Abstract

Measurement of fast signal is getting more and more important in many fields. In this paper, we propose to detect a temporal signal based on the idea of computational ghost imaging (GI), which can greatly reduce requirements on bandwidth of detectors. In experiments, we implement retrieving of a temporal signal with time scale of 50ns using a detector of 1kHz bandwidth, which is much lower than the requirement on bandwidth of detector according to information theory. The performance of our technique are also investigated under different detection bandwidths.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High quality computational ghost imaging using multi-fluorescent screen

Hossein Ghanbari-Ghalehjoughi, Sohrab Ahmadi-Kandjani, and Mansour Eslami
J. Opt. Soc. Am. A 32(2) 323-328 (2015)

Ghost imaging schemes: fast and broadband

M. Bache, E. Brambilla, A. Gatti, and L.A. Lugiato
Opt. Express 12(24) 6067-6081 (2004)

Computational ghost imaging for remote sensing

Baris I. Erkmen
J. Opt. Soc. Am. A 29(5) 782-789 (2012)

References

  • View by:
  • |
  • |
  • |

  1. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163 (2009).
    [Crossref]
  2. T. B. Pittman, Y. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
    [Crossref] [PubMed]
  3. R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
    [Crossref]
  4. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
    [Crossref] [PubMed]
  5. A. F. Abouraddy, B. E. Saleh, A. V. Sergienko, and M. C. Teich, “Role of entanglement in two-photon imaging,” Phys. Rev. Lett. 87, 123602 (2001).
    [Crossref] [PubMed]
  6. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
    [Crossref] [PubMed]
  7. F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
    [Crossref] [PubMed]
  8. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
    [Crossref]
  9. Y. Bromberg, O. Katz, and Y. Silberberg,” Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
    [Crossref]
  10. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 34, 844 (2013).
    [Crossref]
  11. S. Sun, W. T. Liu, H. Z. Lin, E. F. Zhang, J. Y. Liu, Q. Li, and P. X. Chen, “Multi-scale Adaptive Computational Ghost Imaging,” Sci. Rep. 6, 37013 (2016).
    [Crossref] [PubMed]
  12. Y. K. Xu, W. T. Liu, E. F. Zhang, Q. Li, H. Y. Dai, and P. X. Chen, “Is ghost imaging intrinsically more powerful against scattering?” Opt. Express 23(26), 32993–33000 (2015).
    [Crossref]
  13. T. Setälä, T. Shirai, and A. T. Friberg, “Fractional Fourier transform in temporal ghost imaging with classical light,” Phys. Rev. A 82, 043813 (2010).
    [Crossref]
  14. P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics,  10, 167–170 (2016).
    [Crossref]
  15. F. Devaux, P. A. Moreau, S. Denis, and E. Lantz, “Computational temporal ghost imaging,” Optica,  3(7), 698–701 (2016).
    [Crossref]
  16. F. Devaux, K. P. Huy, S. Denis, and E. Lantz, “Temporal ghost imaging with pseudo-thermal speckle light,” J. Opt. 19(2) 024001 (2016).
    [Crossref]
  17. S. Denis, P. A. Moreau, F. Devaux, and E. Lantz, “Temporal ghost imaging with twin photons,” J. Opt. 19(3), 034002 (2017).
    [Crossref]
  18. M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
    [Crossref]
  19. M. J. Sun, L. T. Meng, M. P. Edgar, M. J. Padgett, and N. Radwell, “A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging,” Sci. Rep. 7, 3464 (2017).
    [Crossref] [PubMed]
  20. D. B. Phillips, M. J. Sun, J. M. Taylor, M. P. Edgar, S. M. Barnett, G. M. Gibson, and M. J. Padgett, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3, e1601782 (2017).
    [Crossref] [PubMed]
  21. K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34(21), 3343–3345 (2009).
    [Crossref] [PubMed]
  22. M. J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24(10), 10476–10485 (2016).
    [Crossref] [PubMed]
  23. Q. Huynh-Thu and M Ghanbari, “Scope of validity of PSNR in image/video quality assessment,” Ele. Lett. 44, 800–801(2008).
    [Crossref]
  24. Z. Wang, J. Zhu, F. Yan, and H. Jia, “Superresolution imaging by dynamic single-pixel compressive sensing system,” Opt. Engineering 52(6), 063201 (2013).
    [Crossref]
  25. S. Tetsuno, K. Shibuya, and T. Iwata, “Subpixel-shift cyclic-Hadamard microscopic imaging using a pseudo-inverse-matrix procedure,” Opt. Express 25(4), 3420–3432 (2017).
    [Crossref] [PubMed]
  26. S. M. Khamoushi, Y. Nosrati, and S. H. Tavassoli, “Sinusoidal ghost imaging,” Opt. Lett. 40(15), 3452–3455 (2015).
    [Crossref] [PubMed]
  27. K. Shibuya, K. Nakae, Y. Mizutani, and T. Iwata, “Comparison of reconstructed images between ghost imaging and Hadamard transform imaging,” Opt. Rev. 22(6), 897–902 (2015).
    [Crossref]
  28. F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
    [Crossref] [PubMed]
  29. B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901(2012).
    [Crossref]
  30. Y. S. Lee, Principles of Terahertz Science and Technology (Academic, 2009).
  31. X. C. Zhang and J. Xu, Introduction to THz Wave Photonics (Acandemic, 2010).
    [Crossref]

2017 (4)

S. Denis, P. A. Moreau, F. Devaux, and E. Lantz, “Temporal ghost imaging with twin photons,” J. Opt. 19(3), 034002 (2017).
[Crossref]

M. J. Sun, L. T. Meng, M. P. Edgar, M. J. Padgett, and N. Radwell, “A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging,” Sci. Rep. 7, 3464 (2017).
[Crossref] [PubMed]

D. B. Phillips, M. J. Sun, J. M. Taylor, M. P. Edgar, S. M. Barnett, G. M. Gibson, and M. J. Padgett, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3, e1601782 (2017).
[Crossref] [PubMed]

S. Tetsuno, K. Shibuya, and T. Iwata, “Subpixel-shift cyclic-Hadamard microscopic imaging using a pseudo-inverse-matrix procedure,” Opt. Express 25(4), 3420–3432 (2017).
[Crossref] [PubMed]

2016 (6)

M. J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24(10), 10476–10485 (2016).
[Crossref] [PubMed]

F. Devaux, P. A. Moreau, S. Denis, and E. Lantz, “Computational temporal ghost imaging,” Optica,  3(7), 698–701 (2016).
[Crossref]

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics,  10, 167–170 (2016).
[Crossref]

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

S. Sun, W. T. Liu, H. Z. Lin, E. F. Zhang, J. Y. Liu, Q. Li, and P. X. Chen, “Multi-scale Adaptive Computational Ghost Imaging,” Sci. Rep. 6, 37013 (2016).
[Crossref] [PubMed]

F. Devaux, K. P. Huy, S. Denis, and E. Lantz, “Temporal ghost imaging with pseudo-thermal speckle light,” J. Opt. 19(2) 024001 (2016).
[Crossref]

2015 (3)

2013 (2)

Z. Wang, J. Zhu, F. Yan, and H. Jia, “Superresolution imaging by dynamic single-pixel compressive sensing system,” Opt. Engineering 52(6), 063201 (2013).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 34, 844 (2013).
[Crossref]

2012 (1)

2010 (3)

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

T. Setälä, T. Shirai, and A. T. Friberg, “Fractional Fourier transform in temporal ghost imaging with classical light,” Phys. Rev. A 82, 043813 (2010).
[Crossref]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

2009 (3)

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163 (2009).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg,” Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34(21), 3343–3345 (2009).
[Crossref] [PubMed]

2008 (2)

Q. Huynh-Thu and M Ghanbari, “Scope of validity of PSNR in image/video quality assessment,” Ele. Lett. 44, 800–801(2008).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

2005 (1)

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref] [PubMed]

2004 (1)

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[Crossref] [PubMed]

2002 (1)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

2001 (1)

A. F. Abouraddy, B. E. Saleh, A. V. Sergienko, and M. C. Teich, “Role of entanglement in two-photon imaging,” Phys. Rev. Lett. 87, 123602 (2001).
[Crossref] [PubMed]

1995 (1)

T. B. Pittman, Y. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref] [PubMed]

Abouraddy, A. F.

A. F. Abouraddy, B. E. Saleh, A. V. Sergienko, and M. C. Teich, “Role of entanglement in two-photon imaging,” Phys. Rev. Lett. 87, 123602 (2001).
[Crossref] [PubMed]

Bache, M.

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[Crossref] [PubMed]

Barbier, M.

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics,  10, 167–170 (2016).
[Crossref]

Barnett, S. M.

D. B. Phillips, M. J. Sun, J. M. Taylor, M. P. Edgar, S. M. Barnett, G. M. Gibson, and M. J. Padgett, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3, e1601782 (2017).
[Crossref] [PubMed]

Bennink, R. S.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

Bentley, S. J.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

Bowman, A.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 34, 844 (2013).
[Crossref]

Bowman, R.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 34, 844 (2013).
[Crossref]

Boyd, R. W.

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34(21), 3343–3345 (2009).
[Crossref] [PubMed]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

Brambilla, E.

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[Crossref] [PubMed]

Bromberg, Y.

Y. Bromberg, O. Katz, and Y. Silberberg,” Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

Chan, K. W. C.

Chen, P. X.

S. Sun, W. T. Liu, H. Z. Lin, E. F. Zhang, J. Y. Liu, Q. Li, and P. X. Chen, “Multi-scale Adaptive Computational Ghost Imaging,” Sci. Rep. 6, 37013 (2016).
[Crossref] [PubMed]

Y. K. Xu, W. T. Liu, E. F. Zhang, Q. Li, H. Y. Dai, and P. X. Chen, “Is ghost imaging intrinsically more powerful against scattering?” Opt. Express 23(26), 32993–33000 (2015).
[Crossref]

D’Angelo, M.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref] [PubMed]

Dai, H. Y.

Denis, S.

S. Denis, P. A. Moreau, F. Devaux, and E. Lantz, “Temporal ghost imaging with twin photons,” J. Opt. 19(3), 034002 (2017).
[Crossref]

F. Devaux, K. P. Huy, S. Denis, and E. Lantz, “Temporal ghost imaging with pseudo-thermal speckle light,” J. Opt. 19(2) 024001 (2016).
[Crossref]

F. Devaux, P. A. Moreau, S. Denis, and E. Lantz, “Computational temporal ghost imaging,” Optica,  3(7), 698–701 (2016).
[Crossref]

Devaux, F.

S. Denis, P. A. Moreau, F. Devaux, and E. Lantz, “Temporal ghost imaging with twin photons,” J. Opt. 19(3), 034002 (2017).
[Crossref]

F. Devaux, K. P. Huy, S. Denis, and E. Lantz, “Temporal ghost imaging with pseudo-thermal speckle light,” J. Opt. 19(2) 024001 (2016).
[Crossref]

F. Devaux, P. A. Moreau, S. Denis, and E. Lantz, “Computational temporal ghost imaging,” Optica,  3(7), 698–701 (2016).
[Crossref]

Dudley, J. M.

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics,  10, 167–170 (2016).
[Crossref]

Edgar, M. P.

D. B. Phillips, M. J. Sun, J. M. Taylor, M. P. Edgar, S. M. Barnett, G. M. Gibson, and M. J. Padgett, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3, e1601782 (2017).
[Crossref] [PubMed]

M. J. Sun, L. T. Meng, M. P. Edgar, M. J. Padgett, and N. Radwell, “A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging,” Sci. Rep. 7, 3464 (2017).
[Crossref] [PubMed]

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

M. J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24(10), 10476–10485 (2016).
[Crossref] [PubMed]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 34, 844 (2013).
[Crossref]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901(2012).
[Crossref]

Ferri, F.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

Friberg, A. T.

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics,  10, 167–170 (2016).
[Crossref]

T. Setälä, T. Shirai, and A. T. Friberg, “Fractional Fourier transform in temporal ghost imaging with classical light,” Phys. Rev. A 82, 043813 (2010).
[Crossref]

Gatti, A.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[Crossref] [PubMed]

Genty, G.

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics,  10, 167–170 (2016).
[Crossref]

Ghanbari, M

Q. Huynh-Thu and M Ghanbari, “Scope of validity of PSNR in image/video quality assessment,” Ele. Lett. 44, 800–801(2008).
[Crossref]

Gibson, G. M.

D. B. Phillips, M. J. Sun, J. M. Taylor, M. P. Edgar, S. M. Barnett, G. M. Gibson, and M. J. Padgett, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3, e1601782 (2017).
[Crossref] [PubMed]

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

M. J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24(10), 10476–10485 (2016).
[Crossref] [PubMed]

Huy, K. P.

F. Devaux, K. P. Huy, S. Denis, and E. Lantz, “Temporal ghost imaging with pseudo-thermal speckle light,” J. Opt. 19(2) 024001 (2016).
[Crossref]

Huynh-Thu, Q.

Q. Huynh-Thu and M Ghanbari, “Scope of validity of PSNR in image/video quality assessment,” Ele. Lett. 44, 800–801(2008).
[Crossref]

Ivanov, M.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163 (2009).
[Crossref]

Iwata, T.

S. Tetsuno, K. Shibuya, and T. Iwata, “Subpixel-shift cyclic-Hadamard microscopic imaging using a pseudo-inverse-matrix procedure,” Opt. Express 25(4), 3420–3432 (2017).
[Crossref] [PubMed]

K. Shibuya, K. Nakae, Y. Mizutani, and T. Iwata, “Comparison of reconstructed images between ghost imaging and Hadamard transform imaging,” Opt. Rev. 22(6), 897–902 (2015).
[Crossref]

Jia, H.

Z. Wang, J. Zhu, F. Yan, and H. Jia, “Superresolution imaging by dynamic single-pixel compressive sensing system,” Opt. Engineering 52(6), 063201 (2013).
[Crossref]

Katz, O.

Y. Bromberg, O. Katz, and Y. Silberberg,” Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

Khamoushi, S. M.

Krausz, F.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163 (2009).
[Crossref]

Lamb, R.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Lantz, E.

S. Denis, P. A. Moreau, F. Devaux, and E. Lantz, “Temporal ghost imaging with twin photons,” J. Opt. 19(3), 034002 (2017).
[Crossref]

F. Devaux, K. P. Huy, S. Denis, and E. Lantz, “Temporal ghost imaging with pseudo-thermal speckle light,” J. Opt. 19(2) 024001 (2016).
[Crossref]

F. Devaux, P. A. Moreau, S. Denis, and E. Lantz, “Computational temporal ghost imaging,” Optica,  3(7), 698–701 (2016).
[Crossref]

Lee, Y. S.

Y. S. Lee, Principles of Terahertz Science and Technology (Academic, 2009).

Li, Q.

S. Sun, W. T. Liu, H. Z. Lin, E. F. Zhang, J. Y. Liu, Q. Li, and P. X. Chen, “Multi-scale Adaptive Computational Ghost Imaging,” Sci. Rep. 6, 37013 (2016).
[Crossref] [PubMed]

Y. K. Xu, W. T. Liu, E. F. Zhang, Q. Li, H. Y. Dai, and P. X. Chen, “Is ghost imaging intrinsically more powerful against scattering?” Opt. Express 23(26), 32993–33000 (2015).
[Crossref]

Lin, H. Z.

S. Sun, W. T. Liu, H. Z. Lin, E. F. Zhang, J. Y. Liu, Q. Li, and P. X. Chen, “Multi-scale Adaptive Computational Ghost Imaging,” Sci. Rep. 6, 37013 (2016).
[Crossref] [PubMed]

Liu, J. Y.

S. Sun, W. T. Liu, H. Z. Lin, E. F. Zhang, J. Y. Liu, Q. Li, and P. X. Chen, “Multi-scale Adaptive Computational Ghost Imaging,” Sci. Rep. 6, 37013 (2016).
[Crossref] [PubMed]

Liu, W. T.

S. Sun, W. T. Liu, H. Z. Lin, E. F. Zhang, J. Y. Liu, Q. Li, and P. X. Chen, “Multi-scale Adaptive Computational Ghost Imaging,” Sci. Rep. 6, 37013 (2016).
[Crossref] [PubMed]

Y. K. Xu, W. T. Liu, E. F. Zhang, Q. Li, H. Y. Dai, and P. X. Chen, “Is ghost imaging intrinsically more powerful against scattering?” Opt. Express 23(26), 32993–33000 (2015).
[Crossref]

Lugiato, L. A.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[Crossref] [PubMed]

Magatti, D.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

Meng, L. T.

M. J. Sun, L. T. Meng, M. P. Edgar, M. J. Padgett, and N. Radwell, “A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging,” Sci. Rep. 7, 3464 (2017).
[Crossref] [PubMed]

Mizutani, Y.

K. Shibuya, K. Nakae, Y. Mizutani, and T. Iwata, “Comparison of reconstructed images between ghost imaging and Hadamard transform imaging,” Opt. Rev. 22(6), 897–902 (2015).
[Crossref]

Moreau, P. A.

S. Denis, P. A. Moreau, F. Devaux, and E. Lantz, “Temporal ghost imaging with twin photons,” J. Opt. 19(3), 034002 (2017).
[Crossref]

F. Devaux, P. A. Moreau, S. Denis, and E. Lantz, “Computational temporal ghost imaging,” Optica,  3(7), 698–701 (2016).
[Crossref]

Nakae, K.

K. Shibuya, K. Nakae, Y. Mizutani, and T. Iwata, “Comparison of reconstructed images between ghost imaging and Hadamard transform imaging,” Opt. Rev. 22(6), 897–902 (2015).
[Crossref]

Nosrati, Y.

O’Sullivan, M. N.

Padgett, M. J.

M. J. Sun, L. T. Meng, M. P. Edgar, M. J. Padgett, and N. Radwell, “A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging,” Sci. Rep. 7, 3464 (2017).
[Crossref] [PubMed]

D. B. Phillips, M. J. Sun, J. M. Taylor, M. P. Edgar, S. M. Barnett, G. M. Gibson, and M. J. Padgett, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3, e1601782 (2017).
[Crossref] [PubMed]

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

M. J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24(10), 10476–10485 (2016).
[Crossref] [PubMed]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 34, 844 (2013).
[Crossref]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901(2012).
[Crossref]

Phillips, D. B.

D. B. Phillips, M. J. Sun, J. M. Taylor, M. P. Edgar, S. M. Barnett, G. M. Gibson, and M. J. Padgett, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3, e1601782 (2017).
[Crossref] [PubMed]

M. J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24(10), 10476–10485 (2016).
[Crossref] [PubMed]

Pittman, T. B.

T. B. Pittman, Y. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref] [PubMed]

Radwell, N.

M. J. Sun, L. T. Meng, M. P. Edgar, M. J. Padgett, and N. Radwell, “A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging,” Sci. Rep. 7, 3464 (2017).
[Crossref] [PubMed]

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Ryczkowski, P.

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics,  10, 167–170 (2016).
[Crossref]

Saleh, B. E.

A. F. Abouraddy, B. E. Saleh, A. V. Sergienko, and M. C. Teich, “Role of entanglement in two-photon imaging,” Phys. Rev. Lett. 87, 123602 (2001).
[Crossref] [PubMed]

Scarcelli, G.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref] [PubMed]

Sergienko, A. V.

A. F. Abouraddy, B. E. Saleh, A. V. Sergienko, and M. C. Teich, “Role of entanglement in two-photon imaging,” Phys. Rev. Lett. 87, 123602 (2001).
[Crossref] [PubMed]

T. B. Pittman, Y. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref] [PubMed]

Setälä, T.

T. Setälä, T. Shirai, and A. T. Friberg, “Fractional Fourier transform in temporal ghost imaging with classical light,” Phys. Rev. A 82, 043813 (2010).
[Crossref]

Shapiro, J. H.

Shibuya, K.

S. Tetsuno, K. Shibuya, and T. Iwata, “Subpixel-shift cyclic-Hadamard microscopic imaging using a pseudo-inverse-matrix procedure,” Opt. Express 25(4), 3420–3432 (2017).
[Crossref] [PubMed]

K. Shibuya, K. Nakae, Y. Mizutani, and T. Iwata, “Comparison of reconstructed images between ghost imaging and Hadamard transform imaging,” Opt. Rev. 22(6), 897–902 (2015).
[Crossref]

Shih, Y.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref] [PubMed]

T. B. Pittman, Y. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref] [PubMed]

Shirai, T.

T. Setälä, T. Shirai, and A. T. Friberg, “Fractional Fourier transform in temporal ghost imaging with classical light,” Phys. Rev. A 82, 043813 (2010).
[Crossref]

Silberberg, Y.

Y. Bromberg, O. Katz, and Y. Silberberg,” Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

Strekalov, D. V.

T. B. Pittman, Y. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref] [PubMed]

Sun, B.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 34, 844 (2013).
[Crossref]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901(2012).
[Crossref]

Sun, M. J.

M. J. Sun, L. T. Meng, M. P. Edgar, M. J. Padgett, and N. Radwell, “A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging,” Sci. Rep. 7, 3464 (2017).
[Crossref] [PubMed]

D. B. Phillips, M. J. Sun, J. M. Taylor, M. P. Edgar, S. M. Barnett, G. M. Gibson, and M. J. Padgett, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3, e1601782 (2017).
[Crossref] [PubMed]

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

M. J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24(10), 10476–10485 (2016).
[Crossref] [PubMed]

Sun, S.

S. Sun, W. T. Liu, H. Z. Lin, E. F. Zhang, J. Y. Liu, Q. Li, and P. X. Chen, “Multi-scale Adaptive Computational Ghost Imaging,” Sci. Rep. 6, 37013 (2016).
[Crossref] [PubMed]

Tavassoli, S. H.

Taylor, J. M.

D. B. Phillips, M. J. Sun, J. M. Taylor, M. P. Edgar, S. M. Barnett, G. M. Gibson, and M. J. Padgett, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3, e1601782 (2017).
[Crossref] [PubMed]

Teich, M. C.

A. F. Abouraddy, B. E. Saleh, A. V. Sergienko, and M. C. Teich, “Role of entanglement in two-photon imaging,” Phys. Rev. Lett. 87, 123602 (2001).
[Crossref] [PubMed]

Tetsuno, S.

Valencia, A.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref] [PubMed]

Vittert, L. E.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 34, 844 (2013).
[Crossref]

Wang, Z.

Z. Wang, J. Zhu, F. Yan, and H. Jia, “Superresolution imaging by dynamic single-pixel compressive sensing system,” Opt. Engineering 52(6), 063201 (2013).
[Crossref]

Welsh, S.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 34, 844 (2013).
[Crossref]

Welsh, S. S.

Xu, J.

X. C. Zhang and J. Xu, Introduction to THz Wave Photonics (Acandemic, 2010).
[Crossref]

Xu, Y. K.

Yan, F.

Z. Wang, J. Zhu, F. Yan, and H. Jia, “Superresolution imaging by dynamic single-pixel compressive sensing system,” Opt. Engineering 52(6), 063201 (2013).
[Crossref]

Zhang, E. F.

S. Sun, W. T. Liu, H. Z. Lin, E. F. Zhang, J. Y. Liu, Q. Li, and P. X. Chen, “Multi-scale Adaptive Computational Ghost Imaging,” Sci. Rep. 6, 37013 (2016).
[Crossref] [PubMed]

Y. K. Xu, W. T. Liu, E. F. Zhang, Q. Li, H. Y. Dai, and P. X. Chen, “Is ghost imaging intrinsically more powerful against scattering?” Opt. Express 23(26), 32993–33000 (2015).
[Crossref]

Zhang, X. C.

X. C. Zhang and J. Xu, Introduction to THz Wave Photonics (Acandemic, 2010).
[Crossref]

Zhu, J.

Z. Wang, J. Zhu, F. Yan, and H. Jia, “Superresolution imaging by dynamic single-pixel compressive sensing system,” Opt. Engineering 52(6), 063201 (2013).
[Crossref]

Ele. Lett. (1)

Q. Huynh-Thu and M Ghanbari, “Scope of validity of PSNR in image/video quality assessment,” Ele. Lett. 44, 800–801(2008).
[Crossref]

J. Opt. (2)

F. Devaux, K. P. Huy, S. Denis, and E. Lantz, “Temporal ghost imaging with pseudo-thermal speckle light,” J. Opt. 19(2) 024001 (2016).
[Crossref]

S. Denis, P. A. Moreau, F. Devaux, and E. Lantz, “Temporal ghost imaging with twin photons,” J. Opt. 19(3), 034002 (2017).
[Crossref]

Nat. Commun. (1)

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Nat. Photonics (1)

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics,  10, 167–170 (2016).
[Crossref]

Opt. Engineering (1)

Z. Wang, J. Zhu, F. Yan, and H. Jia, “Superresolution imaging by dynamic single-pixel compressive sensing system,” Opt. Engineering 52(6), 063201 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Rev. (1)

K. Shibuya, K. Nakae, Y. Mizutani, and T. Iwata, “Comparison of reconstructed images between ghost imaging and Hadamard transform imaging,” Opt. Rev. 22(6), 897–902 (2015).
[Crossref]

Optica (1)

Phys. Rev. A (4)

T. Setälä, T. Shirai, and A. T. Friberg, “Fractional Fourier transform in temporal ghost imaging with classical light,” Phys. Rev. A 82, 043813 (2010).
[Crossref]

T. B. Pittman, Y. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref] [PubMed]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg,” Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

Phys. Rev. Lett. (6)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref] [PubMed]

A. F. Abouraddy, B. E. Saleh, A. V. Sergienko, and M. C. Teich, “Role of entanglement in two-photon imaging,” Phys. Rev. Lett. 87, 123602 (2001).
[Crossref] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[Crossref] [PubMed]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163 (2009).
[Crossref]

Sci. Adv. (1)

D. B. Phillips, M. J. Sun, J. M. Taylor, M. P. Edgar, S. M. Barnett, G. M. Gibson, and M. J. Padgett, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3, e1601782 (2017).
[Crossref] [PubMed]

Sci. Rep. (2)

S. Sun, W. T. Liu, H. Z. Lin, E. F. Zhang, J. Y. Liu, Q. Li, and P. X. Chen, “Multi-scale Adaptive Computational Ghost Imaging,” Sci. Rep. 6, 37013 (2016).
[Crossref] [PubMed]

M. J. Sun, L. T. Meng, M. P. Edgar, M. J. Padgett, and N. Radwell, “A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging,” Sci. Rep. 7, 3464 (2017).
[Crossref] [PubMed]

Science (1)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 34, 844 (2013).
[Crossref]

Other (2)

Y. S. Lee, Principles of Terahertz Science and Technology (Academic, 2009).

X. C. Zhang and J. Xu, Introduction to THz Wave Photonics (Acandemic, 2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for detecting a temporal signal via computational GI. The repeatable signal is generated from a laser diode, with the waveform of which is being controlled by a pattern generator. For direct measurements, the optical signal goes through the modulator without modulation. For computational GI, the optical signal is modulated by the modulator with the known patterns. In both cases the signal is detected by the photodetector of adjustable bandwidth.

Fig. 2
Fig. 2

Results of direct detection and computational GI, with the bandwidth of detector set as 10MHz, 1MHz, 300kHz, 100kHz, 10kHz and 1kHz, from (a) to (f). The blue dots represents direct measurement results and the pink asterisks represents GI reconstruction results. Results of direct measurement without average are shown from (g) to (i) with 100kHz, 10kHz and 1kHz bandwidth.

Fig. 3
Fig. 3

PSNR of the results achieved from two techniques, computational GI and direct measurement (DM), varying with the bandwidth of the photodetector. Each point is obtained by a statistic over 5 times of measurements. It shows that the quality of direct measurement declines with the bandwidth, while that of GI appears more robust.

Fig. 4
Fig. 4

Results of computational GI with partition strategy. Three typical cases with bandwidth 10MHz, 10kHz and 1kHz are shown from (a) to (c). The background noise can be suppressed and the height of three reconstructed peaks turns out to be the same. From (a) to (c) the PSNR of the results are 24.5dB, 20.1dB and 18.6dB, which are higher than that of unimproved results, being 22.3dB, 18.7dB and 16.9dB, respectively.

Fig. 5
Fig. 5

The results of using only one pixel (the 950th) of direct detection as the bucket value. This pixel is apart from three peaks and the detection value contains no information about them for the case of 10MHz bandwidth. Due to the distortion and crosstalk for the case of 300kHz and 10kHz bandwidth, the information of the three peaks is (partially) included in the detection value of the 950th pixel. Therefore the signal can be (partially) reconstructed.

Fig. 6
Fig. 6

PSNR of reconstructed results under different effective sampling rates. The effective bandwidth around the knee points are 300kHz, 1.3MHz and 25MHz for the case of bandwidth 1kHz, 100kHz and 10MHz, respectively. Each point here is obtained by a statistic over 5 times of measurement.

Fig. 7
Fig. 7

The results of scanning method with bandwidth 10MHz, 1MHz, and 300kHz, from (a) to (c).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

B k = 0 T R k ( t ) S ( t ) d t .
O ( t ) = R ( t ) B R ( t ) B ,
P S N R = 10 log 10 ( M A X 2 1 L i [ G ( i ) W ( i ) ] 2 ) ,