k ( k 2 k ) 2 + k
w = ( a x 0 , 1 )
v = ( 2 k x , y )
n = v v + w w
( a x 0 ( a 2 x 0 2 + 1 ) 1 2 + 2 k x ( ( 2 k x ) 2 + y 2 ) 1 2 , 1 ( a 2 x 0 2 + 1 ) 1 2 y ( ( 2 k x ) 2 + y 2 ) 1 2 )
1 4 k x 0 2 + x 0 y = x 0 2 k x 2 k
x 0 = ( x 2 k y ) + ( ( x 2 k y ) 2 + 2 y ( x 2 k ) ) 1 2 1 2 k ( x 2 k )
d y d x = a x 0 ( a 2 x 0 2 + 1 ) 1 2 + ( 2 k x ) ( ( 2 k x ) 2 + y 2 ) 1 2 ( a 2 x 0 2 + 1 ) 1 2 + y ( ( 2 k x ) 2 + y 2 ) 1 2
θ = 2 arctan ( a x e )
y = 1 14 x 2 + x
y = 6.1815 + 0.9924 x + 2.3533 × 10 2 x 2 4.2992 × 10 3 x 3 + 2.7412 × 10 4 x 4 9.2704 × 10 6 x 5 + 1.7599 × 10 7 x 6 1.7704 × 10 9 x 7 + 7.3487 × 10 12 x 8

Metrics