Abstract

Many nanophotonic and nanoelectronic devices contain nanostructures and ultrathin films on the surface of a thick, effectively semi-infinite, substrate. Here we consider a spectroscopic technique based upon coherent illumination, for characterising such samples. The method uses two counter-propagating light beams to generate specific field configurations at the substrate surface plane, which can be modulated, for example, to selectively excite and thereby discriminate between resonant modes of plasmonic nanostructures, or to measure thin films thickness with nanometre resolution. The technique offers a variety of practical applications for the coherent illumination in solid state physics, analytical chemistry, biochemistry, and nano-engineering.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

Dual-channel narrowband polarization absorber with high field enhancement and refractive index sensitivity based on a nanorod array

Wenli Cui, Yuzhang Liang, Qiao Wang, Yun Liu, Lixia Li, Mengdi Lu, Zhidong Zhang, Jean-Francois Masson, and Wei Peng
J. Opt. Soc. Am. B 35(2) 237-243 (2018)

Polarization-controlled multifrequency coherent perfect absorption in stereometamaterials

Wenjin Lv, Jigang Bing, Yiyuan Deng, Di Duan, Zheng Zhu, Yuxiang Li, Chunying Guan, and Jinhui Shi
Opt. Express 26(13) 17236-17244 (2018)

References

  • View by:
  • |
  • |
  • |

  1. L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave electronics: measurement and materials characterization (Wiley, 2007).
  2. M. Brustolon and E. Giamello, Electron paramagnetic resonance: a practitioner’s toolkit (Wiley, 2009).
  3. K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10(12), 788–795 (2016).
    [Crossref]
  4. R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69(11), 3763–3769 (1998).
    [Crossref]
  5. J. Hu, “Ultra-sensitive chemical vapor detection using micro-cavity photothermal spectroscopy,” Opt. Express 18(21), 22174–22186 (2010).
    [Crossref] [PubMed]
  6. G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications,” Int. Rev. Phys. Chem. 19(4), 565–607 (2000).
    [Crossref]
  7. S. Rosenblum, Y. Lovsky, L. Arazi, F. Vollmer, and B. Dayan, “Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators,” Nat. Commun. 6(1), 6788 (2015).
    [Crossref] [PubMed]
  8. E. Plum, K. F. MacDonald, X. Fang, D. Faccio, and N. I. Zheludev, “Controlling the optical response of 2D matter in standing waves,” ACS Photonics 4(12), 3000–3011 (2017).
    [Crossref]
  9. D. G. Baranov, A. Krasnok, T. Shegai, A. Alù, and Y. Chong, “Coherent perfect absorbers: linear control of light with light,” Natl. Rev. 2, 17064 (2017).
  10. N. Yang and A. E. Cohen, “Local geometry of electromagnetic fields and its role in molecular multipole transitions,” J. Phys. Chem. B 115(18), 5304–5311 (2011).
    [Crossref] [PubMed]
  11. X. Fang, K. F. MacDonald, E. Plum, and N. I. Zheludev, “Coherent control of light-matter interactions in polarization standing waves,” Sci. Rep. 6(1), 31141 (2016).
    [Crossref] [PubMed]
  12. X. Fang, M. L. Tseng, D. P. Tsai, and N. I. Zheludev, “Coherent excitation-selective spectroscopy of multipole resonances,” Phys. Rev. Appl. 5(1), 014010 (2016).
    [Crossref]
  13. P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photonics Rev. 9(2), 231–240 (2015).
    [Crossref]
  14. S. W. Hell, “Toward fluorescence nanoscopy,” Nat. Biotechnol. 21(11), 1347–1355 (2003).
    [Crossref] [PubMed]
  15. M. L. Tseng, X. Fang, V. Savinov, P. C. Wu, J. Y. Ou, N. I. Zheludev, and D. P. Tsai, “Coherent selection of invisible high-order electromagnetic excitations,” Sci. Rep. 7, 44488 (2017).
    [Crossref] [PubMed]
  16. G. Bauer and W. Richter, Optical characterization of epitaxial semiconductor layers (Springer, 1996).
  17. H. G. Tompkins and W. A. McGahan, Spectroscopic ellipsometry and reflectometry: a user’s guide (Wiley, 1999).
  18. Y. Y. Wang, R. X. Gao, Z. H. Ni, H. He, S. P. Guo, H. P. Yang, C. X. Cong, and T. Yu, “Thickness identification of two-dimensional materials by optical imaging,” Nanotechnology 23(49), 495713 (2012).
    [Crossref] [PubMed]
  19. H. Zhang, F. Ran, X. Shi, X. Fang, S. Wu, Y. Liu, X. Zheng, P. Yang, Y. Liu, L. Wang, X. Huang, H. Li, and W. Huang, “Optical thickness identification of transition metal dichalcogenide nanosheets on transparent substrates,” Nanotechnology 28(16), 164001 (2017).
    [Crossref] [PubMed]
  20. S. M. Hein and H. Giessen, “Tailoring magnetic dipole emission with plasmonic split-ring resonators,” Phys. Rev. Lett. 111(2), 026803 (2013).
    [Crossref] [PubMed]
  21. M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
    [Crossref] [PubMed]
  22. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  23. Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials (Amst.) 2(1), 45–51 (2008).
    [Crossref]
  24. X. Fang, K. F. MacDonald, and N. I. Zheludev, “Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor,” Light Sci. Appl. 4(5), e292 (2015).
    [Crossref]
  25. S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
    [Crossref] [PubMed]
  26. Z. Yin and F. W. Smith, “Optical dielectric function and infrared absorption of hydrogenated amorphous silicon nitride films: experimental results and effective-medium-approximation analysis,” Phys. Rev. B Condens. Matter 42(6), 3666–3675 (1990).
    [Crossref] [PubMed]
  27. W. Cai, U. K. Chettiar, H. K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15(6), 3333–3341 (2007).
    [Crossref] [PubMed]
  28. C. Bohling and W. Sigmund, “Self-limitation of native oxides explained,” Silicon 8(3), 339–343 (2016).
    [Crossref]
  29. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  30. X. Fang, M. L. Tseng, J. Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
    [Crossref]

2017 (4)

E. Plum, K. F. MacDonald, X. Fang, D. Faccio, and N. I. Zheludev, “Controlling the optical response of 2D matter in standing waves,” ACS Photonics 4(12), 3000–3011 (2017).
[Crossref]

D. G. Baranov, A. Krasnok, T. Shegai, A. Alù, and Y. Chong, “Coherent perfect absorbers: linear control of light with light,” Natl. Rev. 2, 17064 (2017).

M. L. Tseng, X. Fang, V. Savinov, P. C. Wu, J. Y. Ou, N. I. Zheludev, and D. P. Tsai, “Coherent selection of invisible high-order electromagnetic excitations,” Sci. Rep. 7, 44488 (2017).
[Crossref] [PubMed]

H. Zhang, F. Ran, X. Shi, X. Fang, S. Wu, Y. Liu, X. Zheng, P. Yang, Y. Liu, L. Wang, X. Huang, H. Li, and W. Huang, “Optical thickness identification of transition metal dichalcogenide nanosheets on transparent substrates,” Nanotechnology 28(16), 164001 (2017).
[Crossref] [PubMed]

2016 (4)

X. Fang, K. F. MacDonald, E. Plum, and N. I. Zheludev, “Coherent control of light-matter interactions in polarization standing waves,” Sci. Rep. 6(1), 31141 (2016).
[Crossref] [PubMed]

X. Fang, M. L. Tseng, D. P. Tsai, and N. I. Zheludev, “Coherent excitation-selective spectroscopy of multipole resonances,” Phys. Rev. Appl. 5(1), 014010 (2016).
[Crossref]

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10(12), 788–795 (2016).
[Crossref]

C. Bohling and W. Sigmund, “Self-limitation of native oxides explained,” Silicon 8(3), 339–343 (2016).
[Crossref]

2015 (4)

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photonics Rev. 9(2), 231–240 (2015).
[Crossref]

S. Rosenblum, Y. Lovsky, L. Arazi, F. Vollmer, and B. Dayan, “Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators,” Nat. Commun. 6(1), 6788 (2015).
[Crossref] [PubMed]

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

X. Fang, K. F. MacDonald, and N. I. Zheludev, “Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor,” Light Sci. Appl. 4(5), e292 (2015).
[Crossref]

2014 (1)

X. Fang, M. L. Tseng, J. Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

2013 (1)

S. M. Hein and H. Giessen, “Tailoring magnetic dipole emission with plasmonic split-ring resonators,” Phys. Rev. Lett. 111(2), 026803 (2013).
[Crossref] [PubMed]

2012 (2)

Y. Y. Wang, R. X. Gao, Z. H. Ni, H. He, S. P. Guo, H. P. Yang, C. X. Cong, and T. Yu, “Thickness identification of two-dimensional materials by optical imaging,” Nanotechnology 23(49), 495713 (2012).
[Crossref] [PubMed]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

2011 (1)

N. Yang and A. E. Cohen, “Local geometry of electromagnetic fields and its role in molecular multipole transitions,” J. Phys. Chem. B 115(18), 5304–5311 (2011).
[Crossref] [PubMed]

2010 (1)

2008 (1)

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials (Amst.) 2(1), 45–51 (2008).
[Crossref]

2007 (1)

2003 (1)

S. W. Hell, “Toward fluorescence nanoscopy,” Nat. Biotechnol. 21(11), 1347–1355 (2003).
[Crossref] [PubMed]

2000 (1)

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications,” Int. Rev. Phys. Chem. 19(4), 565–607 (2000).
[Crossref]

1998 (1)

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69(11), 3763–3769 (1998).
[Crossref]

1990 (1)

Z. Yin and F. W. Smith, “Optical dielectric function and infrared absorption of hydrogenated amorphous silicon nitride films: experimental results and effective-medium-approximation analysis,” Phys. Rev. B Condens. Matter 42(6), 3666–3675 (1990).
[Crossref] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Alù, A.

D. G. Baranov, A. Krasnok, T. Shegai, A. Alù, and Y. Chong, “Coherent perfect absorbers: linear control of light with light,” Natl. Rev. 2, 17064 (2017).

Ananias, D.

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

Arazi, L.

S. Rosenblum, Y. Lovsky, L. Arazi, F. Vollmer, and B. Dayan, “Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators,” Nat. Commun. 6(1), 6788 (2015).
[Crossref] [PubMed]

Bakker, R.

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials (Amst.) 2(1), 45–51 (2008).
[Crossref]

Banzer, P.

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photonics Rev. 9(2), 231–240 (2015).
[Crossref]

Baranov, D. G.

D. G. Baranov, A. Krasnok, T. Shegai, A. Alù, and Y. Chong, “Coherent perfect absorbers: linear control of light with light,” Natl. Rev. 2, 17064 (2017).

Berden, G.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications,” Int. Rev. Phys. Chem. 19(4), 565–607 (2000).
[Crossref]

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69(11), 3763–3769 (1998).
[Crossref]

Bohling, C.

C. Bohling and W. Sigmund, “Self-limitation of native oxides explained,” Silicon 8(3), 339–343 (2016).
[Crossref]

Boltasseva, A.

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials (Amst.) 2(1), 45–51 (2008).
[Crossref]

Cai, W.

Carlos, L. D.

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

Cherqui, C.

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10(12), 788–795 (2016).
[Crossref]

Chettiar, U. K.

Chong, Y.

D. G. Baranov, A. Krasnok, T. Shegai, A. Alù, and Y. Chong, “Coherent perfect absorbers: linear control of light with light,” Natl. Rev. 2, 17064 (2017).

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cohen, A. E.

N. Yang and A. E. Cohen, “Local geometry of electromagnetic fields and its role in molecular multipole transitions,” J. Phys. Chem. B 115(18), 5304–5311 (2011).
[Crossref] [PubMed]

Cong, C. X.

Y. Y. Wang, R. X. Gao, Z. H. Ni, H. He, S. P. Guo, H. P. Yang, C. X. Cong, and T. Yu, “Thickness identification of two-dimensional materials by optical imaging,” Nanotechnology 23(49), 495713 (2012).
[Crossref] [PubMed]

Dayan, B.

S. Rosenblum, Y. Lovsky, L. Arazi, F. Vollmer, and B. Dayan, “Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators,” Nat. Commun. 6(1), 6788 (2015).
[Crossref] [PubMed]

de Silva, V. C.

Drachev, V. P.

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials (Amst.) 2(1), 45–51 (2008).
[Crossref]

W. Cai, U. K. Chettiar, H. K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15(6), 3333–3341 (2007).
[Crossref] [PubMed]

Engeln, R.

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69(11), 3763–3769 (1998).
[Crossref]

Faccio, D.

E. Plum, K. F. MacDonald, X. Fang, D. Faccio, and N. I. Zheludev, “Controlling the optical response of 2D matter in standing waves,” ACS Photonics 4(12), 3000–3011 (2017).
[Crossref]

Fang, X.

E. Plum, K. F. MacDonald, X. Fang, D. Faccio, and N. I. Zheludev, “Controlling the optical response of 2D matter in standing waves,” ACS Photonics 4(12), 3000–3011 (2017).
[Crossref]

M. L. Tseng, X. Fang, V. Savinov, P. C. Wu, J. Y. Ou, N. I. Zheludev, and D. P. Tsai, “Coherent selection of invisible high-order electromagnetic excitations,” Sci. Rep. 7, 44488 (2017).
[Crossref] [PubMed]

H. Zhang, F. Ran, X. Shi, X. Fang, S. Wu, Y. Liu, X. Zheng, P. Yang, Y. Liu, L. Wang, X. Huang, H. Li, and W. Huang, “Optical thickness identification of transition metal dichalcogenide nanosheets on transparent substrates,” Nanotechnology 28(16), 164001 (2017).
[Crossref] [PubMed]

X. Fang, K. F. MacDonald, E. Plum, and N. I. Zheludev, “Coherent control of light-matter interactions in polarization standing waves,” Sci. Rep. 6(1), 31141 (2016).
[Crossref] [PubMed]

X. Fang, M. L. Tseng, D. P. Tsai, and N. I. Zheludev, “Coherent excitation-selective spectroscopy of multipole resonances,” Phys. Rev. Appl. 5(1), 014010 (2016).
[Crossref]

X. Fang, K. F. MacDonald, and N. I. Zheludev, “Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor,” Light Sci. Appl. 4(5), e292 (2015).
[Crossref]

X. Fang, M. L. Tseng, J. Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

Gao, R. X.

Y. Y. Wang, R. X. Gao, Z. H. Ni, H. He, S. P. Guo, H. P. Yang, C. X. Cong, and T. Yu, “Thickness identification of two-dimensional materials by optical imaging,” Nanotechnology 23(49), 495713 (2012).
[Crossref] [PubMed]

García de Abajo, F. J.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Giessen, H.

S. M. Hein and H. Giessen, “Tailoring magnetic dipole emission with plasmonic split-ring resonators,” Phys. Rev. Lett. 111(2), 026803 (2013).
[Crossref] [PubMed]

Goldsmith, R. H.

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10(12), 788–795 (2016).
[Crossref]

Guo, S. P.

Y. Y. Wang, R. X. Gao, Z. H. Ni, H. He, S. P. Guo, H. P. Yang, C. X. Cong, and T. Yu, “Thickness identification of two-dimensional materials by optical imaging,” Nanotechnology 23(49), 495713 (2012).
[Crossref] [PubMed]

He, H.

Y. Y. Wang, R. X. Gao, Z. H. Ni, H. He, S. P. Guo, H. P. Yang, C. X. Cong, and T. Yu, “Thickness identification of two-dimensional materials by optical imaging,” Nanotechnology 23(49), 495713 (2012).
[Crossref] [PubMed]

Hein, S. M.

S. M. Hein and H. Giessen, “Tailoring magnetic dipole emission with plasmonic split-ring resonators,” Phys. Rev. Lett. 111(2), 026803 (2013).
[Crossref] [PubMed]

Hell, S. W.

S. W. Hell, “Toward fluorescence nanoscopy,” Nat. Biotechnol. 21(11), 1347–1355 (2003).
[Crossref] [PubMed]

Heylman, K. D.

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10(12), 788–795 (2016).
[Crossref]

Horak, E. H.

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10(12), 788–795 (2016).
[Crossref]

Hu, J.

Huang, W.

H. Zhang, F. Ran, X. Shi, X. Fang, S. Wu, Y. Liu, X. Zheng, P. Yang, Y. Liu, L. Wang, X. Huang, H. Li, and W. Huang, “Optical thickness identification of transition metal dichalcogenide nanosheets on transparent substrates,” Nanotechnology 28(16), 164001 (2017).
[Crossref] [PubMed]

Huang, X.

H. Zhang, F. Ran, X. Shi, X. Fang, S. Wu, Y. Liu, X. Zheng, P. Yang, Y. Liu, L. Wang, X. Huang, H. Li, and W. Huang, “Optical thickness identification of transition metal dichalcogenide nanosheets on transparent substrates,” Nanotechnology 28(16), 164001 (2017).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kasperczyk, M.

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

Kildishev, A. V.

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials (Amst.) 2(1), 45–51 (2008).
[Crossref]

W. Cai, U. K. Chettiar, H. K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15(6), 3333–3341 (2007).
[Crossref] [PubMed]

Knapper, K. A.

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10(12), 788–795 (2016).
[Crossref]

Koppens, F. H. L.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Krasnok, A.

D. G. Baranov, A. Krasnok, T. Shegai, A. Alù, and Y. Chong, “Coherent perfect absorbers: linear control of light with light,” Natl. Rev. 2, 17064 (2017).

Leuchs, G.

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photonics Rev. 9(2), 231–240 (2015).
[Crossref]

Li, H.

H. Zhang, F. Ran, X. Shi, X. Fang, S. Wu, Y. Liu, X. Zheng, P. Yang, Y. Liu, L. Wang, X. Huang, H. Li, and W. Huang, “Optical thickness identification of transition metal dichalcogenide nanosheets on transparent substrates,” Nanotechnology 28(16), 164001 (2017).
[Crossref] [PubMed]

Liu, Y.

H. Zhang, F. Ran, X. Shi, X. Fang, S. Wu, Y. Liu, X. Zheng, P. Yang, Y. Liu, L. Wang, X. Huang, H. Li, and W. Huang, “Optical thickness identification of transition metal dichalcogenide nanosheets on transparent substrates,” Nanotechnology 28(16), 164001 (2017).
[Crossref] [PubMed]

H. Zhang, F. Ran, X. Shi, X. Fang, S. Wu, Y. Liu, X. Zheng, P. Yang, Y. Liu, L. Wang, X. Huang, H. Li, and W. Huang, “Optical thickness identification of transition metal dichalcogenide nanosheets on transparent substrates,” Nanotechnology 28(16), 164001 (2017).
[Crossref] [PubMed]

Liu, Z.

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials (Amst.) 2(1), 45–51 (2008).
[Crossref]

Lovsky, Y.

S. Rosenblum, Y. Lovsky, L. Arazi, F. Vollmer, and B. Dayan, “Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators,” Nat. Commun. 6(1), 6788 (2015).
[Crossref] [PubMed]

MacDonald, K. F.

E. Plum, K. F. MacDonald, X. Fang, D. Faccio, and N. I. Zheludev, “Controlling the optical response of 2D matter in standing waves,” ACS Photonics 4(12), 3000–3011 (2017).
[Crossref]

X. Fang, K. F. MacDonald, E. Plum, and N. I. Zheludev, “Coherent control of light-matter interactions in polarization standing waves,” Sci. Rep. 6(1), 31141 (2016).
[Crossref] [PubMed]

X. Fang, K. F. MacDonald, and N. I. Zheludev, “Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor,” Light Sci. Appl. 4(5), e292 (2015).
[Crossref]

X. Fang, M. L. Tseng, J. Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

Masiello, D. J.

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10(12), 788–795 (2016).
[Crossref]

Meijer, G.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications,” Int. Rev. Phys. Chem. 19(4), 565–607 (2000).
[Crossref]

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69(11), 3763–3769 (1998).
[Crossref]

Ni, Z. H.

Y. Y. Wang, R. X. Gao, Z. H. Ni, H. He, S. P. Guo, H. P. Yang, C. X. Cong, and T. Yu, “Thickness identification of two-dimensional materials by optical imaging,” Nanotechnology 23(49), 495713 (2012).
[Crossref] [PubMed]

Novotny, L.

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

Ou, J. Y.

M. L. Tseng, X. Fang, V. Savinov, P. C. Wu, J. Y. Ou, N. I. Zheludev, and D. P. Tsai, “Coherent selection of invisible high-order electromagnetic excitations,” Sci. Rep. 7, 44488 (2017).
[Crossref] [PubMed]

X. Fang, M. L. Tseng, J. Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

Pedersen, R. H.

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials (Amst.) 2(1), 45–51 (2008).
[Crossref]

Peeters, R.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications,” Int. Rev. Phys. Chem. 19(4), 565–607 (2000).
[Crossref]

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69(11), 3763–3769 (1998).
[Crossref]

Person, S.

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

Plum, E.

E. Plum, K. F. MacDonald, X. Fang, D. Faccio, and N. I. Zheludev, “Controlling the optical response of 2D matter in standing waves,” ACS Photonics 4(12), 3000–3011 (2017).
[Crossref]

X. Fang, K. F. MacDonald, E. Plum, and N. I. Zheludev, “Coherent control of light-matter interactions in polarization standing waves,” Sci. Rep. 6(1), 31141 (2016).
[Crossref] [PubMed]

Quillin, S. C.

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10(12), 788–795 (2016).
[Crossref]

Ran, F.

H. Zhang, F. Ran, X. Shi, X. Fang, S. Wu, Y. Liu, X. Zheng, P. Yang, Y. Liu, L. Wang, X. Huang, H. Li, and W. Huang, “Optical thickness identification of transition metal dichalcogenide nanosheets on transparent substrates,” Nanotechnology 28(16), 164001 (2017).
[Crossref] [PubMed]

Rosenblum, S.

S. Rosenblum, Y. Lovsky, L. Arazi, F. Vollmer, and B. Dayan, “Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators,” Nat. Commun. 6(1), 6788 (2015).
[Crossref] [PubMed]

Savinov, V.

M. L. Tseng, X. Fang, V. Savinov, P. C. Wu, J. Y. Ou, N. I. Zheludev, and D. P. Tsai, “Coherent selection of invisible high-order electromagnetic excitations,” Sci. Rep. 7, 44488 (2017).
[Crossref] [PubMed]

Shalaev, V. M.

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials (Amst.) 2(1), 45–51 (2008).
[Crossref]

W. Cai, U. K. Chettiar, H. K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15(6), 3333–3341 (2007).
[Crossref] [PubMed]

Shegai, T.

D. G. Baranov, A. Krasnok, T. Shegai, A. Alù, and Y. Chong, “Coherent perfect absorbers: linear control of light with light,” Natl. Rev. 2, 17064 (2017).

Shi, X.

H. Zhang, F. Ran, X. Shi, X. Fang, S. Wu, Y. Liu, X. Zheng, P. Yang, Y. Liu, L. Wang, X. Huang, H. Li, and W. Huang, “Optical thickness identification of transition metal dichalcogenide nanosheets on transparent substrates,” Nanotechnology 28(16), 164001 (2017).
[Crossref] [PubMed]

Sigmund, W.

C. Bohling and W. Sigmund, “Self-limitation of native oxides explained,” Silicon 8(3), 339–343 (2016).
[Crossref]

Smith, F. W.

Z. Yin and F. W. Smith, “Optical dielectric function and infrared absorption of hydrogenated amorphous silicon nitride films: experimental results and effective-medium-approximation analysis,” Phys. Rev. B Condens. Matter 42(6), 3666–3675 (1990).
[Crossref] [PubMed]

Thakkar, N.

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10(12), 788–795 (2016).
[Crossref]

Thongrattanasiri, S.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Tsai, D. P.

M. L. Tseng, X. Fang, V. Savinov, P. C. Wu, J. Y. Ou, N. I. Zheludev, and D. P. Tsai, “Coherent selection of invisible high-order electromagnetic excitations,” Sci. Rep. 7, 44488 (2017).
[Crossref] [PubMed]

X. Fang, M. L. Tseng, D. P. Tsai, and N. I. Zheludev, “Coherent excitation-selective spectroscopy of multipole resonances,” Phys. Rev. Appl. 5(1), 014010 (2016).
[Crossref]

X. Fang, M. L. Tseng, J. Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

Tseng, M. L.

M. L. Tseng, X. Fang, V. Savinov, P. C. Wu, J. Y. Ou, N. I. Zheludev, and D. P. Tsai, “Coherent selection of invisible high-order electromagnetic excitations,” Sci. Rep. 7, 44488 (2017).
[Crossref] [PubMed]

X. Fang, M. L. Tseng, D. P. Tsai, and N. I. Zheludev, “Coherent excitation-selective spectroscopy of multipole resonances,” Phys. Rev. Appl. 5(1), 014010 (2016).
[Crossref]

X. Fang, M. L. Tseng, J. Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

Vollmer, F.

S. Rosenblum, Y. Lovsky, L. Arazi, F. Vollmer, and B. Dayan, “Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators,” Nat. Commun. 6(1), 6788 (2015).
[Crossref] [PubMed]

Wang, L.

H. Zhang, F. Ran, X. Shi, X. Fang, S. Wu, Y. Liu, X. Zheng, P. Yang, Y. Liu, L. Wang, X. Huang, H. Li, and W. Huang, “Optical thickness identification of transition metal dichalcogenide nanosheets on transparent substrates,” Nanotechnology 28(16), 164001 (2017).
[Crossref] [PubMed]

Wang, Y. Y.

Y. Y. Wang, R. X. Gao, Z. H. Ni, H. He, S. P. Guo, H. P. Yang, C. X. Cong, and T. Yu, “Thickness identification of two-dimensional materials by optical imaging,” Nanotechnology 23(49), 495713 (2012).
[Crossref] [PubMed]

Wozniak, P.

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photonics Rev. 9(2), 231–240 (2015).
[Crossref]

Wu, P. C.

M. L. Tseng, X. Fang, V. Savinov, P. C. Wu, J. Y. Ou, N. I. Zheludev, and D. P. Tsai, “Coherent selection of invisible high-order electromagnetic excitations,” Sci. Rep. 7, 44488 (2017).
[Crossref] [PubMed]

Wu, S.

H. Zhang, F. Ran, X. Shi, X. Fang, S. Wu, Y. Liu, X. Zheng, P. Yang, Y. Liu, L. Wang, X. Huang, H. Li, and W. Huang, “Optical thickness identification of transition metal dichalcogenide nanosheets on transparent substrates,” Nanotechnology 28(16), 164001 (2017).
[Crossref] [PubMed]

Yang, H. P.

Y. Y. Wang, R. X. Gao, Z. H. Ni, H. He, S. P. Guo, H. P. Yang, C. X. Cong, and T. Yu, “Thickness identification of two-dimensional materials by optical imaging,” Nanotechnology 23(49), 495713 (2012).
[Crossref] [PubMed]

Yang, N.

N. Yang and A. E. Cohen, “Local geometry of electromagnetic fields and its role in molecular multipole transitions,” J. Phys. Chem. B 115(18), 5304–5311 (2011).
[Crossref] [PubMed]

Yang, P.

H. Zhang, F. Ran, X. Shi, X. Fang, S. Wu, Y. Liu, X. Zheng, P. Yang, Y. Liu, L. Wang, X. Huang, H. Li, and W. Huang, “Optical thickness identification of transition metal dichalcogenide nanosheets on transparent substrates,” Nanotechnology 28(16), 164001 (2017).
[Crossref] [PubMed]

Yin, Z.

Z. Yin and F. W. Smith, “Optical dielectric function and infrared absorption of hydrogenated amorphous silicon nitride films: experimental results and effective-medium-approximation analysis,” Phys. Rev. B Condens. Matter 42(6), 3666–3675 (1990).
[Crossref] [PubMed]

Yu, T.

Y. Y. Wang, R. X. Gao, Z. H. Ni, H. He, S. P. Guo, H. P. Yang, C. X. Cong, and T. Yu, “Thickness identification of two-dimensional materials by optical imaging,” Nanotechnology 23(49), 495713 (2012).
[Crossref] [PubMed]

Yuan, H. K.

Zhang, H.

H. Zhang, F. Ran, X. Shi, X. Fang, S. Wu, Y. Liu, X. Zheng, P. Yang, Y. Liu, L. Wang, X. Huang, H. Li, and W. Huang, “Optical thickness identification of transition metal dichalcogenide nanosheets on transparent substrates,” Nanotechnology 28(16), 164001 (2017).
[Crossref] [PubMed]

Zheludev, N. I.

M. L. Tseng, X. Fang, V. Savinov, P. C. Wu, J. Y. Ou, N. I. Zheludev, and D. P. Tsai, “Coherent selection of invisible high-order electromagnetic excitations,” Sci. Rep. 7, 44488 (2017).
[Crossref] [PubMed]

E. Plum, K. F. MacDonald, X. Fang, D. Faccio, and N. I. Zheludev, “Controlling the optical response of 2D matter in standing waves,” ACS Photonics 4(12), 3000–3011 (2017).
[Crossref]

X. Fang, M. L. Tseng, D. P. Tsai, and N. I. Zheludev, “Coherent excitation-selective spectroscopy of multipole resonances,” Phys. Rev. Appl. 5(1), 014010 (2016).
[Crossref]

X. Fang, K. F. MacDonald, E. Plum, and N. I. Zheludev, “Coherent control of light-matter interactions in polarization standing waves,” Sci. Rep. 6(1), 31141 (2016).
[Crossref] [PubMed]

X. Fang, K. F. MacDonald, and N. I. Zheludev, “Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor,” Light Sci. Appl. 4(5), e292 (2015).
[Crossref]

X. Fang, M. L. Tseng, J. Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

Zheng, X.

H. Zhang, F. Ran, X. Shi, X. Fang, S. Wu, Y. Liu, X. Zheng, P. Yang, Y. Liu, L. Wang, X. Huang, H. Li, and W. Huang, “Optical thickness identification of transition metal dichalcogenide nanosheets on transparent substrates,” Nanotechnology 28(16), 164001 (2017).
[Crossref] [PubMed]

ACS Photonics (1)

E. Plum, K. F. MacDonald, X. Fang, D. Faccio, and N. I. Zheludev, “Controlling the optical response of 2D matter in standing waves,” ACS Photonics 4(12), 3000–3011 (2017).
[Crossref]

Appl. Phys. Lett. (1)

X. Fang, M. L. Tseng, J. Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

Int. Rev. Phys. Chem. (1)

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications,” Int. Rev. Phys. Chem. 19(4), 565–607 (2000).
[Crossref]

J. Phys. Chem. B (1)

N. Yang and A. E. Cohen, “Local geometry of electromagnetic fields and its role in molecular multipole transitions,” J. Phys. Chem. B 115(18), 5304–5311 (2011).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photonics Rev. 9(2), 231–240 (2015).
[Crossref]

Light Sci. Appl. (1)

X. Fang, K. F. MacDonald, and N. I. Zheludev, “Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor,” Light Sci. Appl. 4(5), e292 (2015).
[Crossref]

Metamaterials (Amst.) (1)

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials (Amst.) 2(1), 45–51 (2008).
[Crossref]

Nanotechnology (2)

Y. Y. Wang, R. X. Gao, Z. H. Ni, H. He, S. P. Guo, H. P. Yang, C. X. Cong, and T. Yu, “Thickness identification of two-dimensional materials by optical imaging,” Nanotechnology 23(49), 495713 (2012).
[Crossref] [PubMed]

H. Zhang, F. Ran, X. Shi, X. Fang, S. Wu, Y. Liu, X. Zheng, P. Yang, Y. Liu, L. Wang, X. Huang, H. Li, and W. Huang, “Optical thickness identification of transition metal dichalcogenide nanosheets on transparent substrates,” Nanotechnology 28(16), 164001 (2017).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

S. W. Hell, “Toward fluorescence nanoscopy,” Nat. Biotechnol. 21(11), 1347–1355 (2003).
[Crossref] [PubMed]

Nat. Commun. (1)

S. Rosenblum, Y. Lovsky, L. Arazi, F. Vollmer, and B. Dayan, “Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators,” Nat. Commun. 6(1), 6788 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10(12), 788–795 (2016).
[Crossref]

Natl. Rev. (1)

D. G. Baranov, A. Krasnok, T. Shegai, A. Alù, and Y. Chong, “Coherent perfect absorbers: linear control of light with light,” Natl. Rev. 2, 17064 (2017).

Opt. Express (2)

Phys. Rev. Appl. (1)

X. Fang, M. L. Tseng, D. P. Tsai, and N. I. Zheludev, “Coherent excitation-selective spectroscopy of multipole resonances,” Phys. Rev. Appl. 5(1), 014010 (2016).
[Crossref]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. B Condens. Matter (1)

Z. Yin and F. W. Smith, “Optical dielectric function and infrared absorption of hydrogenated amorphous silicon nitride films: experimental results and effective-medium-approximation analysis,” Phys. Rev. B Condens. Matter 42(6), 3666–3675 (1990).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

S. M. Hein and H. Giessen, “Tailoring magnetic dipole emission with plasmonic split-ring resonators,” Phys. Rev. Lett. 111(2), 026803 (2013).
[Crossref] [PubMed]

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69(11), 3763–3769 (1998).
[Crossref]

Sci. Rep. (2)

X. Fang, K. F. MacDonald, E. Plum, and N. I. Zheludev, “Coherent control of light-matter interactions in polarization standing waves,” Sci. Rep. 6(1), 31141 (2016).
[Crossref] [PubMed]

M. L. Tseng, X. Fang, V. Savinov, P. C. Wu, J. Y. Ou, N. I. Zheludev, and D. P. Tsai, “Coherent selection of invisible high-order electromagnetic excitations,” Sci. Rep. 7, 44488 (2017).
[Crossref] [PubMed]

Silicon (1)

C. Bohling and W. Sigmund, “Self-limitation of native oxides explained,” Silicon 8(3), 339–343 (2016).
[Crossref]

Other (5)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave electronics: measurement and materials characterization (Wiley, 2007).

M. Brustolon and E. Giamello, Electron paramagnetic resonance: a practitioner’s toolkit (Wiley, 2009).

G. Bauer and W. Richter, Optical characterization of epitaxial semiconductor layers (Springer, 1996).

H. G. Tompkins and W. A. McGahan, Spectroscopic ellipsometry and reflectometry: a user’s guide (Wiley, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Coherent illumination of a substrate surface plane using two counter-propagating light beams. Schematic illustrations of: (a) Wave- and electric/magnetic field vector directions for the two collinearly polarized incident beams, relative to the interface between air [refractive index n1] and a semi-infinite substrate of refractive index n2. (b, c) Electric and magnetic field distributions for standing waves in which the surface of the substrate is (b) at an electric field antinode [E-antinode] and magnetic field node [B-node]; (c) at an electric field node [E-node] and magnetic field antinode [B-antinode].
Fig. 2
Fig. 2 Coherent excitation of an electric dipolar resonant mode in a plasmonic metamaterial. (a) Schematic of a unit cell of the metamaterial comprising a gold nanorod on an infinitely thick glass substrate. The periodicity of the array is 400 nm in both x and y directions. The nanorod is 270 nm long, 50 nm wide and 30 nm in thickness. (b) Spectral dispersion of metasurface absorption for coherent illumination modes locating the nanorod at a standing wave E-antinode [red line] or E-node [black], and for single beam [travelling wave] illumination from the free space side. In all cases, light is polarized in the y direction, parallel to the long axis of the nanorods.
Fig. 3
Fig. 3 (a) Schematic of a metamaterial unit cell containing a pair of orthogonally oriented metal-dielectric-metal and dielectric-metal-dielectric nanorods [layer thicknesses as labelled; 280 nm long × 180 nm wide and 270 nm long × 50 nm wide respectively] on an infinitely thick glass substrate. The periodicity of the array is 400 nm in both x and y directions; The nanorods are separated by a gap of 10 nm. (b) Spectral dispersion of metasurface absorption for coherent illumination modes locating the middle layer of the nanorods at a standing wave E-antinode/B-node [red line] or E-node/B-antinode [black], and for single beam [travelling wave] illumination from the free space side. In all cases, light is polarized in the y direction.
Fig. 4
Fig. 4 Detection of ultrathin SiO2 on Si by coherent illumination spectroscopy: (a) Spectral dispersion of absorption for a 2 nm SiO2 layer on a semi-infinite Si substrate [as sketched inset] for single beam [travelling wave] illumination from either side and coherent illumination configured to locate the SiO2 film at a standing wave E-antinode. (b) Magnitude of coherent absorption at a wavelength of 9.3 µm as a function of the relative phase of the two counter-propagating input beams in the SiO2 layer plane [with relative intensities selected to maximize absorption at zero phase difference, whereby the SiO2 film is located at a standing wave E-antinode.]. [The spectra in (a) and solid black line in (b) are obtained from finite element numerical simulations; Orange points in (b) are obtained analytically via the scattering matrix method – see Appendix.]
Fig. 5
Fig. 5 Evaluating SiO2-on-Si layer thickness via coherent absorption modulation: Dependence of maximum coherent absorption modulation amplitude on the thickness of SiO2 calculated for thicknesses (a) up to 5 nm; (b) up to 100 nm, with a straight line fitting to the small thickness range [having a slope of 4.3 × 10−3 nm−1]. Results are presented from both finite element numerical simulations [black dots] and scattering matrix analytical calculations [blue squares].

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

E= 2 n 1 n 1 + n 2 E f + 2 n 2 n 1 + n 2 E s
B= 2 n 2 n 1 + n 2 B f + 2 n 1 n 1 + n 2 B s
( E f E s )=( S 11 S 12 S 21 S 22 )( E f E s )
S 11 = r 12 + r 23 e 2iβ 1+ r 12 r 23 e 2iβ
S 12 = t 21 t 32 e iβ 1+ r 21 r 32 e 2iβ
S 21 = t 12 t 23 e iβ 1+ r 12 r 23 e 2iβ
S 22 = r 32 + r 21 e 2iβ 1+ r 21 r 32 e 2iβ
r 12 = r 21 = n 1 n 2 n 1 + n 2
r 23 = r 32 = n 2 n 3 n 2 + n 3
t 12 = 2 n 1 n 1 + n 2
t 21 = 2 n 2 n 1 + n 2
t 23 = 2 n 2 n 2 + n 3
t 32 = 2 n 3 n 2 + n 3
β= 2π n 2 d λ
1 n 1 | E f | 2 + n 3 | E s | 2 n 1 | E f | 2 + n 3 | E s | 2

Metrics