Abstract

We demonstrate a gain-switched singly Ho3+-doped ZBLAN fiber laser for the first time in the wavelength region around 2.94 μm which circumvents the strong water vapor lines. Four switchable gain-switched temporal states with 1/n (n = 4,3,2,1) pump repetition rates are first observed. The influences of pump power (pulse energy), repetition rate, duty cycle (pulse duration), and laser wavelength on their characteristics are studied, respectively. The results indicate that high pump repetition rate, large pump duty cycle, and short laser wavelength are beneficial for obtaining more gain-switched temporal states. For the case (n = 1), the increased pump repetition rate contributes to the increased pulse duration while decreased pulse energy and peak power. While μs-level pump pulse duration variation has an almost negligible effect on them. By introducing a plane ruled grating, the wavelength tuning was performed yielding a tuning range of 105 nm from 2895.5 nm to 3000.5 nm which just overlays the peak region of liquid water absorption. Finally, further optimizing of laser performances is discussed as well. This demonstration is helpful for preliminarily designing, prior to constructing a mid-infrared gain-switched laser which can find direct applications in laser surgery.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 μm

Chen Wei, Hongyu Luo, Hongxia Shi, YanJia Lyu, Han Zhang, and Yong Liu
Opt. Express 25(8) 8816-8827 (2017)

Tunable Fe2+:ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 μm

Jianfeng Li, Hongyu Luo, Lele Wang, Bo Zhai, Heping Li, and Yong Liu
Opt. Express 23(17) 22362-22370 (2015)

Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3 μm

Gongwen Zhu, Xiushan Zhu, Kaushik Balakrishnan, Robert A. Norwood, and N. Peyghambarian
Opt. Mater. Express 3(9) 1365-1377 (2013)

References

  • View by:
  • |
  • |
  • |

  1. F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” Top. Appl. Phys. 89, 458–516 I. T. Sorokina, and K. L. Vodopyanov, eds., (Springer-Verlag, 2003).
  2. R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20(2), 112–118 (1994).
    [Crossref] [PubMed]
  3. J. Geng and S. Jiang, “Fiber lasers: the 2 um laser heats up,” Opt. Photonics News 25(7), 36–41 (2014).
    [Crossref]
  4. H. H. P. T. Bekman, J. C. V. D. Heuvel, F. J. M. V. Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
    [Crossref]
  5. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  6. X. Zhu and R. Jain, “10-W-level diode-pumped compact 2.78 µm ZBLAN fiber laser,” Opt. Lett. 32(1), 26–28 (2007).
    [Crossref] [PubMed]
  7. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Liquid-cooled 24 W mid-infrared Er:ZBLAN fiber laser,” Opt. Lett. 34(20), 3062–3064 (2009).
    [Crossref] [PubMed]
  8. S. Tokita, M. Hirokane, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Stable 10 W Er:ZBLAN fiber laser operating at 2.71-2.88 μm,” Opt. Lett. 35(23), 3943–3945 (2010).
    [Crossref] [PubMed]
  9. V. Fortin, M. Bernier, S. T. Bah, and R. Vallée, “30 W fluoride glass all-fiber laser at 2.94 μm,” Opt. Lett. 40(12), 2882–2885 (2015).
    [Crossref] [PubMed]
  10. J. F. Li, L. Wang, H. Y. Luo, J. T. Xie, and Y. Liu, “High power cascaded erbium doped fluoride fiber laser at room temperature,” IEEE Photonics Technol. Lett. 28(6), 673–676 (2016).
    [Crossref]
  11. Y. O. Aydin, V. Fortin, F. Maes, F. Jobin, S. D. Jackson, R. Vallée, and M. Bernier, “Diode-pumped mid-infrared fiber laser with 50% slope efficiency,” Optica 4(2), 235–238 (2017).
    [Crossref]
  12. S. D. Jackson, F. Bugge, and G. Erbert, “Directly diode-pumped holmium fiber lasers,” Opt. Lett. 32(17), 2496–2498 (2007).
    [Crossref] [PubMed]
  13. S. D. Jackson, “High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 µm,” Opt. Lett. 34(15), 2327–2329 (2009).
    [Crossref] [PubMed]
  14. J. Li, D. D. Hudson, and S. D. Jackson, “High-power diode-pumped fiber laser operating at 3 μm,” Opt. Lett. 36(18), 3642–3644 (2011).
    [Crossref] [PubMed]
  15. S. Crawford, D. D. Hudson, and S. D. Jackson, “High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss,” IEEE Photonics J. 7(3), 1–9 (2015).
    [Crossref]
  16. S. D. Jackson, “Continuous wave 2.9 μm dysprosium-doped fluoride fiber laser,” Appl. Phys. Lett. 83(7), 1316–1318 (2003).
    [Crossref]
  17. Y. H. Tsang, A. E. El-Taher, T. A. King, and S. D. Jackson, “Efficient 2.96 µm dysprosium-doped fluoride fibre laser pumped with a Nd:YAG laser operating at 1.3 µm,” Opt. Express 14(2), 678–685 (2006).
    [Crossref] [PubMed]
  18. M. R. Majewski and S. D. Jackson, “Highly efficient mid-infrared dysprosium fiber laser,” Opt. Lett. 41(10), 2173–2176 (2016).
    [Crossref] [PubMed]
  19. M. R. Majewski and S. D. Jackson, “Tunable dysprosium laser,” Opt. Lett. 41(19), 4496–4498 (2016).
    [Crossref] [PubMed]
  20. X. S. Zhu and N. Peyghambarian, “High power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
    [Crossref]
  21. N. Caron, M. Bernier, D. Faucher, and R. Vallée, “Understanding the fiber tip thermal runaway present in 3 µm fluoride glass fiber lasers,” Opt. Express 20(20), 22188–22194 (2012).
    [Crossref] [PubMed]
  22. R. Kaufmann and R. Hibst, “Pulsed erbium:YAG laser ablation in cutaneous surgery,” Lasers Surg. Med. 19(3), 324–330 (1996).
    [Crossref] [PubMed]
  23. S. Stübinger, “Advances in bone surgery: the Er:YAG laser in oral surgery and implant dentistry,” Clin. Cosmet. Investig. Dent. 2, 47–62 (2010).
    [Crossref] [PubMed]
  24. M. Gülsoy, T. Celikel, A. Kurt, R. Canbeyli, and I. Cilesiz, “Er:YAG laser ablation of cerebellar and cerebral tissue,” Lasers Med. Sci. 16(1), 40–43 (2001).
    [Crossref] [PubMed]
  25. P. D. Brazitikos, D. J. D’Amico, M. T. Bernal, and A. W. Walsh, “Erbium:YAG laser surgery of the vitreous and retina,” Ophthalmology 102(2), 278–290 (1995).
    [Crossref] [PubMed]
  26. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “12 W Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Lett. 36(15), 2812–2814 (2011).
    [Crossref] [PubMed]
  27. T. Hu, D. D. Hudson, and S. D. Jackson, “Actively Q-switched 2.9 μm Ho3+Pr3+-doped fluoride fiber laser,” Opt. Lett. 37(11), 2145–2147 (2012).
    [Crossref] [PubMed]
  28. J. Li, T. Hu, and S. D. Jackson, “Dual wavelength Q-switched cascade laser,” Opt. Lett. 37(12), 2208–2210 (2012).
    [Crossref] [PubMed]
  29. J. F. Li, Y. Yang, D. D. Hudson, Y. Liu, and S. D. Jackson, “A tunable Q-switched Ho3+-doped fluoride fiber laser,” Laser Phys. Lett. 10(4), 045107 (2013).
    [Crossref]
  30. Y. L. Shen, Y. S. Wang, K. P. Luan, H. W. Chen, M. M. Tao, and J. H. Si, “High peak power actively Q-switched mid-infrared fiber lasers at 3 μm,” Appl. Phys. B 123(4), 105 (2017).
    [Crossref]
  31. J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97 m fluoride fiber laser,” Laser Phys. Lett. 11(6), 065102 (2014).
    [Crossref]
  32. J. Li, H. Luo, L. Wang, Y. Liu, Z. Yan, K. Zhou, L. Zhang, and S. K. Turistsyn, “Mid-infrared passively switched pulsed dual wavelength Ho3+-doped fluoride fiber laser at 3 μm and 2 μm,” Sci. Rep. 5(1), 10770 (2015).
    [Crossref] [PubMed]
  33. Y. Shen, Y. Wang, K. Luan, K. Huang, M. Tao, H. Chen, A. Yi, G. Feng, and J. Si, “Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror,” Sci. Rep. 6(1), 26659 (2016).
    [Crossref] [PubMed]
  34. H. Luo, J. Li, J. Xie, B. Zhai, C. Wei, and Y. Liu, “High average power and energy microsecond pulse generation from an erbium-doped fluoride fiber MOPA system,” Opt. Express 24(25), 29022–29032 (2016).
    [Crossref] [PubMed]
  35. C. Wei, X. S. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-switched 2.8-µm nanosecond fiber laser,” IEEE Photonics Technol. Lett. 24(19), 1741–1744 (2012).
    [Crossref]
  36. G. W. Zhu, X. S. Zhu, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Fe2+:ZnSe and graphene Q-switched singly Ho3+ -doped ZBLAN fiber lasers at 3 μm,” Opt. Mater. Express 3(9), 1365–1377 (2013).
    [Crossref]
  37. J. Li, H. Luo, L. Wang, B. Zhai, H. Li, and Y. Liu, “Tunable Fe2+:ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 μm,” Opt. Express 23(17), 22362–22370 (2015).
    [Crossref] [PubMed]
  38. T. Zhang, G. Y. Feng, H. Zhang, S. G. Ning, B. Lan, and S. H. Zhou, “Compact watt-level passively Q-switched ZrF 4 -BaF 2 -LaF 3 -AIF 3 -NaF fiber laser at 2.8 μ m using Fe 2+ :ZnSe saturable absorber mirror,” Opt. Eng. 55(8), 086106 (2016).
    [Crossref]
  39. C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photonics Technol. Lett. 29(11), 881–884 (2017).
    [Crossref]
  40. C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013).
    [Crossref] [PubMed]
  41. J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40(15), 3659–3662 (2015).
    [Crossref] [PubMed]
  42. P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm pulsed Er 3+:ZBLAN fiber laser modulated by topological insulator,” IEEE Photonics Technol. Lett. 28(14), 1573–1576 (2016).
    [Crossref]
  43. J. Liu, M. Wu, B. Huang, P. H. Tang, C. J. Zhao, D. Y. Shen, D. Y. Fan, and S. K. Turitsyn, “Widely wavelength-tunable mid-infrared fluoride fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0900507 (2017).
  44. Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express 23(19), 24713–24718 (2015).
    [Crossref] [PubMed]
  45. J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
    [Crossref] [PubMed]
  46. C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
    [Crossref]
  47. C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
    [Crossref] [PubMed]
  48. B. C. Dickinson, P. S. Golding, M. Pollnau, T. A. King, and S. D. Jackson, “Investigations of a 791-nm pulsed-pumped 2.7 μm Er-doped ZBLAN fiber laser,” Opt. Commun. 191(3), 315–321 (2001).
    [Crossref]
  49. M. Gorjan, R. Petkovšek, M. Marinček, and M. Čopič, “High-power pulsed diode-pumped Er:ZBLAN fiber laser,” Opt. Lett. 36(10), 1923–1925 (2011).
    [Crossref] [PubMed]
  50. Y. L. Shen, K. Huang, S. Q. Zhou, K. P. Luan, L. Yu, A. Q. Yi, G. B. Feng, and X. S. Ye, “Gain-switched 2.8 μm Er3+ -doped double-clad ZBLAN fiber laser,” Proc. SPIE 9543, 95431E (2015).
  51. C. Wei, H. Luo, H. Shi, Y. Lyu, H. Zhang, and Y. Liu, “Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 μm,” Opt. Express 25(8), 8816–8827 (2017).
    [Crossref] [PubMed]
  52. Y. L. Shen, Y. S. Wang, K. P. Luan, H. W. Chen, M. M. Tao, and J. H. Si, “Efficient, wavelengthtunable gain-switching and gainswitched modelocking operation of a heavily Er3+doped ZBLAN midinfrared fiber laser,” IEEE Photonics J. 9(4), 1504510 (2017).
    [Crossref]
  53. S. Antipov, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “High-power mid-infrared femtosecond fiber laser in the water vapor transmission window,” Optica 3(12), 1373–1376 (2016).
    [Crossref]
  54. K. Yin, W. Q. Yang, B. Zhang, S. Zeng, and J. Hou, “Temporal characteristics of gain-switched thulium-doped fiber laser near threshold,” J. Opt. Soc. Am. B 30(11), 2864–2868 (2013).
    [Crossref]
  55. L. Wetenkamp, G. F. West, and H. Tobben, “Co-doping effects in erbium3+- and holmium3+-doped ZBLAN glasses,” J. Non-Cryst. Solids 140, 25–30 (1992).
    [Crossref]
  56. J. L. Yang, Y. L. Tang, and J. Q. Xu, “Development and applications of gain-switched fiber lasers [Invited],” Photon. Res. 1(1), 52–57 (2013).
    [Crossref]
  57. A. Haboucha, V. Fortin, M. Bernier, J. Genest, Y. Messaddeq, and R. Vallée, “Fiber Bragg grating stabilization of a passively mode-locked 2.8 μm Er3+: fluoride glass fiber laser,” Opt. Lett. 39(11), 3294–3297 (2014).
    [Crossref] [PubMed]
  58. T. Hu, D. D. Hudson, and S. D. Jackson, “Stable, self-starting, passively mode-locked fiber ring laser of the 3 μm class,” Opt. Lett. 39(7), 2133–2136 (2014).
    [Crossref] [PubMed]
  59. T. Hu, S. D. Jackson, and D. D. Hudson, “Ultrafast pulses from a mid-infrared fiber laser,” Opt. Lett. 40(18), 4226–4228 (2015).
    [Crossref] [PubMed]
  60. X. Cheng, Z. Li, J. Hou, and Z. Liu, “Gain-switched monolithic fiber laser with ultra-wide tuning range at 2 μm,” Opt. Express 24(25), 29126–29137 (2016).
    [Crossref] [PubMed]
  61. J. F. Li, D. D. Hudson, and S. D. Jackson, “Tuned cascade laser,” IEEE Photonics Technol. Lett. 24(14), 1215–1217 (2012).
    [Crossref]
  62. M. Jiang and P. Tayebati, “Stable 10 ns, kilowatt peak-power pulse generation from a gain-switched Tm-doped fiber laser,” Opt. Lett. 32(13), 1797–1799 (2007).
    [Crossref] [PubMed]
  63. Y. Tang, L. Xu, Y. Yang, and J. Xu, “High-power gain-switched Tm3+-doped fiber laser,” Opt. Express 18(22), 22964–22972 (2010).
    [Crossref] [PubMed]
  64. Y. L. Tang, F. Li, and J. Q. Xu, “High peak-power gain-switched Tm-doped fiber laser,” IEEE Photonics Technol. Lett. 33(13), 893–895 (2011).
    [Crossref]
  65. Y. L. Tang and L. Xu, “Hybrid-pumped gain-switched narrow-band thulium fiber laser,” Appl. Phys. Express 5(7), 072702 (2012).
    [Crossref]
  66. S. Yan, Y. Wang, Y. Zhou, N. Yang, Y. Li, Y. Tang, and J. Xu, “Developing high-power hybrid resonant gain-switched thulium fiber lasers,” Opt. Express 23(20), 25675–25687 (2015).
    [Crossref] [PubMed]
  67. H. Xiao, H. W. Zhang, J. M. Xu, J. Y. Leng, and P. Zhou, “120 W monolithic Yb-doped fiber oscillator at 1150 nm,” J. Opt. Soc. Am. B 34(3), A63–A69 (2017).
    [Crossref]
  68. N. Simakov, A. Hemming, S. Bennetts, and J. Haub, “Efficient, polarised, gain-switched operation of a Tm-doped fibre laser,” Opt. Express 19(16), 14949–14954 (2011).
    [Crossref] [PubMed]
  69. S. Hollitt, N. Simakov, A. Hemming, J. Haub, and A. Carter, “A linearly polarised, pulsed Ho-doped fiber laser,” Opt. Express 20(15), 16285–16290 (2012).
    [Crossref]

2017 (8)

Y. L. Shen, Y. S. Wang, K. P. Luan, H. W. Chen, M. M. Tao, and J. H. Si, “High peak power actively Q-switched mid-infrared fiber lasers at 3 μm,” Appl. Phys. B 123(4), 105 (2017).
[Crossref]

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photonics Technol. Lett. 29(11), 881–884 (2017).
[Crossref]

C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref] [PubMed]

J. Liu, M. Wu, B. Huang, P. H. Tang, C. J. Zhao, D. Y. Shen, D. Y. Fan, and S. K. Turitsyn, “Widely wavelength-tunable mid-infrared fluoride fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0900507 (2017).

Y. L. Shen, Y. S. Wang, K. P. Luan, H. W. Chen, M. M. Tao, and J. H. Si, “Efficient, wavelengthtunable gain-switching and gainswitched modelocking operation of a heavily Er3+doped ZBLAN midinfrared fiber laser,” IEEE Photonics J. 9(4), 1504510 (2017).
[Crossref]

Y. O. Aydin, V. Fortin, F. Maes, F. Jobin, S. D. Jackson, R. Vallée, and M. Bernier, “Diode-pumped mid-infrared fiber laser with 50% slope efficiency,” Optica 4(2), 235–238 (2017).
[Crossref]

H. Xiao, H. W. Zhang, J. M. Xu, J. Y. Leng, and P. Zhou, “120 W monolithic Yb-doped fiber oscillator at 1150 nm,” J. Opt. Soc. Am. B 34(3), A63–A69 (2017).
[Crossref]

C. Wei, H. Luo, H. Shi, Y. Lyu, H. Zhang, and Y. Liu, “Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 μm,” Opt. Express 25(8), 8816–8827 (2017).
[Crossref] [PubMed]

2016 (11)

P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm pulsed Er 3+:ZBLAN fiber laser modulated by topological insulator,” IEEE Photonics Technol. Lett. 28(14), 1573–1576 (2016).
[Crossref]

M. R. Majewski and S. D. Jackson, “Highly efficient mid-infrared dysprosium fiber laser,” Opt. Lett. 41(10), 2173–2176 (2016).
[Crossref] [PubMed]

M. R. Majewski and S. D. Jackson, “Tunable dysprosium laser,” Opt. Lett. 41(19), 4496–4498 (2016).
[Crossref] [PubMed]

S. Antipov, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “High-power mid-infrared femtosecond fiber laser in the water vapor transmission window,” Optica 3(12), 1373–1376 (2016).
[Crossref]

H. Luo, J. Li, J. Xie, B. Zhai, C. Wei, and Y. Liu, “High average power and energy microsecond pulse generation from an erbium-doped fluoride fiber MOPA system,” Opt. Express 24(25), 29022–29032 (2016).
[Crossref] [PubMed]

X. Cheng, Z. Li, J. Hou, and Z. Liu, “Gain-switched monolithic fiber laser with ultra-wide tuning range at 2 μm,” Opt. Express 24(25), 29126–29137 (2016).
[Crossref] [PubMed]

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref] [PubMed]

C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

T. Zhang, G. Y. Feng, H. Zhang, S. G. Ning, B. Lan, and S. H. Zhou, “Compact watt-level passively Q-switched ZrF 4 -BaF 2 -LaF 3 -AIF 3 -NaF fiber laser at 2.8 μ m using Fe 2+ :ZnSe saturable absorber mirror,” Opt. Eng. 55(8), 086106 (2016).
[Crossref]

Y. Shen, Y. Wang, K. Luan, K. Huang, M. Tao, H. Chen, A. Yi, G. Feng, and J. Si, “Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror,” Sci. Rep. 6(1), 26659 (2016).
[Crossref] [PubMed]

J. F. Li, L. Wang, H. Y. Luo, J. T. Xie, and Y. Liu, “High power cascaded erbium doped fluoride fiber laser at room temperature,” IEEE Photonics Technol. Lett. 28(6), 673–676 (2016).
[Crossref]

2015 (9)

S. Crawford, D. D. Hudson, and S. D. Jackson, “High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]

J. Li, H. Luo, L. Wang, Y. Liu, Z. Yan, K. Zhou, L. Zhang, and S. K. Turistsyn, “Mid-infrared passively switched pulsed dual wavelength Ho3+-doped fluoride fiber laser at 3 μm and 2 μm,” Sci. Rep. 5(1), 10770 (2015).
[Crossref] [PubMed]

Y. L. Shen, K. Huang, S. Q. Zhou, K. P. Luan, L. Yu, A. Q. Yi, G. B. Feng, and X. S. Ye, “Gain-switched 2.8 μm Er3+ -doped double-clad ZBLAN fiber laser,” Proc. SPIE 9543, 95431E (2015).

V. Fortin, M. Bernier, S. T. Bah, and R. Vallée, “30 W fluoride glass all-fiber laser at 2.94 μm,” Opt. Lett. 40(12), 2882–2885 (2015).
[Crossref] [PubMed]

J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40(15), 3659–3662 (2015).
[Crossref] [PubMed]

J. Li, H. Luo, L. Wang, B. Zhai, H. Li, and Y. Liu, “Tunable Fe2+:ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 μm,” Opt. Express 23(17), 22362–22370 (2015).
[Crossref] [PubMed]

T. Hu, S. D. Jackson, and D. D. Hudson, “Ultrafast pulses from a mid-infrared fiber laser,” Opt. Lett. 40(18), 4226–4228 (2015).
[Crossref] [PubMed]

Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express 23(19), 24713–24718 (2015).
[Crossref] [PubMed]

S. Yan, Y. Wang, Y. Zhou, N. Yang, Y. Li, Y. Tang, and J. Xu, “Developing high-power hybrid resonant gain-switched thulium fiber lasers,” Opt. Express 23(20), 25675–25687 (2015).
[Crossref] [PubMed]

2014 (4)

T. Hu, D. D. Hudson, and S. D. Jackson, “Stable, self-starting, passively mode-locked fiber ring laser of the 3 μm class,” Opt. Lett. 39(7), 2133–2136 (2014).
[Crossref] [PubMed]

A. Haboucha, V. Fortin, M. Bernier, J. Genest, Y. Messaddeq, and R. Vallée, “Fiber Bragg grating stabilization of a passively mode-locked 2.8 μm Er3+: fluoride glass fiber laser,” Opt. Lett. 39(11), 3294–3297 (2014).
[Crossref] [PubMed]

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97 m fluoride fiber laser,” Laser Phys. Lett. 11(6), 065102 (2014).
[Crossref]

J. Geng and S. Jiang, “Fiber lasers: the 2 um laser heats up,” Opt. Photonics News 25(7), 36–41 (2014).
[Crossref]

2013 (5)

2012 (8)

T. Hu, D. D. Hudson, and S. D. Jackson, “Actively Q-switched 2.9 μm Ho3+Pr3+-doped fluoride fiber laser,” Opt. Lett. 37(11), 2145–2147 (2012).
[Crossref] [PubMed]

J. Li, T. Hu, and S. D. Jackson, “Dual wavelength Q-switched cascade laser,” Opt. Lett. 37(12), 2208–2210 (2012).
[Crossref] [PubMed]

S. Hollitt, N. Simakov, A. Hemming, J. Haub, and A. Carter, “A linearly polarised, pulsed Ho-doped fiber laser,” Opt. Express 20(15), 16285–16290 (2012).
[Crossref]

N. Caron, M. Bernier, D. Faucher, and R. Vallée, “Understanding the fiber tip thermal runaway present in 3 µm fluoride glass fiber lasers,” Opt. Express 20(20), 22188–22194 (2012).
[Crossref] [PubMed]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

C. Wei, X. S. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-switched 2.8-µm nanosecond fiber laser,” IEEE Photonics Technol. Lett. 24(19), 1741–1744 (2012).
[Crossref]

J. F. Li, D. D. Hudson, and S. D. Jackson, “Tuned cascade laser,” IEEE Photonics Technol. Lett. 24(14), 1215–1217 (2012).
[Crossref]

Y. L. Tang and L. Xu, “Hybrid-pumped gain-switched narrow-band thulium fiber laser,” Appl. Phys. Express 5(7), 072702 (2012).
[Crossref]

2011 (5)

2010 (4)

Y. Tang, L. Xu, Y. Yang, and J. Xu, “High-power gain-switched Tm3+-doped fiber laser,” Opt. Express 18(22), 22964–22972 (2010).
[Crossref] [PubMed]

S. Tokita, M. Hirokane, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Stable 10 W Er:ZBLAN fiber laser operating at 2.71-2.88 μm,” Opt. Lett. 35(23), 3943–3945 (2010).
[Crossref] [PubMed]

X. S. Zhu and N. Peyghambarian, “High power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
[Crossref]

S. Stübinger, “Advances in bone surgery: the Er:YAG laser in oral surgery and implant dentistry,” Clin. Cosmet. Investig. Dent. 2, 47–62 (2010).
[Crossref] [PubMed]

2009 (2)

2007 (3)

2006 (1)

2004 (1)

H. H. P. T. Bekman, J. C. V. D. Heuvel, F. J. M. V. Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

2003 (1)

S. D. Jackson, “Continuous wave 2.9 μm dysprosium-doped fluoride fiber laser,” Appl. Phys. Lett. 83(7), 1316–1318 (2003).
[Crossref]

2001 (2)

M. Gülsoy, T. Celikel, A. Kurt, R. Canbeyli, and I. Cilesiz, “Er:YAG laser ablation of cerebellar and cerebral tissue,” Lasers Med. Sci. 16(1), 40–43 (2001).
[Crossref] [PubMed]

B. C. Dickinson, P. S. Golding, M. Pollnau, T. A. King, and S. D. Jackson, “Investigations of a 791-nm pulsed-pumped 2.7 μm Er-doped ZBLAN fiber laser,” Opt. Commun. 191(3), 315–321 (2001).
[Crossref]

1996 (1)

R. Kaufmann and R. Hibst, “Pulsed erbium:YAG laser ablation in cutaneous surgery,” Lasers Surg. Med. 19(3), 324–330 (1996).
[Crossref] [PubMed]

1995 (1)

P. D. Brazitikos, D. J. D’Amico, M. T. Bernal, and A. W. Walsh, “Erbium:YAG laser surgery of the vitreous and retina,” Ophthalmology 102(2), 278–290 (1995).
[Crossref] [PubMed]

1994 (1)

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20(2), 112–118 (1994).
[Crossref] [PubMed]

1992 (1)

L. Wetenkamp, G. F. West, and H. Tobben, “Co-doping effects in erbium3+- and holmium3+-doped ZBLAN glasses,” J. Non-Cryst. Solids 140, 25–30 (1992).
[Crossref]

Antipov, S.

Aydin, Y. O.

Bah, S. T.

Balakrishnan, K.

Bekman, H. H. P. T.

H. H. P. T. Bekman, J. C. V. D. Heuvel, F. J. M. V. Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

Bennetts, S.

Bernal, M. T.

P. D. Brazitikos, D. J. D’Amico, M. T. Bernal, and A. W. Walsh, “Erbium:YAG laser surgery of the vitreous and retina,” Ophthalmology 102(2), 278–290 (1995).
[Crossref] [PubMed]

Bernier, M.

Brazitikos, P. D.

P. D. Brazitikos, D. J. D’Amico, M. T. Bernal, and A. W. Walsh, “Erbium:YAG laser surgery of the vitreous and retina,” Ophthalmology 102(2), 278–290 (1995).
[Crossref] [PubMed]

Bugge, F.

Canbeyli, R.

M. Gülsoy, T. Celikel, A. Kurt, R. Canbeyli, and I. Cilesiz, “Er:YAG laser ablation of cerebellar and cerebral tissue,” Lasers Med. Sci. 16(1), 40–43 (2001).
[Crossref] [PubMed]

Caron, N.

Carter, A.

Celikel, T.

M. Gülsoy, T. Celikel, A. Kurt, R. Canbeyli, and I. Cilesiz, “Er:YAG laser ablation of cerebellar and cerebral tissue,” Lasers Med. Sci. 16(1), 40–43 (2001).
[Crossref] [PubMed]

Chen, H.

Y. Shen, Y. Wang, K. Luan, K. Huang, M. Tao, H. Chen, A. Yi, G. Feng, and J. Si, “Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror,” Sci. Rep. 6(1), 26659 (2016).
[Crossref] [PubMed]

Chen, H. W.

Y. L. Shen, Y. S. Wang, K. P. Luan, H. W. Chen, M. M. Tao, and J. H. Si, “Efficient, wavelengthtunable gain-switching and gainswitched modelocking operation of a heavily Er3+doped ZBLAN midinfrared fiber laser,” IEEE Photonics J. 9(4), 1504510 (2017).
[Crossref]

Y. L. Shen, Y. S. Wang, K. P. Luan, H. W. Chen, M. M. Tao, and J. H. Si, “High peak power actively Q-switched mid-infrared fiber lasers at 3 μm,” Appl. Phys. B 123(4), 105 (2017).
[Crossref]

Cheng, X.

Cilesiz, I.

M. Gülsoy, T. Celikel, A. Kurt, R. Canbeyli, and I. Cilesiz, “Er:YAG laser ablation of cerebellar and cerebral tissue,” Lasers Med. Sci. 16(1), 40–43 (2001).
[Crossref] [PubMed]

Copic, M.

Crawford, S.

S. Crawford, D. D. Hudson, and S. D. Jackson, “High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]

D’Amico, D. J.

P. D. Brazitikos, D. J. D’Amico, M. T. Bernal, and A. W. Walsh, “Erbium:YAG laser surgery of the vitreous and retina,” Ophthalmology 102(2), 278–290 (1995).
[Crossref] [PubMed]

Dickinson, B. C.

B. C. Dickinson, P. S. Golding, M. Pollnau, T. A. King, and S. D. Jackson, “Investigations of a 791-nm pulsed-pumped 2.7 μm Er-doped ZBLAN fiber laser,” Opt. Commun. 191(3), 315–321 (2001).
[Crossref]

El-Taher, A. E.

Erbert, G.

Fan, D. Y.

J. Liu, M. Wu, B. Huang, P. H. Tang, C. J. Zhao, D. Y. Shen, D. Y. Fan, and S. K. Turitsyn, “Widely wavelength-tunable mid-infrared fluoride fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0900507 (2017).

Faucher, D.

Feng, G.

Y. Shen, Y. Wang, K. Luan, K. Huang, M. Tao, H. Chen, A. Yi, G. Feng, and J. Si, “Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror,” Sci. Rep. 6(1), 26659 (2016).
[Crossref] [PubMed]

Feng, G. B.

Y. L. Shen, K. Huang, S. Q. Zhou, K. P. Luan, L. Yu, A. Q. Yi, G. B. Feng, and X. S. Ye, “Gain-switched 2.8 μm Er3+ -doped double-clad ZBLAN fiber laser,” Proc. SPIE 9543, 95431E (2015).

Feng, G. Y.

T. Zhang, G. Y. Feng, H. Zhang, S. G. Ning, B. Lan, and S. H. Zhou, “Compact watt-level passively Q-switched ZrF 4 -BaF 2 -LaF 3 -AIF 3 -NaF fiber laser at 2.8 μ m using Fe 2+ :ZnSe saturable absorber mirror,” Opt. Eng. 55(8), 086106 (2016).
[Crossref]

Fortin, V.

Fuerbach, A.

Genest, J.

Geng, J.

J. Geng and S. Jiang, “Fiber lasers: the 2 um laser heats up,” Opt. Photonics News 25(7), 36–41 (2014).
[Crossref]

Golding, P. S.

B. C. Dickinson, P. S. Golding, M. Pollnau, T. A. King, and S. D. Jackson, “Investigations of a 791-nm pulsed-pumped 2.7 μm Er-doped ZBLAN fiber laser,” Opt. Commun. 191(3), 315–321 (2001).
[Crossref]

Gorjan, M.

Gülsoy, M.

M. Gülsoy, T. Celikel, A. Kurt, R. Canbeyli, and I. Cilesiz, “Er:YAG laser ablation of cerebellar and cerebral tissue,” Lasers Med. Sci. 16(1), 40–43 (2001).
[Crossref] [PubMed]

Guo, Z.

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref] [PubMed]

Haboucha, A.

Hartmann, A.

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20(2), 112–118 (1994).
[Crossref] [PubMed]

Hashida, M.

Haub, J.

He, L.

C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref] [PubMed]

He, Y. L.

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97 m fluoride fiber laser,” Laser Phys. Lett. 11(6), 065102 (2014).
[Crossref]

Hemming, A.

Heuvel, J. C. V. D.

H. H. P. T. Bekman, J. C. V. D. Heuvel, F. J. M. V. Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

Hibst, R.

R. Kaufmann and R. Hibst, “Pulsed erbium:YAG laser ablation in cutaneous surgery,” Lasers Surg. Med. 19(3), 324–330 (1996).
[Crossref] [PubMed]

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20(2), 112–118 (1994).
[Crossref] [PubMed]

Hirokane, M.

Hollitt, S.

Hou, J.

Hu, T.

Huang, B.

J. Liu, M. Wu, B. Huang, P. H. Tang, C. J. Zhao, D. Y. Shen, D. Y. Fan, and S. K. Turitsyn, “Widely wavelength-tunable mid-infrared fluoride fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0900507 (2017).

P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm pulsed Er 3+:ZBLAN fiber laser modulated by topological insulator,” IEEE Photonics Technol. Lett. 28(14), 1573–1576 (2016).
[Crossref]

Huang, K.

Y. Shen, Y. Wang, K. Luan, K. Huang, M. Tao, H. Chen, A. Yi, G. Feng, and J. Si, “Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror,” Sci. Rep. 6(1), 26659 (2016).
[Crossref] [PubMed]

Y. L. Shen, K. Huang, S. Q. Zhou, K. P. Luan, L. Yu, A. Q. Yi, G. B. Feng, and X. S. Ye, “Gain-switched 2.8 μm Er3+ -doped double-clad ZBLAN fiber laser,” Proc. SPIE 9543, 95431E (2015).

Hudson, D. D.

Jackson, S. D.

Y. O. Aydin, V. Fortin, F. Maes, F. Jobin, S. D. Jackson, R. Vallée, and M. Bernier, “Diode-pumped mid-infrared fiber laser with 50% slope efficiency,” Optica 4(2), 235–238 (2017).
[Crossref]

M. R. Majewski and S. D. Jackson, “Highly efficient mid-infrared dysprosium fiber laser,” Opt. Lett. 41(10), 2173–2176 (2016).
[Crossref] [PubMed]

M. R. Majewski and S. D. Jackson, “Tunable dysprosium laser,” Opt. Lett. 41(19), 4496–4498 (2016).
[Crossref] [PubMed]

S. Antipov, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “High-power mid-infrared femtosecond fiber laser in the water vapor transmission window,” Optica 3(12), 1373–1376 (2016).
[Crossref]

S. Crawford, D. D. Hudson, and S. D. Jackson, “High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]

T. Hu, S. D. Jackson, and D. D. Hudson, “Ultrafast pulses from a mid-infrared fiber laser,” Opt. Lett. 40(18), 4226–4228 (2015).
[Crossref] [PubMed]

T. Hu, D. D. Hudson, and S. D. Jackson, “Stable, self-starting, passively mode-locked fiber ring laser of the 3 μm class,” Opt. Lett. 39(7), 2133–2136 (2014).
[Crossref] [PubMed]

J. F. Li, Y. Yang, D. D. Hudson, Y. Liu, and S. D. Jackson, “A tunable Q-switched Ho3+-doped fluoride fiber laser,” Laser Phys. Lett. 10(4), 045107 (2013).
[Crossref]

J. F. Li, D. D. Hudson, and S. D. Jackson, “Tuned cascade laser,” IEEE Photonics Technol. Lett. 24(14), 1215–1217 (2012).
[Crossref]

J. Li, T. Hu, and S. D. Jackson, “Dual wavelength Q-switched cascade laser,” Opt. Lett. 37(12), 2208–2210 (2012).
[Crossref] [PubMed]

T. Hu, D. D. Hudson, and S. D. Jackson, “Actively Q-switched 2.9 μm Ho3+Pr3+-doped fluoride fiber laser,” Opt. Lett. 37(11), 2145–2147 (2012).
[Crossref] [PubMed]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

J. Li, D. D. Hudson, and S. D. Jackson, “High-power diode-pumped fiber laser operating at 3 μm,” Opt. Lett. 36(18), 3642–3644 (2011).
[Crossref] [PubMed]

S. D. Jackson, “High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 µm,” Opt. Lett. 34(15), 2327–2329 (2009).
[Crossref] [PubMed]

S. D. Jackson, F. Bugge, and G. Erbert, “Directly diode-pumped holmium fiber lasers,” Opt. Lett. 32(17), 2496–2498 (2007).
[Crossref] [PubMed]

Y. H. Tsang, A. E. El-Taher, T. A. King, and S. D. Jackson, “Efficient 2.96 µm dysprosium-doped fluoride fibre laser pumped with a Nd:YAG laser operating at 1.3 µm,” Opt. Express 14(2), 678–685 (2006).
[Crossref] [PubMed]

S. D. Jackson, “Continuous wave 2.9 μm dysprosium-doped fluoride fiber laser,” Appl. Phys. Lett. 83(7), 1316–1318 (2003).
[Crossref]

B. C. Dickinson, P. S. Golding, M. Pollnau, T. A. King, and S. D. Jackson, “Investigations of a 791-nm pulsed-pumped 2.7 μm Er-doped ZBLAN fiber laser,” Opt. Commun. 191(3), 315–321 (2001).
[Crossref]

Jain, R.

Jiang, M.

Jiang, S.

J. Geng and S. Jiang, “Fiber lasers: the 2 um laser heats up,” Opt. Photonics News 25(7), 36–41 (2014).
[Crossref]

Jobin, F.

Kaufmann, R.

R. Kaufmann and R. Hibst, “Pulsed erbium:YAG laser ablation in cutaneous surgery,” Lasers Surg. Med. 19(3), 324–330 (1996).
[Crossref] [PubMed]

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20(2), 112–118 (1994).
[Crossref] [PubMed]

King, T. A.

Y. H. Tsang, A. E. El-Taher, T. A. King, and S. D. Jackson, “Efficient 2.96 µm dysprosium-doped fluoride fibre laser pumped with a Nd:YAG laser operating at 1.3 µm,” Opt. Express 14(2), 678–685 (2006).
[Crossref] [PubMed]

B. C. Dickinson, P. S. Golding, M. Pollnau, T. A. King, and S. D. Jackson, “Investigations of a 791-nm pulsed-pumped 2.7 μm Er-doped ZBLAN fiber laser,” Opt. Commun. 191(3), 315–321 (2001).
[Crossref]

Konynenbelt, K.

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photonics Technol. Lett. 29(11), 881–884 (2017).
[Crossref]

Kurt, A.

M. Gülsoy, T. Celikel, A. Kurt, R. Canbeyli, and I. Cilesiz, “Er:YAG laser ablation of cerebellar and cerebral tissue,” Lasers Med. Sci. 16(1), 40–43 (2001).
[Crossref] [PubMed]

Lan, B.

T. Zhang, G. Y. Feng, H. Zhang, S. G. Ning, B. Lan, and S. H. Zhou, “Compact watt-level passively Q-switched ZrF 4 -BaF 2 -LaF 3 -AIF 3 -NaF fiber laser at 2.8 μ m using Fe 2+ :ZnSe saturable absorber mirror,” Opt. Eng. 55(8), 086106 (2016).
[Crossref]

Leng, J. Y.

Li, C.

C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

Li, F.

Y. L. Tang, F. Li, and J. Q. Xu, “High peak-power gain-switched Tm-doped fiber laser,” IEEE Photonics Technol. Lett. 33(13), 893–895 (2011).
[Crossref]

Li, H.

Li, J.

C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref] [PubMed]

H. Luo, J. Li, J. Xie, B. Zhai, C. Wei, and Y. Liu, “High average power and energy microsecond pulse generation from an erbium-doped fluoride fiber MOPA system,” Opt. Express 24(25), 29022–29032 (2016).
[Crossref] [PubMed]

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref] [PubMed]

J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40(15), 3659–3662 (2015).
[Crossref] [PubMed]

J. Li, H. Luo, L. Wang, B. Zhai, H. Li, and Y. Liu, “Tunable Fe2+:ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 μm,” Opt. Express 23(17), 22362–22370 (2015).
[Crossref] [PubMed]

J. Li, H. Luo, L. Wang, Y. Liu, Z. Yan, K. Zhou, L. Zhang, and S. K. Turistsyn, “Mid-infrared passively switched pulsed dual wavelength Ho3+-doped fluoride fiber laser at 3 μm and 2 μm,” Sci. Rep. 5(1), 10770 (2015).
[Crossref] [PubMed]

J. Li, T. Hu, and S. D. Jackson, “Dual wavelength Q-switched cascade laser,” Opt. Lett. 37(12), 2208–2210 (2012).
[Crossref] [PubMed]

J. Li, D. D. Hudson, and S. D. Jackson, “High-power diode-pumped fiber laser operating at 3 μm,” Opt. Lett. 36(18), 3642–3644 (2011).
[Crossref] [PubMed]

Li, J. F.

J. F. Li, L. Wang, H. Y. Luo, J. T. Xie, and Y. Liu, “High power cascaded erbium doped fluoride fiber laser at room temperature,” IEEE Photonics Technol. Lett. 28(6), 673–676 (2016).
[Crossref]

C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97 m fluoride fiber laser,” Laser Phys. Lett. 11(6), 065102 (2014).
[Crossref]

J. F. Li, Y. Yang, D. D. Hudson, Y. Liu, and S. D. Jackson, “A tunable Q-switched Ho3+-doped fluoride fiber laser,” Laser Phys. Lett. 10(4), 045107 (2013).
[Crossref]

J. F. Li, D. D. Hudson, and S. D. Jackson, “Tuned cascade laser,” IEEE Photonics Technol. Lett. 24(14), 1215–1217 (2012).
[Crossref]

Li, Y.

Li, Z.

Liu, J.

J. Liu, M. Wu, B. Huang, P. H. Tang, C. J. Zhao, D. Y. Shen, D. Y. Fan, and S. K. Turitsyn, “Widely wavelength-tunable mid-infrared fluoride fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0900507 (2017).

C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref] [PubMed]

P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm pulsed Er 3+:ZBLAN fiber laser modulated by topological insulator,” IEEE Photonics Technol. Lett. 28(14), 1573–1576 (2016).
[Crossref]

Liu, Y.

C. Wei, H. Luo, H. Shi, Y. Lyu, H. Zhang, and Y. Liu, “Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 μm,” Opt. Express 25(8), 8816–8827 (2017).
[Crossref] [PubMed]

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photonics Technol. Lett. 29(11), 881–884 (2017).
[Crossref]

C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

J. F. Li, L. Wang, H. Y. Luo, J. T. Xie, and Y. Liu, “High power cascaded erbium doped fluoride fiber laser at room temperature,” IEEE Photonics Technol. Lett. 28(6), 673–676 (2016).
[Crossref]

H. Luo, J. Li, J. Xie, B. Zhai, C. Wei, and Y. Liu, “High average power and energy microsecond pulse generation from an erbium-doped fluoride fiber MOPA system,” Opt. Express 24(25), 29022–29032 (2016).
[Crossref] [PubMed]

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref] [PubMed]

J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40(15), 3659–3662 (2015).
[Crossref] [PubMed]

J. Li, H. Luo, L. Wang, Y. Liu, Z. Yan, K. Zhou, L. Zhang, and S. K. Turistsyn, “Mid-infrared passively switched pulsed dual wavelength Ho3+-doped fluoride fiber laser at 3 μm and 2 μm,” Sci. Rep. 5(1), 10770 (2015).
[Crossref] [PubMed]

J. Li, H. Luo, L. Wang, B. Zhai, H. Li, and Y. Liu, “Tunable Fe2+:ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 μm,” Opt. Express 23(17), 22362–22370 (2015).
[Crossref] [PubMed]

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97 m fluoride fiber laser,” Laser Phys. Lett. 11(6), 065102 (2014).
[Crossref]

J. F. Li, Y. Yang, D. D. Hudson, Y. Liu, and S. D. Jackson, “A tunable Q-switched Ho3+-doped fluoride fiber laser,” Laser Phys. Lett. 10(4), 045107 (2013).
[Crossref]

Liu, Z.

Lu, R.

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref] [PubMed]

Luan, K.

Y. Shen, Y. Wang, K. Luan, K. Huang, M. Tao, H. Chen, A. Yi, G. Feng, and J. Si, “Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror,” Sci. Rep. 6(1), 26659 (2016).
[Crossref] [PubMed]

Luan, K. P.

Y. L. Shen, Y. S. Wang, K. P. Luan, H. W. Chen, M. M. Tao, and J. H. Si, “Efficient, wavelengthtunable gain-switching and gainswitched modelocking operation of a heavily Er3+doped ZBLAN midinfrared fiber laser,” IEEE Photonics J. 9(4), 1504510 (2017).
[Crossref]

Y. L. Shen, Y. S. Wang, K. P. Luan, H. W. Chen, M. M. Tao, and J. H. Si, “High peak power actively Q-switched mid-infrared fiber lasers at 3 μm,” Appl. Phys. B 123(4), 105 (2017).
[Crossref]

Y. L. Shen, K. Huang, S. Q. Zhou, K. P. Luan, L. Yu, A. Q. Yi, G. B. Feng, and X. S. Ye, “Gain-switched 2.8 μm Er3+ -doped double-clad ZBLAN fiber laser,” Proc. SPIE 9543, 95431E (2015).

Luo, H.

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photonics Technol. Lett. 29(11), 881–884 (2017).
[Crossref]

C. Wei, H. Luo, H. Shi, Y. Lyu, H. Zhang, and Y. Liu, “Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 μm,” Opt. Express 25(8), 8816–8827 (2017).
[Crossref] [PubMed]

C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref] [PubMed]

H. Luo, J. Li, J. Xie, B. Zhai, C. Wei, and Y. Liu, “High average power and energy microsecond pulse generation from an erbium-doped fluoride fiber MOPA system,” Opt. Express 24(25), 29022–29032 (2016).
[Crossref] [PubMed]

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref] [PubMed]

J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40(15), 3659–3662 (2015).
[Crossref] [PubMed]

J. Li, H. Luo, L. Wang, Y. Liu, Z. Yan, K. Zhou, L. Zhang, and S. K. Turistsyn, “Mid-infrared passively switched pulsed dual wavelength Ho3+-doped fluoride fiber laser at 3 μm and 2 μm,” Sci. Rep. 5(1), 10770 (2015).
[Crossref] [PubMed]

J. Li, H. Luo, L. Wang, B. Zhai, H. Li, and Y. Liu, “Tunable Fe2+:ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 μm,” Opt. Express 23(17), 22362–22370 (2015).
[Crossref] [PubMed]

Luo, H. Y.

C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

J. F. Li, L. Wang, H. Y. Luo, J. T. Xie, and Y. Liu, “High power cascaded erbium doped fluoride fiber laser at room temperature,” IEEE Photonics Technol. Lett. 28(6), 673–676 (2016).
[Crossref]

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97 m fluoride fiber laser,” Laser Phys. Lett. 11(6), 065102 (2014).
[Crossref]

Lv, X.

C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref] [PubMed]

Lyu, Y.

Maes, F.

Majewski, M. R.

Marincek, M.

Meng, Y.

C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref] [PubMed]

Messaddeq, Y.

Miao, L. L.

P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm pulsed Er 3+:ZBLAN fiber laser modulated by topological insulator,” IEEE Photonics Technol. Lett. 28(14), 1573–1576 (2016).
[Crossref]

Murakami, M.

Ning, S. G.

T. Zhang, G. Y. Feng, H. Zhang, S. G. Ning, B. Lan, and S. H. Zhou, “Compact watt-level passively Q-switched ZrF 4 -BaF 2 -LaF 3 -AIF 3 -NaF fiber laser at 2.8 μ m using Fe 2+ :ZnSe saturable absorber mirror,” Opt. Eng. 55(8), 086106 (2016).
[Crossref]

Norwood, R. A.

Petkovšek, R.

Peyghambarian, N.

C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013).
[Crossref] [PubMed]

G. W. Zhu, X. S. Zhu, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Fe2+:ZnSe and graphene Q-switched singly Ho3+ -doped ZBLAN fiber lasers at 3 μm,” Opt. Mater. Express 3(9), 1365–1377 (2013).
[Crossref]

C. Wei, X. S. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-switched 2.8-µm nanosecond fiber laser,” IEEE Photonics Technol. Lett. 24(19), 1741–1744 (2012).
[Crossref]

X. S. Zhu and N. Peyghambarian, “High power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
[Crossref]

Pollnau, M.

B. C. Dickinson, P. S. Golding, M. Pollnau, T. A. King, and S. D. Jackson, “Investigations of a 791-nm pulsed-pumped 2.7 μm Er-doped ZBLAN fiber laser,” Opt. Commun. 191(3), 315–321 (2001).
[Crossref]

Putten, F. J. M. V.

H. H. P. T. Bekman, J. C. V. D. Heuvel, F. J. M. V. Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

Qian, L.

Qin, Z.

Rozhin, A. G.

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97 m fluoride fiber laser,” Laser Phys. Lett. 11(6), 065102 (2014).
[Crossref]

Sakabe, S.

Schleijpen, R.

H. H. P. T. Bekman, J. C. V. D. Heuvel, F. J. M. V. Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

Shen, D. Y.

J. Liu, M. Wu, B. Huang, P. H. Tang, C. J. Zhao, D. Y. Shen, D. Y. Fan, and S. K. Turitsyn, “Widely wavelength-tunable mid-infrared fluoride fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0900507 (2017).

Shen, Y.

Y. Shen, Y. Wang, K. Luan, K. Huang, M. Tao, H. Chen, A. Yi, G. Feng, and J. Si, “Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror,” Sci. Rep. 6(1), 26659 (2016).
[Crossref] [PubMed]

Shen, Y. L.

Y. L. Shen, Y. S. Wang, K. P. Luan, H. W. Chen, M. M. Tao, and J. H. Si, “Efficient, wavelengthtunable gain-switching and gainswitched modelocking operation of a heavily Er3+doped ZBLAN midinfrared fiber laser,” IEEE Photonics J. 9(4), 1504510 (2017).
[Crossref]

Y. L. Shen, Y. S. Wang, K. P. Luan, H. W. Chen, M. M. Tao, and J. H. Si, “High peak power actively Q-switched mid-infrared fiber lasers at 3 μm,” Appl. Phys. B 123(4), 105 (2017).
[Crossref]

Y. L. Shen, K. Huang, S. Q. Zhou, K. P. Luan, L. Yu, A. Q. Yi, G. B. Feng, and X. S. Ye, “Gain-switched 2.8 μm Er3+ -doped double-clad ZBLAN fiber laser,” Proc. SPIE 9543, 95431E (2015).

Shi, H.

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photonics Technol. Lett. 29(11), 881–884 (2017).
[Crossref]

C. Wei, H. Luo, H. Shi, Y. Lyu, H. Zhang, and Y. Liu, “Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 μm,” Opt. Express 25(8), 8816–8827 (2017).
[Crossref] [PubMed]

Shi, Y.

C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref] [PubMed]

Shimizu, S.

Si, J.

Y. Shen, Y. Wang, K. Luan, K. Huang, M. Tao, H. Chen, A. Yi, G. Feng, and J. Si, “Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror,” Sci. Rep. 6(1), 26659 (2016).
[Crossref] [PubMed]

Si, J. H.

Y. L. Shen, Y. S. Wang, K. P. Luan, H. W. Chen, M. M. Tao, and J. H. Si, “Efficient, wavelengthtunable gain-switching and gainswitched modelocking operation of a heavily Er3+doped ZBLAN midinfrared fiber laser,” IEEE Photonics J. 9(4), 1504510 (2017).
[Crossref]

Y. L. Shen, Y. S. Wang, K. P. Luan, H. W. Chen, M. M. Tao, and J. H. Si, “High peak power actively Q-switched mid-infrared fiber lasers at 3 μm,” Appl. Phys. B 123(4), 105 (2017).
[Crossref]

Simakov, N.

Song, F.

Stübinger, S.

S. Stübinger, “Advances in bone surgery: the Er:YAG laser in oral surgery and implant dentistry,” Clin. Cosmet. Investig. Dent. 2, 47–62 (2010).
[Crossref] [PubMed]

Tang, P. H.

J. Liu, M. Wu, B. Huang, P. H. Tang, C. J. Zhao, D. Y. Shen, D. Y. Fan, and S. K. Turitsyn, “Widely wavelength-tunable mid-infrared fluoride fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0900507 (2017).

P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm pulsed Er 3+:ZBLAN fiber laser modulated by topological insulator,” IEEE Photonics Technol. Lett. 28(14), 1573–1576 (2016).
[Crossref]

Tang, Y.

Tang, Y. L.

J. L. Yang, Y. L. Tang, and J. Q. Xu, “Development and applications of gain-switched fiber lasers [Invited],” Photon. Res. 1(1), 52–57 (2013).
[Crossref]

Y. L. Tang and L. Xu, “Hybrid-pumped gain-switched narrow-band thulium fiber laser,” Appl. Phys. Express 5(7), 072702 (2012).
[Crossref]

Y. L. Tang, F. Li, and J. Q. Xu, “High peak-power gain-switched Tm-doped fiber laser,” IEEE Photonics Technol. Lett. 33(13), 893–895 (2011).
[Crossref]

Tao, M.

Y. Shen, Y. Wang, K. Luan, K. Huang, M. Tao, H. Chen, A. Yi, G. Feng, and J. Si, “Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror,” Sci. Rep. 6(1), 26659 (2016).
[Crossref] [PubMed]

Tao, M. M.

Y. L. Shen, Y. S. Wang, K. P. Luan, H. W. Chen, M. M. Tao, and J. H. Si, “Efficient, wavelengthtunable gain-switching and gainswitched modelocking operation of a heavily Er3+doped ZBLAN midinfrared fiber laser,” IEEE Photonics J. 9(4), 1504510 (2017).
[Crossref]

Y. L. Shen, Y. S. Wang, K. P. Luan, H. W. Chen, M. M. Tao, and J. H. Si, “High peak power actively Q-switched mid-infrared fiber lasers at 3 μm,” Appl. Phys. B 123(4), 105 (2017).
[Crossref]

Tayebati, P.

Tobben, H.

L. Wetenkamp, G. F. West, and H. Tobben, “Co-doping effects in erbium3+- and holmium3+-doped ZBLAN glasses,” J. Non-Cryst. Solids 140, 25–30 (1992).
[Crossref]

Tokita, S.

Tsang, Y. H.

Turistsyn, S. K.

J. Li, H. Luo, L. Wang, Y. Liu, Z. Yan, K. Zhou, L. Zhang, and S. K. Turistsyn, “Mid-infrared passively switched pulsed dual wavelength Ho3+-doped fluoride fiber laser at 3 μm and 2 μm,” Sci. Rep. 5(1), 10770 (2015).
[Crossref] [PubMed]

Turistyn, S. K.

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97 m fluoride fiber laser,” Laser Phys. Lett. 11(6), 065102 (2014).
[Crossref]

Turitsyn, S. K.

J. Liu, M. Wu, B. Huang, P. H. Tang, C. J. Zhao, D. Y. Shen, D. Y. Fan, and S. K. Turitsyn, “Widely wavelength-tunable mid-infrared fluoride fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0900507 (2017).

Vallée, R.

Walsh, A. W.

P. D. Brazitikos, D. J. D’Amico, M. T. Bernal, and A. W. Walsh, “Erbium:YAG laser surgery of the vitreous and retina,” Ophthalmology 102(2), 278–290 (1995).
[Crossref] [PubMed]

Wang, F.

C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref] [PubMed]

C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013).
[Crossref] [PubMed]

Wang, L.

J. F. Li, L. Wang, H. Y. Luo, J. T. Xie, and Y. Liu, “High power cascaded erbium doped fluoride fiber laser at room temperature,” IEEE Photonics Technol. Lett. 28(6), 673–676 (2016).
[Crossref]

J. Li, H. Luo, L. Wang, Y. Liu, Z. Yan, K. Zhou, L. Zhang, and S. K. Turistsyn, “Mid-infrared passively switched pulsed dual wavelength Ho3+-doped fluoride fiber laser at 3 μm and 2 μm,” Sci. Rep. 5(1), 10770 (2015).
[Crossref] [PubMed]

J. Li, H. Luo, L. Wang, B. Zhai, H. Li, and Y. Liu, “Tunable Fe2+:ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 μm,” Opt. Express 23(17), 22362–22370 (2015).
[Crossref] [PubMed]

J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40(15), 3659–3662 (2015).
[Crossref] [PubMed]

Wang, Q. K.

P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm pulsed Er 3+:ZBLAN fiber laser modulated by topological insulator,” IEEE Photonics Technol. Lett. 28(14), 1573–1576 (2016).
[Crossref]

Wang, Y.

C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref] [PubMed]

Y. Shen, Y. Wang, K. Luan, K. Huang, M. Tao, H. Chen, A. Yi, G. Feng, and J. Si, “Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror,” Sci. Rep. 6(1), 26659 (2016).
[Crossref] [PubMed]

S. Yan, Y. Wang, Y. Zhou, N. Yang, Y. Li, Y. Tang, and J. Xu, “Developing high-power hybrid resonant gain-switched thulium fiber lasers,” Opt. Express 23(20), 25675–25687 (2015).
[Crossref] [PubMed]

Wang, Y. S.

Y. L. Shen, Y. S. Wang, K. P. Luan, H. W. Chen, M. M. Tao, and J. H. Si, “High peak power actively Q-switched mid-infrared fiber lasers at 3 μm,” Appl. Phys. B 123(4), 105 (2017).
[Crossref]

Y. L. Shen, Y. S. Wang, K. P. Luan, H. W. Chen, M. M. Tao, and J. H. Si, “Efficient, wavelengthtunable gain-switching and gainswitched modelocking operation of a heavily Er3+doped ZBLAN midinfrared fiber laser,” IEEE Photonics J. 9(4), 1504510 (2017).
[Crossref]

Wei, C.

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photonics Technol. Lett. 29(11), 881–884 (2017).
[Crossref]

C. Wei, H. Luo, H. Shi, Y. Lyu, H. Zhang, and Y. Liu, “Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 μm,” Opt. Express 25(8), 8816–8827 (2017).
[Crossref] [PubMed]

H. Luo, J. Li, J. Xie, B. Zhai, C. Wei, and Y. Liu, “High average power and energy microsecond pulse generation from an erbium-doped fluoride fiber MOPA system,” Opt. Express 24(25), 29022–29032 (2016).
[Crossref] [PubMed]

C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013).
[Crossref] [PubMed]

C. Wei, X. S. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-switched 2.8-µm nanosecond fiber laser,” IEEE Photonics Technol. Lett. 24(19), 1741–1744 (2012).
[Crossref]

Wen, S.

Wen, S. C.

P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm pulsed Er 3+:ZBLAN fiber laser modulated by topological insulator,” IEEE Photonics Technol. Lett. 28(14), 1573–1576 (2016).
[Crossref]

West, G. F.

L. Wetenkamp, G. F. West, and H. Tobben, “Co-doping effects in erbium3+- and holmium3+-doped ZBLAN glasses,” J. Non-Cryst. Solids 140, 25–30 (1992).
[Crossref]

Wetenkamp, L.

L. Wetenkamp, G. F. West, and H. Tobben, “Co-doping effects in erbium3+- and holmium3+-doped ZBLAN glasses,” J. Non-Cryst. Solids 140, 25–30 (1992).
[Crossref]

Wu, M.

J. Liu, M. Wu, B. Huang, P. H. Tang, C. J. Zhao, D. Y. Shen, D. Y. Fan, and S. K. Turitsyn, “Widely wavelength-tunable mid-infrared fluoride fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0900507 (2017).

P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm pulsed Er 3+:ZBLAN fiber laser modulated by topological insulator,” IEEE Photonics Technol. Lett. 28(14), 1573–1576 (2016).
[Crossref]

Xiao, H.

Xie, G.

Xie, J.

Xie, J. T.

C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

J. F. Li, L. Wang, H. Y. Luo, J. T. Xie, and Y. Liu, “High power cascaded erbium doped fluoride fiber laser at room temperature,” IEEE Photonics Technol. Lett. 28(6), 673–676 (2016).
[Crossref]

Xiu, F.

C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref] [PubMed]

Xu, J.

Xu, J. M.

Xu, J. Q.

J. L. Yang, Y. L. Tang, and J. Q. Xu, “Development and applications of gain-switched fiber lasers [Invited],” Photon. Res. 1(1), 52–57 (2013).
[Crossref]

Y. L. Tang, F. Li, and J. Q. Xu, “High peak-power gain-switched Tm-doped fiber laser,” IEEE Photonics Technol. Lett. 33(13), 893–895 (2011).
[Crossref]

Xu, L.

Y. L. Tang and L. Xu, “Hybrid-pumped gain-switched narrow-band thulium fiber laser,” Appl. Phys. Express 5(7), 072702 (2012).
[Crossref]

Y. Tang, L. Xu, Y. Yang, and J. Xu, “High-power gain-switched Tm3+-doped fiber laser,” Opt. Express 18(22), 22964–22972 (2010).
[Crossref] [PubMed]

Xu, Y.

C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref] [PubMed]

C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013).
[Crossref] [PubMed]

Yan, S.

Yan, Z.

J. Li, H. Luo, L. Wang, Y. Liu, Z. Yan, K. Zhou, L. Zhang, and S. K. Turistsyn, “Mid-infrared passively switched pulsed dual wavelength Ho3+-doped fluoride fiber laser at 3 μm and 2 μm,” Sci. Rep. 5(1), 10770 (2015).
[Crossref] [PubMed]

Yang, J. L.

Yang, N.

Yang, W. Q.

Yang, Y.

J. F. Li, Y. Yang, D. D. Hudson, Y. Liu, and S. D. Jackson, “A tunable Q-switched Ho3+-doped fluoride fiber laser,” Laser Phys. Lett. 10(4), 045107 (2013).
[Crossref]

Y. Tang, L. Xu, Y. Yang, and J. Xu, “High-power gain-switched Tm3+-doped fiber laser,” Opt. Express 18(22), 22964–22972 (2010).
[Crossref] [PubMed]

Ye, X. S.

Y. L. Shen, K. Huang, S. Q. Zhou, K. P. Luan, L. Yu, A. Q. Yi, G. B. Feng, and X. S. Ye, “Gain-switched 2.8 μm Er3+ -doped double-clad ZBLAN fiber laser,” Proc. SPIE 9543, 95431E (2015).

Yi, A.

Y. Shen, Y. Wang, K. Luan, K. Huang, M. Tao, H. Chen, A. Yi, G. Feng, and J. Si, “Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror,” Sci. Rep. 6(1), 26659 (2016).
[Crossref] [PubMed]

Yi, A. Q.

Y. L. Shen, K. Huang, S. Q. Zhou, K. P. Luan, L. Yu, A. Q. Yi, G. B. Feng, and X. S. Ye, “Gain-switched 2.8 μm Er3+ -doped double-clad ZBLAN fiber laser,” Proc. SPIE 9543, 95431E (2015).

Yin, K.

Yu, L.

Y. L. Shen, K. Huang, S. Q. Zhou, K. P. Luan, L. Yu, A. Q. Yi, G. B. Feng, and X. S. Ye, “Gain-switched 2.8 μm Er3+ -doped double-clad ZBLAN fiber laser,” Proc. SPIE 9543, 95431E (2015).

Yuan, P.

Yuan, X.

C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref] [PubMed]

Zeng, S.

Zhai, B.

Zhang, B.

Zhang, C.

C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref] [PubMed]

Zhang, H.

C. Wei, H. Luo, H. Shi, Y. Lyu, H. Zhang, and Y. Liu, “Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 μm,” Opt. Express 25(8), 8816–8827 (2017).
[Crossref] [PubMed]

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photonics Technol. Lett. 29(11), 881–884 (2017).
[Crossref]

C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

T. Zhang, G. Y. Feng, H. Zhang, S. G. Ning, B. Lan, and S. H. Zhou, “Compact watt-level passively Q-switched ZrF 4 -BaF 2 -LaF 3 -AIF 3 -NaF fiber laser at 2.8 μ m using Fe 2+ :ZnSe saturable absorber mirror,” Opt. Eng. 55(8), 086106 (2016).
[Crossref]

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref] [PubMed]

Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express 23(19), 24713–24718 (2015).
[Crossref] [PubMed]

J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40(15), 3659–3662 (2015).
[Crossref] [PubMed]

Zhang, H. W.

Zhang, L.

J. Li, H. Luo, L. Wang, Y. Liu, Z. Yan, K. Zhou, L. Zhang, and S. K. Turistsyn, “Mid-infrared passively switched pulsed dual wavelength Ho3+-doped fluoride fiber laser at 3 μm and 2 μm,” Sci. Rep. 5(1), 10770 (2015).
[Crossref] [PubMed]

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97 m fluoride fiber laser,” Laser Phys. Lett. 11(6), 065102 (2014).
[Crossref]

Zhang, R.

C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref] [PubMed]

Zhang, T.

T. Zhang, G. Y. Feng, H. Zhang, S. G. Ning, B. Lan, and S. H. Zhou, “Compact watt-level passively Q-switched ZrF 4 -BaF 2 -LaF 3 -AIF 3 -NaF fiber laser at 2.8 μ m using Fe 2+ :ZnSe saturable absorber mirror,” Opt. Eng. 55(8), 086106 (2016).
[Crossref]

Zhao, C.

Zhao, C. J.

J. Liu, M. Wu, B. Huang, P. H. Tang, C. J. Zhao, D. Y. Shen, D. Y. Fan, and S. K. Turitsyn, “Widely wavelength-tunable mid-infrared fluoride fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0900507 (2017).

P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm pulsed Er 3+:ZBLAN fiber laser modulated by topological insulator,” IEEE Photonics Technol. Lett. 28(14), 1573–1576 (2016).
[Crossref]

Zhou, K.

J. Li, H. Luo, L. Wang, Y. Liu, Z. Yan, K. Zhou, L. Zhang, and S. K. Turistsyn, “Mid-infrared passively switched pulsed dual wavelength Ho3+-doped fluoride fiber laser at 3 μm and 2 μm,” Sci. Rep. 5(1), 10770 (2015).
[Crossref] [PubMed]

Zhou, K. M.

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97 m fluoride fiber laser,” Laser Phys. Lett. 11(6), 065102 (2014).
[Crossref]

Zhou, P.

Zhou, S. H.

T. Zhang, G. Y. Feng, H. Zhang, S. G. Ning, B. Lan, and S. H. Zhou, “Compact watt-level passively Q-switched ZrF 4 -BaF 2 -LaF 3 -AIF 3 -NaF fiber laser at 2.8 μ m using Fe 2+ :ZnSe saturable absorber mirror,” Opt. Eng. 55(8), 086106 (2016).
[Crossref]

Zhou, S. Q.

Y. L. Shen, K. Huang, S. Q. Zhou, K. P. Luan, L. Yu, A. Q. Yi, G. B. Feng, and X. S. Ye, “Gain-switched 2.8 μm Er3+ -doped double-clad ZBLAN fiber laser,” Proc. SPIE 9543, 95431E (2015).

Zhou, Y.

Zhu, C.

C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref] [PubMed]

Zhu, G. W.

Zhu, S.

C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref] [PubMed]

Zhu, X.

Zhu, X. S.

G. W. Zhu, X. S. Zhu, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Fe2+:ZnSe and graphene Q-switched singly Ho3+ -doped ZBLAN fiber lasers at 3 μm,” Opt. Mater. Express 3(9), 1365–1377 (2013).
[Crossref]

C. Wei, X. S. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-switched 2.8-µm nanosecond fiber laser,” IEEE Photonics Technol. Lett. 24(19), 1741–1744 (2012).
[Crossref]

X. S. Zhu and N. Peyghambarian, “High power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
[Crossref]

Adv. Optoelectron. (1)

X. S. Zhu and N. Peyghambarian, “High power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
[Crossref]

Appl. Phys. B (1)

Y. L. Shen, Y. S. Wang, K. P. Luan, H. W. Chen, M. M. Tao, and J. H. Si, “High peak power actively Q-switched mid-infrared fiber lasers at 3 μm,” Appl. Phys. B 123(4), 105 (2017).
[Crossref]

Appl. Phys. Express (1)

Y. L. Tang and L. Xu, “Hybrid-pumped gain-switched narrow-band thulium fiber laser,” Appl. Phys. Express 5(7), 072702 (2012).
[Crossref]

Appl. Phys. Lett. (1)

S. D. Jackson, “Continuous wave 2.9 μm dysprosium-doped fluoride fiber laser,” Appl. Phys. Lett. 83(7), 1316–1318 (2003).
[Crossref]

Clin. Cosmet. Investig. Dent. (1)

S. Stübinger, “Advances in bone surgery: the Er:YAG laser in oral surgery and implant dentistry,” Clin. Cosmet. Investig. Dent. 2, 47–62 (2010).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Liu, M. Wu, B. Huang, P. H. Tang, C. J. Zhao, D. Y. Shen, D. Y. Fan, and S. K. Turitsyn, “Widely wavelength-tunable mid-infrared fluoride fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0900507 (2017).

IEEE Photonics J. (2)

Y. L. Shen, Y. S. Wang, K. P. Luan, H. W. Chen, M. M. Tao, and J. H. Si, “Efficient, wavelengthtunable gain-switching and gainswitched modelocking operation of a heavily Er3+doped ZBLAN midinfrared fiber laser,” IEEE Photonics J. 9(4), 1504510 (2017).
[Crossref]

S. Crawford, D. D. Hudson, and S. D. Jackson, “High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (6)

J. F. Li, L. Wang, H. Y. Luo, J. T. Xie, and Y. Liu, “High power cascaded erbium doped fluoride fiber laser at room temperature,” IEEE Photonics Technol. Lett. 28(6), 673–676 (2016).
[Crossref]

C. Wei, X. S. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-switched 2.8-µm nanosecond fiber laser,” IEEE Photonics Technol. Lett. 24(19), 1741–1744 (2012).
[Crossref]

J. F. Li, D. D. Hudson, and S. D. Jackson, “Tuned cascade laser,” IEEE Photonics Technol. Lett. 24(14), 1215–1217 (2012).
[Crossref]

Y. L. Tang, F. Li, and J. Q. Xu, “High peak-power gain-switched Tm-doped fiber laser,” IEEE Photonics Technol. Lett. 33(13), 893–895 (2011).
[Crossref]

P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm pulsed Er 3+:ZBLAN fiber laser modulated by topological insulator,” IEEE Photonics Technol. Lett. 28(14), 1573–1576 (2016).
[Crossref]

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photonics Technol. Lett. 29(11), 881–884 (2017).
[Crossref]

J. Dermatol. Surg. Oncol. (1)

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20(2), 112–118 (1994).
[Crossref] [PubMed]

J. Non-Cryst. Solids (1)

L. Wetenkamp, G. F. West, and H. Tobben, “Co-doping effects in erbium3+- and holmium3+-doped ZBLAN glasses,” J. Non-Cryst. Solids 140, 25–30 (1992).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Phys. Lett. (3)

C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

J. F. Li, Y. Yang, D. D. Hudson, Y. Liu, and S. D. Jackson, “A tunable Q-switched Ho3+-doped fluoride fiber laser,” Laser Phys. Lett. 10(4), 045107 (2013).
[Crossref]

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97 m fluoride fiber laser,” Laser Phys. Lett. 11(6), 065102 (2014).
[Crossref]

Lasers Med. Sci. (1)

M. Gülsoy, T. Celikel, A. Kurt, R. Canbeyli, and I. Cilesiz, “Er:YAG laser ablation of cerebellar and cerebral tissue,” Lasers Med. Sci. 16(1), 40–43 (2001).
[Crossref] [PubMed]

Lasers Surg. Med. (1)

R. Kaufmann and R. Hibst, “Pulsed erbium:YAG laser ablation in cutaneous surgery,” Lasers Surg. Med. 19(3), 324–330 (1996).
[Crossref] [PubMed]

Nat. Commun. (1)

C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref] [PubMed]

Nat. Photonics (1)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Ophthalmology (1)

P. D. Brazitikos, D. J. D’Amico, M. T. Bernal, and A. W. Walsh, “Erbium:YAG laser surgery of the vitreous and retina,” Ophthalmology 102(2), 278–290 (1995).
[Crossref] [PubMed]

Opt. Commun. (1)

B. C. Dickinson, P. S. Golding, M. Pollnau, T. A. King, and S. D. Jackson, “Investigations of a 791-nm pulsed-pumped 2.7 μm Er-doped ZBLAN fiber laser,” Opt. Commun. 191(3), 315–321 (2001).
[Crossref]

Opt. Eng. (1)

T. Zhang, G. Y. Feng, H. Zhang, S. G. Ning, B. Lan, and S. H. Zhou, “Compact watt-level passively Q-switched ZrF 4 -BaF 2 -LaF 3 -AIF 3 -NaF fiber laser at 2.8 μ m using Fe 2+ :ZnSe saturable absorber mirror,” Opt. Eng. 55(8), 086106 (2016).
[Crossref]

Opt. Express (11)

Y. H. Tsang, A. E. El-Taher, T. A. King, and S. D. Jackson, “Efficient 2.96 µm dysprosium-doped fluoride fibre laser pumped with a Nd:YAG laser operating at 1.3 µm,” Opt. Express 14(2), 678–685 (2006).
[Crossref] [PubMed]

C. Wei, H. Luo, H. Shi, Y. Lyu, H. Zhang, and Y. Liu, “Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 μm,” Opt. Express 25(8), 8816–8827 (2017).
[Crossref] [PubMed]

Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express 23(19), 24713–24718 (2015).
[Crossref] [PubMed]

S. Yan, Y. Wang, Y. Zhou, N. Yang, Y. Li, Y. Tang, and J. Xu, “Developing high-power hybrid resonant gain-switched thulium fiber lasers,” Opt. Express 23(20), 25675–25687 (2015).
[Crossref] [PubMed]

J. Li, H. Luo, L. Wang, B. Zhai, H. Li, and Y. Liu, “Tunable Fe2+:ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 μm,” Opt. Express 23(17), 22362–22370 (2015).
[Crossref] [PubMed]

H. Luo, J. Li, J. Xie, B. Zhai, C. Wei, and Y. Liu, “High average power and energy microsecond pulse generation from an erbium-doped fluoride fiber MOPA system,” Opt. Express 24(25), 29022–29032 (2016).
[Crossref] [PubMed]

X. Cheng, Z. Li, J. Hou, and Z. Liu, “Gain-switched monolithic fiber laser with ultra-wide tuning range at 2 μm,” Opt. Express 24(25), 29126–29137 (2016).
[Crossref] [PubMed]

S. Hollitt, N. Simakov, A. Hemming, J. Haub, and A. Carter, “A linearly polarised, pulsed Ho-doped fiber laser,” Opt. Express 20(15), 16285–16290 (2012).
[Crossref]

N. Caron, M. Bernier, D. Faucher, and R. Vallée, “Understanding the fiber tip thermal runaway present in 3 µm fluoride glass fiber lasers,” Opt. Express 20(20), 22188–22194 (2012).
[Crossref] [PubMed]

Y. Tang, L. Xu, Y. Yang, and J. Xu, “High-power gain-switched Tm3+-doped fiber laser,” Opt. Express 18(22), 22964–22972 (2010).
[Crossref] [PubMed]

N. Simakov, A. Hemming, S. Bennetts, and J. Haub, “Efficient, polarised, gain-switched operation of a Tm-doped fibre laser,” Opt. Express 19(16), 14949–14954 (2011).
[Crossref] [PubMed]

Opt. Lett. (19)

J. Li, D. D. Hudson, and S. D. Jackson, “High-power diode-pumped fiber laser operating at 3 μm,” Opt. Lett. 36(18), 3642–3644 (2011).
[Crossref] [PubMed]

T. Hu, D. D. Hudson, and S. D. Jackson, “Actively Q-switched 2.9 μm Ho3+Pr3+-doped fluoride fiber laser,” Opt. Lett. 37(11), 2145–2147 (2012).
[Crossref] [PubMed]

J. Li, T. Hu, and S. D. Jackson, “Dual wavelength Q-switched cascade laser,” Opt. Lett. 37(12), 2208–2210 (2012).
[Crossref] [PubMed]

S. Tokita, M. Hirokane, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Stable 10 W Er:ZBLAN fiber laser operating at 2.71-2.88 μm,” Opt. Lett. 35(23), 3943–3945 (2010).
[Crossref] [PubMed]

M. Gorjan, R. Petkovšek, M. Marinček, and M. Čopič, “High-power pulsed diode-pumped Er:ZBLAN fiber laser,” Opt. Lett. 36(10), 1923–1925 (2011).
[Crossref] [PubMed]

S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “12 W Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Lett. 36(15), 2812–2814 (2011).
[Crossref] [PubMed]

C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013).
[Crossref] [PubMed]

T. Hu, D. D. Hudson, and S. D. Jackson, “Stable, self-starting, passively mode-locked fiber ring laser of the 3 μm class,” Opt. Lett. 39(7), 2133–2136 (2014).
[Crossref] [PubMed]

A. Haboucha, V. Fortin, M. Bernier, J. Genest, Y. Messaddeq, and R. Vallée, “Fiber Bragg grating stabilization of a passively mode-locked 2.8 μm Er3+: fluoride glass fiber laser,” Opt. Lett. 39(11), 3294–3297 (2014).
[Crossref] [PubMed]

V. Fortin, M. Bernier, S. T. Bah, and R. Vallée, “30 W fluoride glass all-fiber laser at 2.94 μm,” Opt. Lett. 40(12), 2882–2885 (2015).
[Crossref] [PubMed]

J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40(15), 3659–3662 (2015).
[Crossref] [PubMed]

T. Hu, S. D. Jackson, and D. D. Hudson, “Ultrafast pulses from a mid-infrared fiber laser,” Opt. Lett. 40(18), 4226–4228 (2015).
[Crossref] [PubMed]

M. R. Majewski and S. D. Jackson, “Highly efficient mid-infrared dysprosium fiber laser,” Opt. Lett. 41(10), 2173–2176 (2016).
[Crossref] [PubMed]

M. R. Majewski and S. D. Jackson, “Tunable dysprosium laser,” Opt. Lett. 41(19), 4496–4498 (2016).
[Crossref] [PubMed]

X. Zhu and R. Jain, “10-W-level diode-pumped compact 2.78 µm ZBLAN fiber laser,” Opt. Lett. 32(1), 26–28 (2007).
[Crossref] [PubMed]

M. Jiang and P. Tayebati, “Stable 10 ns, kilowatt peak-power pulse generation from a gain-switched Tm-doped fiber laser,” Opt. Lett. 32(13), 1797–1799 (2007).
[Crossref] [PubMed]

S. D. Jackson, F. Bugge, and G. Erbert, “Directly diode-pumped holmium fiber lasers,” Opt. Lett. 32(17), 2496–2498 (2007).
[Crossref] [PubMed]

S. D. Jackson, “High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 µm,” Opt. Lett. 34(15), 2327–2329 (2009).
[Crossref] [PubMed]

S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Liquid-cooled 24 W mid-infrared Er:ZBLAN fiber laser,” Opt. Lett. 34(20), 3062–3064 (2009).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Opt. Photonics News (1)

J. Geng and S. Jiang, “Fiber lasers: the 2 um laser heats up,” Opt. Photonics News 25(7), 36–41 (2014).
[Crossref]

Optica (2)

Photon. Res. (1)

Proc. SPIE (2)

H. H. P. T. Bekman, J. C. V. D. Heuvel, F. J. M. V. Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

Y. L. Shen, K. Huang, S. Q. Zhou, K. P. Luan, L. Yu, A. Q. Yi, G. B. Feng, and X. S. Ye, “Gain-switched 2.8 μm Er3+ -doped double-clad ZBLAN fiber laser,” Proc. SPIE 9543, 95431E (2015).

Sci. Rep. (3)

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref] [PubMed]

J. Li, H. Luo, L. Wang, Y. Liu, Z. Yan, K. Zhou, L. Zhang, and S. K. Turistsyn, “Mid-infrared passively switched pulsed dual wavelength Ho3+-doped fluoride fiber laser at 3 μm and 2 μm,” Sci. Rep. 5(1), 10770 (2015).
[Crossref] [PubMed]

Y. Shen, Y. Wang, K. Luan, K. Huang, M. Tao, H. Chen, A. Yi, G. Feng, and J. Si, “Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror,” Sci. Rep. 6(1), 26659 (2016).
[Crossref] [PubMed]

Other (1)

F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” Top. Appl. Phys. 89, 458–516 I. T. Sorokina, and K. L. Vodopyanov, eds., (Springer-Verlag, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Experimental setup of gain-switched singly Ho3+-doped ZBLAN fiber laser: (a) free-running regime, and (b) wavelength-selected regime. PBS represents polarizing beam splitter.

Fig. 2
Fig. 2

Temporal output characteristics of the gain-switched singly Ho3+-doped ZBLAN fiber laser at different pump powers (pulse energies) when the pump repetition rate and duty cycle were set at 80 kHz and 80%, respectively.

Fig. 3
Fig. 3

Temporal dynamics of pump pulses, population on the 5I6 manifold, and signal pulses.

Fig. 4
Fig. 4

Output optical and RF (inset) spectra at the pump powers (pulse energies) of (a) 148.6 mW (1.86 μJ), (b) 246.7 mW (3.08 μJ), (c) 696.2 mW (8.70 μJ), (d) 3.81 W (47.6 μJ) when the pump repetition rate and duty cycle were set at 80 kHz and 80%, respectively.

Fig. 5
Fig. 5

(a) Output power, pulse energy, and peak power, and (b) repetition rate and pulse duration as a function of the pump power and pulse energy when the pump repetition rate and duty cycle were set at 80 kHz and 80%, respectively.

Fig. 6
Fig. 6

Pump pulse energy thresholds of different stable gain-switched temporal states (i.e., “4-1”, “3-1”, “2-1”, and “1-1” states) as a function of the pump repetition rates when the pump pulse duration was fixed at 10 μs. “No” represents that the corresponding temporal state cannot be obtained.

Fig. 7
Fig. 7

Pump pulse energy thresholds of different stable gain-switched temporal states (i.e., (1) “4-1”, (b) “3-1”, (c) “2-1”, and (d) “1-1” states) as a function of the pump duty cycles at different pump repetition rates. “No” represents that the corresponding temporal state cannot be obtained. “Limitation” represents the corresponding data not measured due to the limited pump.

Fig. 8
Fig. 8

Pulse duration, pulse energy, and peak power as a function of (a) the pump repetition rate when the pump power and pulse duration were fixed at 2.14 W and 10 μs, respectively, (b) the pulse duration when the pump power and repetition rate were fixed at 2.64 W and 80 kHz, respectively.

Fig. 9
Fig. 9

(a) Output power and (b) pulse duration with tuning the wavelength, and (c) tuned output optical spectra with respect to “1-1” state at different pump powers.

Fig. 10
Fig. 10

Pump pulse energy thresholds of different stable gain-switched temporal states (i.e., “4-1”, “3-1”, “2-1”, and “1-1” states) as a function of the laser wavelength when the pump repetition rate and pulse duration were fixed at 80 kHz and 80%, respectively. “No” represents that the corresponding temporal state cannot be obtained.

Fig. 11
Fig. 11

Pump pulse energy thresholds of different stable gain-switched temporal states (i.e., “4-1”, “3-1”, “2-1”, and “1-1” states) as a function of the pump repetition rates when the pump pulse duration and laser wavelength were fixed at 10 μs and 2940 nm, respectively. “No” represents that the corresponding temporal state cannot be obtained.

Fig. 12
Fig. 12

Pump pulse energy thresholds of different stable gain-switched temporal states (i.e., (1) “4-1”, (b) “3-1”, (c) “2-1”, and (d) “1-1” states) as a function of the pump duty cycles at different pump repetition rates when the laser wavelength was fixed at 2940 nm. “No” represents that the corresponding temporal state cannot be obtained. “Limitation” represents the corresponding data not measured due to the limited pump.