Abstract

A coherent-dispersion spectrometer combining a solid Sagnac interferometer with a dispersing prism is presented, which reduces the multiplex disadvantage of Fourier transform spectroscopy used in the ultraviolet and visible regions while maintains the simultaneous wavelength detection. The spectrometer generates multiple interferograms simultaneously, each with a separate wavelength range and located in a separate row of the detector. The mathematical expressions are given for describing the coherent dispersion, the design calculations are illustrated by an example for the spectral range from 200 nm to 600 nm, and the numerical simulations are shown for the interferogram and spectrum. The unique design of the optics makes the spectrometer very stable, compact, relatively small-sized and, therefore, very suitable for broadband ultraviolet-visible space exploration instruments.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Three-area-array coherent-dispersion stereo-imaging spectrometer

Qinghua Yang
Opt. Express 27(2) 1025-1044 (2019)

Ultrahigh-resolution rapid-scan ultraviolet-visible spectrometer

Qinghua Yang
OSA Continuum 1(3) 812-821 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. Jacquinot, “The luminosity of spectrometers with Prisms, Grating, or Fabry-Perot Etalons,” J. Opt. Soc. Am. 44(10), 761–765 (1954).
    [Crossref]
  2. P. Jacquinot, “How the search for a throughput advantage led to Fourier transform spectroscopy,” Infrared Phys. 24(2), 99–101 (1984).
    [Crossref]
  3. P. B. Fellgett, “Three concepts make a million points,” Infrared Phys. 24(2-3), 95–98 (1984).
    [Crossref]
  4. P. B. Fellgett, “The nature and origin of multiplex Fourier spectrometry,” Notes Rec. R. Soc. 60(1), 91–93 (2006).
    [Crossref]
  5. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley-Interscience, 2007).
  6. T. Hirschfeld, “Fellgett’s Advantage in UV-VIS Multiplex Spectroscopy,” Appl. Spectrosc. 30(1), 68–69 (1976).
    [Crossref]
  7. E. Voigtman and J. D. Winefordner, “The multiplex disadvantage and excess low-frequency noise,” Appl. Spectrosc. 41(7), 1182–1184 (1987).
    [Crossref]
  8. A. Barducci, D. Guzzi, C. Lastri, P. Marcoionni, V. Nardino, and I. Pippi, “Theoretical aspects of Fourier Transform Spectrometry and common path triangular interferometers,” Opt. Express 18(11), 11622–11649 (2010).
    [Crossref] [PubMed]
  9. A. Barducci, D. Guzzi, C. Lastri, V. Nardino, P. Marcoionni, and I. Pippi, “Radiometric and signal-to-noise ratio properties of multiplex dispersive spectrometry,” Appl. Opt. 49(28), 5366–5373 (2010).
    [Crossref] [PubMed]
  10. P. Connes and G. Michel, “Astronomical Fourier spectrometer,” Appl. Opt. 14(9), 2067–2084 (1975).
    [Crossref] [PubMed]
  11. P. Luc and S. Gerstenkorn, “Fourier transform spectroscopy in the visible and ultraviolet range,” Appl. Opt. 17(9), 1327–1331 (1978).
    [Crossref] [PubMed]
  12. J. K. Kauppinen, I. K. Salomaa, J. O. Partanen, and M. R. Hollberg, “The Use of Carousel Interferometer in Fourier-Transform Ultraviolet Spectroscopy,” Opt. Rev. 4(2), 293–296 (1997).
    [Crossref]
  13. E. A. Stubley and G. Horlick, “A Fourier transform spectrometer for UV and Visible measurements of Atomic emission sources,” Appl. Spectrosc. 39(5), 800–804 (1985).
    [Crossref]
  14. T. Hirschfeld and D. B. Chase, “FT-Raman Spectroscopy: Development and Justification,” Appl. Spectrosc. 40(2), 133–137 (1986).
    [Crossref]
  15. D. C. Tilotta, R. D. Freeman, and W. G. Fateley, “Hadamard transform visible Raman spectrometry,” Appl. Spectrosc. 41(8), 1280–1287 (1987).
    [Crossref]
  16. K. Yoshihara and A. Kitada, “Holographic Spectra Using a Triangle Path Interferometer,” Jpn. J. Appl. Phys. 6(1), 116 (1967).
    [Crossref]
  17. T. Okamoto, S. Kawata, and S. Minami, “Fourier transform spectrometer with a self-scanning photodiode array,” Appl. Opt. 23(2), 269–273 (1984).
    [Crossref] [PubMed]
  18. J. V. Sweedler and M. B. Denton, “Spatially Encoded Fourier Transform Spectroscopy in the Ultraviolet to Near-Infrared,” Appl. Spectrosc. 43(8), 1378–1384 (1989).
    [Crossref]
  19. J. V. Sweedler, R. D. Jalkian, G. R. Sims, and M. B. Denton, “Crossed Interferometric Dispersive Spectroscopy,” Appl. Spectrosc. 44(1), 14–20 (1990).
    [Crossref]
  20. J. V. Sweedler, “The use of charge transfer device detectors and spatial interferometry for analytical spectroscopy,” https://arizona.openrepository.com/handle/10150/184683 .
  21. T. H. Barnes, “Photodiode array Fourier transform spectrometer with improved dynamic range,” Appl. Opt. 24(22), 3702–3706 (1985).
    [Crossref] [PubMed]
  22. M. Bass, G. Li, and E. V. Stryland, Handbook of Optics(McGraw-Hill, 2010).

2010 (2)

2006 (1)

P. B. Fellgett, “The nature and origin of multiplex Fourier spectrometry,” Notes Rec. R. Soc. 60(1), 91–93 (2006).
[Crossref]

1997 (1)

J. K. Kauppinen, I. K. Salomaa, J. O. Partanen, and M. R. Hollberg, “The Use of Carousel Interferometer in Fourier-Transform Ultraviolet Spectroscopy,” Opt. Rev. 4(2), 293–296 (1997).
[Crossref]

1990 (1)

1989 (1)

1987 (2)

1986 (1)

1985 (2)

1984 (3)

P. Jacquinot, “How the search for a throughput advantage led to Fourier transform spectroscopy,” Infrared Phys. 24(2), 99–101 (1984).
[Crossref]

P. B. Fellgett, “Three concepts make a million points,” Infrared Phys. 24(2-3), 95–98 (1984).
[Crossref]

T. Okamoto, S. Kawata, and S. Minami, “Fourier transform spectrometer with a self-scanning photodiode array,” Appl. Opt. 23(2), 269–273 (1984).
[Crossref] [PubMed]

1978 (1)

1976 (1)

1975 (1)

1967 (1)

K. Yoshihara and A. Kitada, “Holographic Spectra Using a Triangle Path Interferometer,” Jpn. J. Appl. Phys. 6(1), 116 (1967).
[Crossref]

1954 (1)

Barducci, A.

Barnes, T. H.

Chase, D. B.

Connes, P.

Denton, M. B.

Fateley, W. G.

Fellgett, P. B.

P. B. Fellgett, “The nature and origin of multiplex Fourier spectrometry,” Notes Rec. R. Soc. 60(1), 91–93 (2006).
[Crossref]

P. B. Fellgett, “Three concepts make a million points,” Infrared Phys. 24(2-3), 95–98 (1984).
[Crossref]

Freeman, R. D.

Gerstenkorn, S.

Guzzi, D.

Hirschfeld, T.

Hollberg, M. R.

J. K. Kauppinen, I. K. Salomaa, J. O. Partanen, and M. R. Hollberg, “The Use of Carousel Interferometer in Fourier-Transform Ultraviolet Spectroscopy,” Opt. Rev. 4(2), 293–296 (1997).
[Crossref]

Horlick, G.

Jacquinot, P.

P. Jacquinot, “How the search for a throughput advantage led to Fourier transform spectroscopy,” Infrared Phys. 24(2), 99–101 (1984).
[Crossref]

P. Jacquinot, “The luminosity of spectrometers with Prisms, Grating, or Fabry-Perot Etalons,” J. Opt. Soc. Am. 44(10), 761–765 (1954).
[Crossref]

Jalkian, R. D.

Kauppinen, J. K.

J. K. Kauppinen, I. K. Salomaa, J. O. Partanen, and M. R. Hollberg, “The Use of Carousel Interferometer in Fourier-Transform Ultraviolet Spectroscopy,” Opt. Rev. 4(2), 293–296 (1997).
[Crossref]

Kawata, S.

Kitada, A.

K. Yoshihara and A. Kitada, “Holographic Spectra Using a Triangle Path Interferometer,” Jpn. J. Appl. Phys. 6(1), 116 (1967).
[Crossref]

Lastri, C.

Luc, P.

Marcoionni, P.

Michel, G.

Minami, S.

Nardino, V.

Okamoto, T.

Partanen, J. O.

J. K. Kauppinen, I. K. Salomaa, J. O. Partanen, and M. R. Hollberg, “The Use of Carousel Interferometer in Fourier-Transform Ultraviolet Spectroscopy,” Opt. Rev. 4(2), 293–296 (1997).
[Crossref]

Pippi, I.

Salomaa, I. K.

J. K. Kauppinen, I. K. Salomaa, J. O. Partanen, and M. R. Hollberg, “The Use of Carousel Interferometer in Fourier-Transform Ultraviolet Spectroscopy,” Opt. Rev. 4(2), 293–296 (1997).
[Crossref]

Sims, G. R.

Stubley, E. A.

Sweedler, J. V.

Tilotta, D. C.

Voigtman, E.

Winefordner, J. D.

Yoshihara, K.

K. Yoshihara and A. Kitada, “Holographic Spectra Using a Triangle Path Interferometer,” Jpn. J. Appl. Phys. 6(1), 116 (1967).
[Crossref]

Appl. Opt. (5)

Appl. Spectrosc. (7)

Infrared Phys. (2)

P. Jacquinot, “How the search for a throughput advantage led to Fourier transform spectroscopy,” Infrared Phys. 24(2), 99–101 (1984).
[Crossref]

P. B. Fellgett, “Three concepts make a million points,” Infrared Phys. 24(2-3), 95–98 (1984).
[Crossref]

J. Opt. Soc. Am. (1)

Jpn. J. Appl. Phys. (1)

K. Yoshihara and A. Kitada, “Holographic Spectra Using a Triangle Path Interferometer,” Jpn. J. Appl. Phys. 6(1), 116 (1967).
[Crossref]

Notes Rec. R. Soc. (1)

P. B. Fellgett, “The nature and origin of multiplex Fourier spectrometry,” Notes Rec. R. Soc. 60(1), 91–93 (2006).
[Crossref]

Opt. Express (1)

Opt. Rev. (1)

J. K. Kauppinen, I. K. Salomaa, J. O. Partanen, and M. R. Hollberg, “The Use of Carousel Interferometer in Fourier-Transform Ultraviolet Spectroscopy,” Opt. Rev. 4(2), 293–296 (1997).
[Crossref]

Other (3)

P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley-Interscience, 2007).

J. V. Sweedler, “The use of charge transfer device detectors and spatial interferometry for analytical spectroscopy,” https://arizona.openrepository.com/handle/10150/184683 .

M. Bass, G. Li, and E. V. Stryland, Handbook of Optics(McGraw-Hill, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Optical layout of the coherent-dispersion spectrometer (CDS) combining a solid Sagnac interferometer with a dispersing prism: (a) Principal view and (b) Equivalent Top view of the CDS. The solid Sagnac interferometer is composed of two prisms (i.e., prisms 1 and 2). BS, beam splitter; M1, reflective surface of prism 1; M2, reflective surface of prism 2.
Fig. 2
Fig. 2 Ray tracing in the meridian plane of the CDS. S1 and S2, virtual sources of the radiation source; f, focal length of the lens.
Fig. 3
Fig. 3 Equivalent light path diagram of the CDS in the sagittal plane. S1 and S2, virtual sources of the radiation source; d, distance between two corresponding points of the virtual sources; f, focal length of the lens.
Fig. 4
Fig. 4 Two solid Sagnac interferometers: (a) first one comprises two identical prisms and (b) second one comprises two different prisms in which the dashed line position represents the identical prism positon. BS, beam splitter; d, distance between two corresponding points of the virtual sources.
Fig. 5
Fig. 5 The y-axis coordinate for different wavelengths at the detector plane.
Fig. 6
Fig. 6 Several bilateral interferograms obtained simultaneously by the CDS at the detector plane when the spectral resolution is 200 cm−1.
Fig. 7
Fig. 7 CDS spectrum obtained from Fourier transform of the several interferograms in Fig. 6.
Fig. 8
Fig. 8 CDS interferogram 1 containing only wavelength 556nm, 580nm, 600nm with equal intensity and the Spectrum obtained from Fourier transform of the interferogram 1 when the spectral resolution is 200 cm−1.
Fig. 9
Fig. 9 CDS interferogram 39 containing only wavelength 220nm, 222nm with equal intensity and the Spectrum obtained from Fourier transform of the interferogram 39 when the spectral resolution is 200 cm−1.
Fig. 10
Fig. 10 CDS interferogram 1 containing only wavelength 556nm, 580nm, 600nm with equal intensity and the Spectrum obtained from Fourier transform of the interferogram 1 when the spectral resolution is 50 cm−1.
Fig. 11
Fig. 11 CDS interferogram 39 containing only wavelength 220nm, 222nm with equal intensity and the Spectrum obtained from Fourier transform of the interferogram 39 when the spectral resolution is 50 cm−1.
Fig. 12
Fig. 12 Spectrum of the sum of every column in Fig. 7.

Tables (1)

Tables Icon

Table 1 Wavelength (wavenumber) ranges of several separate Interferograms

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

sinα=n( λ i )sin θ 1 ( λ i ),
θ 1 ( λ i )+ θ 2 ( λ i )=γ,
n( λ i )sin θ 2 ( λ i )=sin θ 3 ( λ i ).
β( λ i )= θ 3 ( λ C ) θ 3 ( λ i ),
y( λ i )=ftanβ( λ i ).
y( λ i )=f τ( λ C )τ( λ i ) 1+τ( λ C )τ( λ i ) ,
τ( λ C )= sinγ n 2 ( λ C ) sin 2 α cosγsinα 1 ( sinγ n 2 ( λ C ) sin 2 α cosγsinα ) 2 .
τ( λ i )= sinγ n 2 ( λ i ) sin 2 α cosγsinα 1 ( sinγ n 2 ( λ i ) sin 2 α cosγsinα ) 2 .
| y( λ mk )y( λ m1 ) |b.
M | y( λ max )y( λ min ) | b .
X 1 2 σ max .
θ shear = d f ,
Xb θ shear .
OPD max = XN 2 .
δσ= 1 2 OPD max ,
δσ= f dbN .
σ max = N 2 δσ= f 2db .
I( x )= 0 B( σ )[ 1+cos( 2πσ d f x ) ]dσ .
n 2 =1+ 0.6961663 λ 2 λ 2 0.0684043 2 + 0.4079426 λ 2 λ 2 0.1162414 2 + 0.8974794 λ 2 λ 2 9.896161 2 .

Metrics