Abstract

A novel method of detection wavelength tuning for surface plasmon coupled quantum well infrared photodetectors (QWIPs) was demonstrated. By changing of the thickness of the top contact layer, the detection wavelength can be adjusted. The displacement of the detection wavelength is related to the effective dielectric constant of the dielectric layers in the device structure. The peak wavelength moves toward longer wavelength as the contact layer thickness decreases. With a proper match of the 2D metal hole array and the QW absorption region, the responsivity can be kept within a reasonable range for samples with different top contact layer thicknesses.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Efficient optical coupling in AlGaN/GaN quantum well infrared photodetector via quasi-one-dimensional gold grating

S. Wang, W. Tian, F. Wu, J. Zhang, J. N. Dai, Z. H. Wu, Y. Y. Fang, Y. Tian, and C. Q. Chen
Opt. Express 23(7) 8740-8748 (2015)

Photovoltaic Ge/SiGe quantum dot mid-infrared photodetector enhanced by surface plasmons

A. I. Yakimov, V. V. Kirienko, A. A. Bloshkin, V. A. Armbrister, A. V. Dvurechenskii, and J.-M. Hartmann
Opt. Express 25(21) 25602-25611 (2017)

Quantum dot infrared photodetector enhanced by surface plasma wave excitation

S. C. Lee, S. Krishna, and S. R. J. Brueck
Opt. Express 17(25) 23160-23168 (2009)

References

  • View by:
  • |
  • |
  • |

  1. B. F. Levine, “Quantum‐well infrared photodetectors,” J. Appl. Phys. 74(8), R1–R81 (1993).
    [Crossref]
  2. A. Rogalski, “Quantum well photoconductors in infrared detector technology,” J. Appl. Phys. 93(8), 4355–4391 (2003).
    [Crossref]
  3. S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, S. B. Rafol, D. Z. Ting, A. Soibel, and C. Hill, “Quantum Well Infrared Photodetector Technology and Applications,” IEEE J. Sel. Top. Quantum Electron. 20(6), 154–165 (2014).
    [Crossref]
  4. A. Reisinger, R. Dennis, K. Patnaude, D. Burrows, J. Bundas, K. Beech, R. Faska, and M. Sundaram, “Broadband QWIP FPAs for hyperspectral applications,” Infrared Phys. Technol. 59, 112–117 (2013).
    [Crossref]
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  6. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  7. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
    [Crossref] [PubMed]
  8. P. Berini, “Surface plasmon photoetectors and their applications,” Laser Photonics Rev. 8(2), 197–220 (2014).
    [Crossref]
  9. S. Gwo and C. K. Shih, “Semiconductor plasmonic nanolasers: current status and perspectives,” Rep. Prog. Phys. 79(8), 086501 (2016).
    [Crossref] [PubMed]
  10. W. Wu, A. Bonakdar, and H. Mosheni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010).
    [Crossref]
  11. S. C. Lee, S. Krishna, and S. R. J. Brueck, “Plasmonic-Enhanced Photodetectors for Focal Plane Arrays,” IEEE Photonics Technol. Lett. 23(4), 935–937 (2011).
    [Crossref]
  12. G. Gu, N. Mojaverian, J. Vaillancourt, and X. Lu, “Surface plasmonic resonance induced near-field vectors and their contribution to quantum dot infrared photodetector enhancement,” J. Phys. D Appl. Phys. 47(43), 435106 (2014).
    [Crossref]
  13. W. C. Hsu, H. S. Ling, S. Y. Wang, and C. P. Lee, “Characteristics of surface plasmon coupled quantum well infrared photodetectors,” J. Appl. Phys. 121(24), 244503 (2017).
    [Crossref]
  14. C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S. Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
    [Crossref] [PubMed]
  15. X. Lu, J. Vaillancourt, and G. Gu, “A plasmonic perfect absorber enhanced longwave infrared quantum dot infrared photodetector with high quantum efficiency,” J. Phys. D Appl. Phys. 50(13), 135101 (2017).
    [Crossref]
  16. S. C. Lee, Y. D. Sharma, S. Krishna, and S. R. J. Brueck, “Leaky-mode effects in plasmonic-coupled quantum dot infrared photodetectors,” Appl. Phys. Lett. 100(1), 011110 (2012).
    [Crossref]
  17. J. C. Chang, Z. P. Yang, D. Huang, D. A. Cardimona, and S. Y. Lin, “Strong light concentration at the subwavelength scale by a metallic hole-array structure,” Opt. Lett. 34(1), 106–108 (2009).
    [Crossref] [PubMed]
  18. C. G. Olson and D. W. Lynch, “Longitudinal-Optical-Phonon-Plasmon Coupling in GaAs,” Phys. Rev. 177(3), 1231–1234 (1969).
    [Crossref]
  19. H. R. Chandrasekhar and A. K. Ramdas, “Nonparabolicity of the conduction band and the coupled plasmon-phonon modes in n-GaAs,” Phys. Rev. B 21(4), 1511–1515 (1980).
    [Crossref]
  20. C. Kittel, Introduction to Solid State Physics, 8th Edition (Wiley, 2004), Chap. 14.
  21. D. W. Wilson, “Electromagnetic modeling of multi-wavelength QWIP optical coupling structures,” Infrared Phys. Technol. 52(6), 224–228 (2009).
    [Crossref]

2017 (2)

W. C. Hsu, H. S. Ling, S. Y. Wang, and C. P. Lee, “Characteristics of surface plasmon coupled quantum well infrared photodetectors,” J. Appl. Phys. 121(24), 244503 (2017).
[Crossref]

X. Lu, J. Vaillancourt, and G. Gu, “A plasmonic perfect absorber enhanced longwave infrared quantum dot infrared photodetector with high quantum efficiency,” J. Phys. D Appl. Phys. 50(13), 135101 (2017).
[Crossref]

2016 (1)

S. Gwo and C. K. Shih, “Semiconductor plasmonic nanolasers: current status and perspectives,” Rep. Prog. Phys. 79(8), 086501 (2016).
[Crossref] [PubMed]

2014 (3)

P. Berini, “Surface plasmon photoetectors and their applications,” Laser Photonics Rev. 8(2), 197–220 (2014).
[Crossref]

G. Gu, N. Mojaverian, J. Vaillancourt, and X. Lu, “Surface plasmonic resonance induced near-field vectors and their contribution to quantum dot infrared photodetector enhancement,” J. Phys. D Appl. Phys. 47(43), 435106 (2014).
[Crossref]

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, S. B. Rafol, D. Z. Ting, A. Soibel, and C. Hill, “Quantum Well Infrared Photodetector Technology and Applications,” IEEE J. Sel. Top. Quantum Electron. 20(6), 154–165 (2014).
[Crossref]

2013 (1)

A. Reisinger, R. Dennis, K. Patnaude, D. Burrows, J. Bundas, K. Beech, R. Faska, and M. Sundaram, “Broadband QWIP FPAs for hyperspectral applications,” Infrared Phys. Technol. 59, 112–117 (2013).
[Crossref]

2012 (1)

S. C. Lee, Y. D. Sharma, S. Krishna, and S. R. J. Brueck, “Leaky-mode effects in plasmonic-coupled quantum dot infrared photodetectors,” Appl. Phys. Lett. 100(1), 011110 (2012).
[Crossref]

2011 (1)

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Plasmonic-Enhanced Photodetectors for Focal Plane Arrays,” IEEE Photonics Technol. Lett. 23(4), 935–937 (2011).
[Crossref]

2010 (3)

W. Wu, A. Bonakdar, and H. Mosheni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010).
[Crossref]

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S. Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (1)

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

A. Rogalski, “Quantum well photoconductors in infrared detector technology,” J. Appl. Phys. 93(8), 4355–4391 (2003).
[Crossref]

1993 (1)

B. F. Levine, “Quantum‐well infrared photodetectors,” J. Appl. Phys. 74(8), R1–R81 (1993).
[Crossref]

1980 (1)

H. R. Chandrasekhar and A. K. Ramdas, “Nonparabolicity of the conduction band and the coupled plasmon-phonon modes in n-GaAs,” Phys. Rev. B 21(4), 1511–1515 (1980).
[Crossref]

1969 (1)

C. G. Olson and D. W. Lynch, “Longitudinal-Optical-Phonon-Plasmon Coupling in GaAs,” Phys. Rev. 177(3), 1231–1234 (1969).
[Crossref]

Bandara, S. V.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, S. B. Rafol, D. Z. Ting, A. Soibel, and C. Hill, “Quantum Well Infrared Photodetector Technology and Applications,” IEEE J. Sel. Top. Quantum Electron. 20(6), 154–165 (2014).
[Crossref]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Beech, K.

A. Reisinger, R. Dennis, K. Patnaude, D. Burrows, J. Bundas, K. Beech, R. Faska, and M. Sundaram, “Broadband QWIP FPAs for hyperspectral applications,” Infrared Phys. Technol. 59, 112–117 (2013).
[Crossref]

Berini, P.

P. Berini, “Surface plasmon photoetectors and their applications,” Laser Photonics Rev. 8(2), 197–220 (2014).
[Crossref]

Bonakdar, A.

W. Wu, A. Bonakdar, and H. Mosheni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010).
[Crossref]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Brueck, S. R. J.

S. C. Lee, Y. D. Sharma, S. Krishna, and S. R. J. Brueck, “Leaky-mode effects in plasmonic-coupled quantum dot infrared photodetectors,” Appl. Phys. Lett. 100(1), 011110 (2012).
[Crossref]

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Plasmonic-Enhanced Photodetectors for Focal Plane Arrays,” IEEE Photonics Technol. Lett. 23(4), 935–937 (2011).
[Crossref]

Bundas, J.

A. Reisinger, R. Dennis, K. Patnaude, D. Burrows, J. Bundas, K. Beech, R. Faska, and M. Sundaram, “Broadband QWIP FPAs for hyperspectral applications,” Infrared Phys. Technol. 59, 112–117 (2013).
[Crossref]

Bur, J. A.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S. Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Burrows, D.

A. Reisinger, R. Dennis, K. Patnaude, D. Burrows, J. Bundas, K. Beech, R. Faska, and M. Sundaram, “Broadband QWIP FPAs for hyperspectral applications,” Infrared Phys. Technol. 59, 112–117 (2013).
[Crossref]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Cardimona, D. A.

Catchpole, K. R.

Chandrasekhar, H. R.

H. R. Chandrasekhar and A. K. Ramdas, “Nonparabolicity of the conduction band and the coupled plasmon-phonon modes in n-GaAs,” Phys. Rev. B 21(4), 1511–1515 (1980).
[Crossref]

Chang, C. C.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S. Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Chang, J. C.

Dennis, R.

A. Reisinger, R. Dennis, K. Patnaude, D. Burrows, J. Bundas, K. Beech, R. Faska, and M. Sundaram, “Broadband QWIP FPAs for hyperspectral applications,” Infrared Phys. Technol. 59, 112–117 (2013).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Faska, R.

A. Reisinger, R. Dennis, K. Patnaude, D. Burrows, J. Bundas, K. Beech, R. Faska, and M. Sundaram, “Broadband QWIP FPAs for hyperspectral applications,” Infrared Phys. Technol. 59, 112–117 (2013).
[Crossref]

Gu, G.

X. Lu, J. Vaillancourt, and G. Gu, “A plasmonic perfect absorber enhanced longwave infrared quantum dot infrared photodetector with high quantum efficiency,” J. Phys. D Appl. Phys. 50(13), 135101 (2017).
[Crossref]

G. Gu, N. Mojaverian, J. Vaillancourt, and X. Lu, “Surface plasmonic resonance induced near-field vectors and their contribution to quantum dot infrared photodetector enhancement,” J. Phys. D Appl. Phys. 47(43), 435106 (2014).
[Crossref]

Gunapala, S. D.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, S. B. Rafol, D. Z. Ting, A. Soibel, and C. Hill, “Quantum Well Infrared Photodetector Technology and Applications,” IEEE J. Sel. Top. Quantum Electron. 20(6), 154–165 (2014).
[Crossref]

Gwo, S.

S. Gwo and C. K. Shih, “Semiconductor plasmonic nanolasers: current status and perspectives,” Rep. Prog. Phys. 79(8), 086501 (2016).
[Crossref] [PubMed]

Hill, C.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, S. B. Rafol, D. Z. Ting, A. Soibel, and C. Hill, “Quantum Well Infrared Photodetector Technology and Applications,” IEEE J. Sel. Top. Quantum Electron. 20(6), 154–165 (2014).
[Crossref]

Hsu, W. C.

W. C. Hsu, H. S. Ling, S. Y. Wang, and C. P. Lee, “Characteristics of surface plasmon coupled quantum well infrared photodetectors,” J. Appl. Phys. 121(24), 244503 (2017).
[Crossref]

Huang, D.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S. Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

J. C. Chang, Z. P. Yang, D. Huang, D. A. Cardimona, and S. Y. Lin, “Strong light concentration at the subwavelength scale by a metallic hole-array structure,” Opt. Lett. 34(1), 106–108 (2009).
[Crossref] [PubMed]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Kim, Y. S.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S. Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Krishna, S.

S. C. Lee, Y. D. Sharma, S. Krishna, and S. R. J. Brueck, “Leaky-mode effects in plasmonic-coupled quantum dot infrared photodetectors,” Appl. Phys. Lett. 100(1), 011110 (2012).
[Crossref]

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Plasmonic-Enhanced Photodetectors for Focal Plane Arrays,” IEEE Photonics Technol. Lett. 23(4), 935–937 (2011).
[Crossref]

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S. Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Lee, C. P.

W. C. Hsu, H. S. Ling, S. Y. Wang, and C. P. Lee, “Characteristics of surface plasmon coupled quantum well infrared photodetectors,” J. Appl. Phys. 121(24), 244503 (2017).
[Crossref]

Lee, S. C.

S. C. Lee, Y. D. Sharma, S. Krishna, and S. R. J. Brueck, “Leaky-mode effects in plasmonic-coupled quantum dot infrared photodetectors,” Appl. Phys. Lett. 100(1), 011110 (2012).
[Crossref]

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Plasmonic-Enhanced Photodetectors for Focal Plane Arrays,” IEEE Photonics Technol. Lett. 23(4), 935–937 (2011).
[Crossref]

Levine, B. F.

B. F. Levine, “Quantum‐well infrared photodetectors,” J. Appl. Phys. 74(8), R1–R81 (1993).
[Crossref]

Lin, S. Y.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S. Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

J. C. Chang, Z. P. Yang, D. Huang, D. A. Cardimona, and S. Y. Lin, “Strong light concentration at the subwavelength scale by a metallic hole-array structure,” Opt. Lett. 34(1), 106–108 (2009).
[Crossref] [PubMed]

Ling, H. S.

W. C. Hsu, H. S. Ling, S. Y. Wang, and C. P. Lee, “Characteristics of surface plasmon coupled quantum well infrared photodetectors,” J. Appl. Phys. 121(24), 244503 (2017).
[Crossref]

Liu, J. K.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, S. B. Rafol, D. Z. Ting, A. Soibel, and C. Hill, “Quantum Well Infrared Photodetector Technology and Applications,” IEEE J. Sel. Top. Quantum Electron. 20(6), 154–165 (2014).
[Crossref]

Lu, X.

X. Lu, J. Vaillancourt, and G. Gu, “A plasmonic perfect absorber enhanced longwave infrared quantum dot infrared photodetector with high quantum efficiency,” J. Phys. D Appl. Phys. 50(13), 135101 (2017).
[Crossref]

G. Gu, N. Mojaverian, J. Vaillancourt, and X. Lu, “Surface plasmonic resonance induced near-field vectors and their contribution to quantum dot infrared photodetector enhancement,” J. Phys. D Appl. Phys. 47(43), 435106 (2014).
[Crossref]

Lynch, D. W.

C. G. Olson and D. W. Lynch, “Longitudinal-Optical-Phonon-Plasmon Coupling in GaAs,” Phys. Rev. 177(3), 1231–1234 (1969).
[Crossref]

Mojaverian, N.

G. Gu, N. Mojaverian, J. Vaillancourt, and X. Lu, “Surface plasmonic resonance induced near-field vectors and their contribution to quantum dot infrared photodetector enhancement,” J. Phys. D Appl. Phys. 47(43), 435106 (2014).
[Crossref]

Mosheni, H.

W. Wu, A. Bonakdar, and H. Mosheni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010).
[Crossref]

Mumolo, J. M.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, S. B. Rafol, D. Z. Ting, A. Soibel, and C. Hill, “Quantum Well Infrared Photodetector Technology and Applications,” IEEE J. Sel. Top. Quantum Electron. 20(6), 154–165 (2014).
[Crossref]

Olson, C. G.

C. G. Olson and D. W. Lynch, “Longitudinal-Optical-Phonon-Plasmon Coupling in GaAs,” Phys. Rev. 177(3), 1231–1234 (1969).
[Crossref]

Patnaude, K.

A. Reisinger, R. Dennis, K. Patnaude, D. Burrows, J. Bundas, K. Beech, R. Faska, and M. Sundaram, “Broadband QWIP FPAs for hyperspectral applications,” Infrared Phys. Technol. 59, 112–117 (2013).
[Crossref]

Polman, A.

Rafol, S. B.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, S. B. Rafol, D. Z. Ting, A. Soibel, and C. Hill, “Quantum Well Infrared Photodetector Technology and Applications,” IEEE J. Sel. Top. Quantum Electron. 20(6), 154–165 (2014).
[Crossref]

Ramdas, A. K.

H. R. Chandrasekhar and A. K. Ramdas, “Nonparabolicity of the conduction band and the coupled plasmon-phonon modes in n-GaAs,” Phys. Rev. B 21(4), 1511–1515 (1980).
[Crossref]

Reisinger, A.

A. Reisinger, R. Dennis, K. Patnaude, D. Burrows, J. Bundas, K. Beech, R. Faska, and M. Sundaram, “Broadband QWIP FPAs for hyperspectral applications,” Infrared Phys. Technol. 59, 112–117 (2013).
[Crossref]

Rogalski, A.

A. Rogalski, “Quantum well photoconductors in infrared detector technology,” J. Appl. Phys. 93(8), 4355–4391 (2003).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Sharma, Y. D.

S. C. Lee, Y. D. Sharma, S. Krishna, and S. R. J. Brueck, “Leaky-mode effects in plasmonic-coupled quantum dot infrared photodetectors,” Appl. Phys. Lett. 100(1), 011110 (2012).
[Crossref]

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S. Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Shenoi, R. V.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S. Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Shih, C. K.

S. Gwo and C. K. Shih, “Semiconductor plasmonic nanolasers: current status and perspectives,” Rep. Prog. Phys. 79(8), 086501 (2016).
[Crossref] [PubMed]

Soibel, A.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, S. B. Rafol, D. Z. Ting, A. Soibel, and C. Hill, “Quantum Well Infrared Photodetector Technology and Applications,” IEEE J. Sel. Top. Quantum Electron. 20(6), 154–165 (2014).
[Crossref]

Sundaram, M.

A. Reisinger, R. Dennis, K. Patnaude, D. Burrows, J. Bundas, K. Beech, R. Faska, and M. Sundaram, “Broadband QWIP FPAs for hyperspectral applications,” Infrared Phys. Technol. 59, 112–117 (2013).
[Crossref]

Ting, D. Z.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, S. B. Rafol, D. Z. Ting, A. Soibel, and C. Hill, “Quantum Well Infrared Photodetector Technology and Applications,” IEEE J. Sel. Top. Quantum Electron. 20(6), 154–165 (2014).
[Crossref]

Vaillancourt, J.

X. Lu, J. Vaillancourt, and G. Gu, “A plasmonic perfect absorber enhanced longwave infrared quantum dot infrared photodetector with high quantum efficiency,” J. Phys. D Appl. Phys. 50(13), 135101 (2017).
[Crossref]

G. Gu, N. Mojaverian, J. Vaillancourt, and X. Lu, “Surface plasmonic resonance induced near-field vectors and their contribution to quantum dot infrared photodetector enhancement,” J. Phys. D Appl. Phys. 47(43), 435106 (2014).
[Crossref]

Wang, S. Y.

W. C. Hsu, H. S. Ling, S. Y. Wang, and C. P. Lee, “Characteristics of surface plasmon coupled quantum well infrared photodetectors,” J. Appl. Phys. 121(24), 244503 (2017).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Wilson, D. W.

D. W. Wilson, “Electromagnetic modeling of multi-wavelength QWIP optical coupling structures,” Infrared Phys. Technol. 52(6), 224–228 (2009).
[Crossref]

Wu, W.

W. Wu, A. Bonakdar, and H. Mosheni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010).
[Crossref]

Yang, Z. P.

Appl. Phys. Lett. (2)

W. Wu, A. Bonakdar, and H. Mosheni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010).
[Crossref]

S. C. Lee, Y. D. Sharma, S. Krishna, and S. R. J. Brueck, “Leaky-mode effects in plasmonic-coupled quantum dot infrared photodetectors,” Appl. Phys. Lett. 100(1), 011110 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, S. B. Rafol, D. Z. Ting, A. Soibel, and C. Hill, “Quantum Well Infrared Photodetector Technology and Applications,” IEEE J. Sel. Top. Quantum Electron. 20(6), 154–165 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Plasmonic-Enhanced Photodetectors for Focal Plane Arrays,” IEEE Photonics Technol. Lett. 23(4), 935–937 (2011).
[Crossref]

Infrared Phys. Technol. (2)

A. Reisinger, R. Dennis, K. Patnaude, D. Burrows, J. Bundas, K. Beech, R. Faska, and M. Sundaram, “Broadband QWIP FPAs for hyperspectral applications,” Infrared Phys. Technol. 59, 112–117 (2013).
[Crossref]

D. W. Wilson, “Electromagnetic modeling of multi-wavelength QWIP optical coupling structures,” Infrared Phys. Technol. 52(6), 224–228 (2009).
[Crossref]

J. Appl. Phys. (3)

B. F. Levine, “Quantum‐well infrared photodetectors,” J. Appl. Phys. 74(8), R1–R81 (1993).
[Crossref]

A. Rogalski, “Quantum well photoconductors in infrared detector technology,” J. Appl. Phys. 93(8), 4355–4391 (2003).
[Crossref]

W. C. Hsu, H. S. Ling, S. Y. Wang, and C. P. Lee, “Characteristics of surface plasmon coupled quantum well infrared photodetectors,” J. Appl. Phys. 121(24), 244503 (2017).
[Crossref]

J. Phys. D Appl. Phys. (2)

G. Gu, N. Mojaverian, J. Vaillancourt, and X. Lu, “Surface plasmonic resonance induced near-field vectors and their contribution to quantum dot infrared photodetector enhancement,” J. Phys. D Appl. Phys. 47(43), 435106 (2014).
[Crossref]

X. Lu, J. Vaillancourt, and G. Gu, “A plasmonic perfect absorber enhanced longwave infrared quantum dot infrared photodetector with high quantum efficiency,” J. Phys. D Appl. Phys. 50(13), 135101 (2017).
[Crossref]

Laser Photonics Rev. (1)

P. Berini, “Surface plasmon photoetectors and their applications,” Laser Photonics Rev. 8(2), 197–220 (2014).
[Crossref]

Nano Lett. (1)

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S. Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. (1)

C. G. Olson and D. W. Lynch, “Longitudinal-Optical-Phonon-Plasmon Coupling in GaAs,” Phys. Rev. 177(3), 1231–1234 (1969).
[Crossref]

Phys. Rev. B (1)

H. R. Chandrasekhar and A. K. Ramdas, “Nonparabolicity of the conduction band and the coupled plasmon-phonon modes in n-GaAs,” Phys. Rev. B 21(4), 1511–1515 (1980).
[Crossref]

Rep. Prog. Phys. (1)

S. Gwo and C. K. Shih, “Semiconductor plasmonic nanolasers: current status and perspectives,” Rep. Prog. Phys. 79(8), 086501 (2016).
[Crossref] [PubMed]

Other (1)

C. Kittel, Introduction to Solid State Physics, 8th Edition (Wiley, 2004), Chap. 14.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The schematic view of the device (a) top view, (b) side view and (c) the SEM image of the produced 2D metal hole array.
Fig. 2
Fig. 2 The dark current curves of the 5 sample (solid curves) and the responsivity curves for the samples of 1000nm top contact layer with 2D metal array (dashed purple line) and normal etched grating (dashed green line). The data was taken under negative bias at 77K.
Fig. 3
Fig. 3 The photocurrent spectra of the samples in 77K.
Fig. 4
Fig. 4 (a) The cross section of simulation structure (left) and the top view of the 2D hole array, and (b) The refractive index for the material we used in the simulation.
Fig. 5
Fig. 5 (a) The simulation results of absorption spectra for different top contact thickness, and (b) The peak position for both experiment and simulation results.
Fig. 6
Fig. 6 The simulated electric field distribution for 50nm top contact layer sample (left) and 1000nm top contact layer sample (right). The dashed lines indicate the QW active regions.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ peak =a [ 4 3 ( n 2 +mn+ m 2 ) ] 1/2 ( ε m ε d ε m + ε d ) 1/2
ω p 2 n e e 2 / ε 0 ε GaAs m *

Metrics