Abstract

In this work, we demonstrate broadband integrated polarization rotator (IPR) with a series of three-layer rotating metallic grating structures. This transmissive optical IPR can conveniently rotate the polarization of linearly polarized light to any desired directions at different spatial locations with high conversion efficiency, which is nearly constant for different rotation angles. The linear polarization rotation originates from multi-wave interference in the three-layer grating structure. We anticipate that this type of IPR will find wide applications in analytical chemistry, biology, communication technology, imaging, etc.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Realization of integrated polarizer and color filters based on subwavelength metallic gratings using a hybrid numerical scheme

Nghia Nguyen-Huu, Yu-Lung Lo, Yu-Bin Chen, and Tsai-Yu Yang
Appl. Opt. 50(4) 415-426 (2011)

Polarized GaN-based LED with an integrated multi-layer subwavelength structure

Guiju Zhang, Chinhua Wang, Bing Cao, Zengli Huang, Jianfeng Wang, Baoshun Zhang, and Ke Xu
Opt. Express 18(7) 7019-7030 (2010)

Terahertz wave polarization rotation with double layered metal grating of complimentary chiral patterns

N. Kanda, K. Konishi, and M. Kuwata-Gonokami
Opt. Express 15(18) 11117-11125 (2007)

References

  • View by:
  • |
  • |
  • |

  1. F. Wikipedia, “Polarizer,” https://en.wikipedia.org/wiki/Polarizer .
  2. R. Yasuhara, I. Snetkov, A. Starobor, E. Mironov, and O. Palashov, “Faraday rotator based on TSAG crystal with <001> orientation,” Opt. Express 24(14), 15486–15493 (2016).
    [Crossref] [PubMed]
  3. Z. Zhuang, Y. J. Kim, and J. S. Patel, “Achromatic linear polarization rotator using twisted nematic liquid crystals,” Appl. Phys. Lett. 76(26), 3995–3997 (2000).
    [Crossref]
  4. H. Ren and S. T. Wu, “Liquid-crystal-based linear polarization rotator,” Appl. Phys. Lett. 90(12), 121123 (2007).
    [Crossref]
  5. R. Desmarchelier, M. Lancry, M. Gecevicius, M. Beresna, P. G. Kazansky, and B. Poumellec, “Achromatic polarization rotator imprinted by ultrafast laser nanostructuring in glass,” Appl. Phys. Lett. 107(18), 181111 (2015).
    [Crossref]
  6. M. R. Watts and H. A. Haus, “Integrated mode-evolution-based polarization rotators,” Opt. Lett. 30(2), 138–140 (2005).
    [Crossref] [PubMed]
  7. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
    [Crossref] [PubMed]
  8. Q. Xu, L. Chen, M. G. Wood, P. Sun, and R. M. Reano, “Electrically tunable optical polarization rotation on a silicon chip using Berry’s phase,” Nat. Commun. 5, 5337 (2014).
    [Crossref] [PubMed]
  9. J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
    [Crossref]
  10. Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
    [Crossref]
  11. F. I. Baida, M. Boutria, R. Oussaid, and D. Van Labeke, “Enhanced-transmission metamaterials as anisotropic plates,” Phys. Rev. B 84(3), 035107 (2011).
    [Crossref]
  12. S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
    [Crossref] [PubMed]
  13. Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
    [Crossref] [PubMed]
  14. S. C. Jiang, X. Xiong, Y. S. Hu, Y. H. Hu, G. B. Ma, R. W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
    [Crossref]
  15. Z. H. Jiang, L. Lin, D. Ma, S. Yun, D. H. Werner, Z. Liu, and T. S. Mayer, “Broadband and wide field-of-view plasmonic metasurface-enabled waveplates,” Sci. Rep. 4(1), 7511 (2014).
    [Crossref] [PubMed]
  16. Y. Jia, Y. Liu, W. Zhang, and S. Gong, “Ultra-wideband and high-efficiency polarization rotator based on metasurface,” Appl. Phys. Lett. 109(5), 051901 (2016).
    [Crossref]
  17. J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
    [Crossref] [PubMed]
  18. D. Floess, J. Y. Chin, A. Kawatani, D. Dregely, H. U. Habermeier, T. Weiss, and H. Giessen, “Tunable and switchable polarization rotation with non-reciprocal plasmonic thin films at designated wavelengths,” Light Sci. Appl. 4(5), e284 (2015).
    [Crossref]
  19. Z. Marcet, H. B. Chan, D. W. Carr, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and I. I. Kravchenko, “A half wave retarder made of bilayer subwavelength metallic apertures,” Appl. Phys. Lett. 98(15), 151107 (2011).
    [Crossref]
  20. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
    [Crossref] [PubMed]
  21. Y. Chiang and T. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013).
    [Crossref]
  22. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
    [Crossref] [PubMed]
  23. L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
    [Crossref]
  24. C. P. Huang, Q. J. Wang, X. G. Yin, Y. Zhang, J. Q. Li, and Y. Y. Zhu, “Break through the limitation of Malus’ law with plasmonic polarizers,” Adv. Opt. Mater. 2(8), 723–728 (2014).
    [Crossref]
  25. X. Ma, W. Pan, C. Huang, M. Pu, Y. Wang, B. Zhao, J. Cui, C. Wang, and X. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
    [Crossref]
  26. R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
    [Crossref] [PubMed]
  27. Z. Li, S. Chen, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, and J. Tian, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10(6), 1703–1711 (2015).
    [Crossref]
  28. C. P. Huang, “Efficient and broadband polarization conversion with the coupled metasurfaces,” Opt. Express 23(25), 32015–32024 (2015).
    [Crossref] [PubMed]
  29. J. Wang, Z. Shen, and W. Wu, “Cavity-based high-efficiency and wideband 90° polarization rotator,” Appl. Phys. Lett. 109(15), 153504 (2016).
    [Crossref]
  30. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  31. Y. Zhang, J. Z. Zhu, C. P. Huang, and S. J. Ma, “Wide-band and high-efficiency 90° polarization rotator based on tri-layered perforated metal films,” J. Lightwave Technol. 35(21), 4817–4823 (2017).
    [Crossref]

2017 (1)

2016 (3)

R. Yasuhara, I. Snetkov, A. Starobor, E. Mironov, and O. Palashov, “Faraday rotator based on TSAG crystal with <001> orientation,” Opt. Express 24(14), 15486–15493 (2016).
[Crossref] [PubMed]

J. Wang, Z. Shen, and W. Wu, “Cavity-based high-efficiency and wideband 90° polarization rotator,” Appl. Phys. Lett. 109(15), 153504 (2016).
[Crossref]

Y. Jia, Y. Liu, W. Zhang, and S. Gong, “Ultra-wideband and high-efficiency polarization rotator based on metasurface,” Appl. Phys. Lett. 109(5), 051901 (2016).
[Crossref]

2015 (5)

D. Floess, J. Y. Chin, A. Kawatani, D. Dregely, H. U. Habermeier, T. Weiss, and H. Giessen, “Tunable and switchable polarization rotation with non-reciprocal plasmonic thin films at designated wavelengths,” Light Sci. Appl. 4(5), e284 (2015).
[Crossref]

C. P. Huang, “Efficient and broadband polarization conversion with the coupled metasurfaces,” Opt. Express 23(25), 32015–32024 (2015).
[Crossref] [PubMed]

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Z. Li, S. Chen, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, and J. Tian, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10(6), 1703–1711 (2015).
[Crossref]

R. Desmarchelier, M. Lancry, M. Gecevicius, M. Beresna, P. G. Kazansky, and B. Poumellec, “Achromatic polarization rotator imprinted by ultrafast laser nanostructuring in glass,” Appl. Phys. Lett. 107(18), 181111 (2015).
[Crossref]

2014 (6)

C. P. Huang, Q. J. Wang, X. G. Yin, Y. Zhang, J. Q. Li, and Y. Y. Zhu, “Break through the limitation of Malus’ law with plasmonic polarizers,” Adv. Opt. Mater. 2(8), 723–728 (2014).
[Crossref]

X. Ma, W. Pan, C. Huang, M. Pu, Y. Wang, B. Zhao, J. Cui, C. Wang, and X. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

S. C. Jiang, X. Xiong, Y. S. Hu, Y. H. Hu, G. B. Ma, R. W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Z. H. Jiang, L. Lin, D. Ma, S. Yun, D. H. Werner, Z. Liu, and T. S. Mayer, “Broadband and wide field-of-view plasmonic metasurface-enabled waveplates,” Sci. Rep. 4(1), 7511 (2014).
[Crossref] [PubMed]

Q. Xu, L. Chen, M. G. Wood, P. Sun, and R. M. Reano, “Electrically tunable optical polarization rotation on a silicon chip using Berry’s phase,” Nat. Commun. 5, 5337 (2014).
[Crossref] [PubMed]

2013 (5)

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Y. Chiang and T. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013).
[Crossref]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

2012 (1)

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

2011 (3)

Z. Marcet, H. B. Chan, D. W. Carr, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and I. I. Kravchenko, “A half wave retarder made of bilayer subwavelength metallic apertures,” Appl. Phys. Lett. 98(15), 151107 (2011).
[Crossref]

F. I. Baida, M. Boutria, R. Oussaid, and D. Van Labeke, “Enhanced-transmission metamaterials as anisotropic plates,” Phys. Rev. B 84(3), 035107 (2011).
[Crossref]

D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
[Crossref] [PubMed]

2010 (1)

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

2008 (1)

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

2007 (1)

H. Ren and S. T. Wu, “Liquid-crystal-based linear polarization rotator,” Appl. Phys. Lett. 90(12), 121123 (2007).
[Crossref]

2005 (1)

2000 (1)

Z. Zhuang, Y. J. Kim, and J. S. Patel, “Achromatic linear polarization rotator using twisted nematic liquid crystals,” Appl. Phys. Lett. 76(26), 3995–3997 (2000).
[Crossref]

Alù, A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Azad, A. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Baida, F. I.

F. I. Baida, M. Boutria, R. Oussaid, and D. Van Labeke, “Enhanced-transmission metamaterials as anisotropic plates,” Phys. Rev. B 84(3), 035107 (2011).
[Crossref]

Belkin, M. A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Belotelov, V. I.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Beresna, M.

R. Desmarchelier, M. Lancry, M. Gecevicius, M. Beresna, P. G. Kazansky, and B. Poumellec, “Achromatic polarization rotator imprinted by ultrafast laser nanostructuring in glass,” Appl. Phys. Lett. 107(18), 181111 (2015).
[Crossref]

Boutria, M.

F. I. Baida, M. Boutria, R. Oussaid, and D. Van Labeke, “Enhanced-transmission metamaterials as anisotropic plates,” Phys. Rev. B 84(3), 035107 (2011).
[Crossref]

Bower, J. E.

Z. Marcet, H. B. Chan, D. W. Carr, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and I. I. Kravchenko, “A half wave retarder made of bilayer subwavelength metallic apertures,” Appl. Phys. Lett. 98(15), 151107 (2011).
[Crossref]

Bowers, J. E.

Briggs, D. P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Cao, W.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Carr, D. W.

Z. Marcet, H. B. Chan, D. W. Carr, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and I. I. Kravchenko, “A half wave retarder made of bilayer subwavelength metallic apertures,” Appl. Phys. Lett. 98(15), 151107 (2011).
[Crossref]

Chan, H. B.

Z. Marcet, H. B. Chan, D. W. Carr, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and I. I. Kravchenko, “A half wave retarder made of bilayer subwavelength metallic apertures,” Appl. Phys. Lett. 98(15), 151107 (2011).
[Crossref]

Chen, H. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Chen, L.

Q. Xu, L. Chen, M. G. Wood, P. Sun, and R. M. Reano, “Electrically tunable optical polarization rotation on a silicon chip using Berry’s phase,” Nat. Commun. 5, 5337 (2014).
[Crossref] [PubMed]

Chen, S.

Z. Li, S. Chen, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, and J. Tian, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10(6), 1703–1711 (2015).
[Crossref]

Cheng, H.

Z. Li, S. Chen, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, and J. Tian, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10(6), 1703–1711 (2015).
[Crossref]

Chiang, Y.

Y. Chiang and T. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013).
[Crossref]

Chin, J. Y.

D. Floess, J. Y. Chin, A. Kawatani, D. Dregely, H. U. Habermeier, T. Weiss, and H. Giessen, “Tunable and switchable polarization rotation with non-reciprocal plasmonic thin films at designated wavelengths,” Light Sci. Appl. 4(5), e284 (2015).
[Crossref]

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Cirelli, R. A.

Z. Marcet, H. B. Chan, D. W. Carr, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and I. I. Kravchenko, “A half wave retarder made of bilayer subwavelength metallic apertures,” Appl. Phys. Lett. 98(15), 151107 (2011).
[Crossref]

Cong, L.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Cui, J.

X. Ma, W. Pan, C. Huang, M. Pu, Y. Wang, B. Zhao, J. Cui, C. Wang, and X. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Cui, T. J.

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

Dai, D.

Dalvit, D. A. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Desmarchelier, R.

R. Desmarchelier, M. Lancry, M. Gecevicius, M. Beresna, P. G. Kazansky, and B. Poumellec, “Achromatic polarization rotator imprinted by ultrafast laser nanostructuring in glass,” Appl. Phys. Lett. 107(18), 181111 (2015).
[Crossref]

Dregely, D.

D. Floess, J. Y. Chin, A. Kawatani, D. Dregely, H. U. Habermeier, T. Weiss, and H. Giessen, “Tunable and switchable polarization rotation with non-reciprocal plasmonic thin films at designated wavelengths,” Light Sci. Appl. 4(5), e284 (2015).
[Crossref]

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Fan, R. H.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Floess, D.

D. Floess, J. Y. Chin, A. Kawatani, D. Dregely, H. U. Habermeier, T. Weiss, and H. Giessen, “Tunable and switchable polarization rotation with non-reciprocal plasmonic thin films at designated wavelengths,” Light Sci. Appl. 4(5), e284 (2015).
[Crossref]

Gecevicius, M.

R. Desmarchelier, M. Lancry, M. Gecevicius, M. Beresna, P. G. Kazansky, and B. Poumellec, “Achromatic polarization rotator imprinted by ultrafast laser nanostructuring in glass,” Appl. Phys. Lett. 107(18), 181111 (2015).
[Crossref]

Giessen, H.

D. Floess, J. Y. Chin, A. Kawatani, D. Dregely, H. U. Habermeier, T. Weiss, and H. Giessen, “Tunable and switchable polarization rotation with non-reciprocal plasmonic thin films at designated wavelengths,” Light Sci. Appl. 4(5), e284 (2015).
[Crossref]

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Gong, S.

Y. Jia, Y. Liu, W. Zhang, and S. Gong, “Ultra-wideband and high-efficiency polarization rotator based on metasurface,” Appl. Phys. Lett. 109(5), 051901 (2016).
[Crossref]

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Gu, J.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Habermeier, H. U.

D. Floess, J. Y. Chin, A. Kawatani, D. Dregely, H. U. Habermeier, T. Weiss, and H. Giessen, “Tunable and switchable polarization rotation with non-reciprocal plasmonic thin films at designated wavelengths,” Light Sci. Appl. 4(5), e284 (2015).
[Crossref]

Han, J.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Haus, H. A.

He, S.

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Hu, Y. H.

S. C. Jiang, X. Xiong, Y. S. Hu, Y. H. Hu, G. B. Ma, R. W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Hu, Y. S.

S. C. Jiang, X. Xiong, Y. S. Hu, Y. H. Hu, G. B. Ma, R. W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Huang, C.

X. Ma, W. Pan, C. Huang, M. Pu, Y. Wang, B. Zhao, J. Cui, C. Wang, and X. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Huang, C. P.

Huang, X. R.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Jia, Y.

Y. Jia, Y. Liu, W. Zhang, and S. Gong, “Ultra-wideband and high-efficiency polarization rotator based on metasurface,” Appl. Phys. Lett. 109(5), 051901 (2016).
[Crossref]

Jiang, S. C.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

S. C. Jiang, X. Xiong, Y. S. Hu, Y. H. Hu, G. B. Ma, R. W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Jiang, Z. H.

Z. H. Jiang, L. Lin, D. Ma, S. Yun, D. H. Werner, Z. Liu, and T. S. Mayer, “Broadband and wide field-of-view plasmonic metasurface-enabled waveplates,” Sci. Rep. 4(1), 7511 (2014).
[Crossref] [PubMed]

Kawatani, A.

D. Floess, J. Y. Chin, A. Kawatani, D. Dregely, H. U. Habermeier, T. Weiss, and H. Giessen, “Tunable and switchable polarization rotation with non-reciprocal plasmonic thin films at designated wavelengths,” Light Sci. Appl. 4(5), e284 (2015).
[Crossref]

Kazansky, P. G.

R. Desmarchelier, M. Lancry, M. Gecevicius, M. Beresna, P. G. Kazansky, and B. Poumellec, “Achromatic polarization rotator imprinted by ultrafast laser nanostructuring in glass,” Appl. Phys. Lett. 107(18), 181111 (2015).
[Crossref]

Kim, Y. J.

Z. Zhuang, Y. J. Kim, and J. S. Patel, “Achromatic linear polarization rotator using twisted nematic liquid crystals,” Appl. Phys. Lett. 76(26), 3995–3997 (2000).
[Crossref]

Klemens, F.

Z. Marcet, H. B. Chan, D. W. Carr, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and I. I. Kravchenko, “A half wave retarder made of bilayer subwavelength metallic apertures,” Appl. Phys. Lett. 98(15), 151107 (2011).
[Crossref]

Kravchenko, I. I.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Z. Marcet, H. B. Chan, D. W. Carr, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and I. I. Kravchenko, “A half wave retarder made of bilayer subwavelength metallic apertures,” Appl. Phys. Lett. 98(15), 151107 (2011).
[Crossref]

Lancry, M.

R. Desmarchelier, M. Lancry, M. Gecevicius, M. Beresna, P. G. Kazansky, and B. Poumellec, “Achromatic polarization rotator imprinted by ultrafast laser nanostructuring in glass,” Appl. Phys. Lett. 107(18), 181111 (2015).
[Crossref]

Li, J.

Z. Li, S. Chen, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, and J. Tian, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10(6), 1703–1711 (2015).
[Crossref]

Li, J. Q.

C. P. Huang, Q. J. Wang, X. G. Yin, Y. Zhang, J. Q. Li, and Y. Y. Zhu, “Break through the limitation of Malus’ law with plasmonic polarizers,” Adv. Opt. Mater. 2(8), 723–728 (2014).
[Crossref]

Li, Z.

Z. Li, S. Chen, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, and J. Tian, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10(6), 1703–1711 (2015).
[Crossref]

Lin, L.

Z. H. Jiang, L. Lin, D. Ma, S. Yun, D. H. Werner, Z. Liu, and T. S. Mayer, “Broadband and wide field-of-view plasmonic metasurface-enabled waveplates,” Sci. Rep. 4(1), 7511 (2014).
[Crossref] [PubMed]

Liu, W.

Z. Li, S. Chen, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, and J. Tian, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10(6), 1703–1711 (2015).
[Crossref]

Liu, Y.

Y. Jia, Y. Liu, W. Zhang, and S. Gong, “Ultra-wideband and high-efficiency polarization rotator based on metasurface,” Appl. Phys. Lett. 109(5), 051901 (2016).
[Crossref]

Liu, Z.

Z. Li, S. Chen, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, and J. Tian, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10(6), 1703–1711 (2015).
[Crossref]

Z. H. Jiang, L. Lin, D. Ma, S. Yun, D. H. Werner, Z. Liu, and T. S. Mayer, “Broadband and wide field-of-view plasmonic metasurface-enabled waveplates,” Sci. Rep. 4(1), 7511 (2014).
[Crossref] [PubMed]

Lu, M.

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

Luo, X.

X. Ma, W. Pan, C. Huang, M. Pu, Y. Wang, B. Zhao, J. Cui, C. Wang, and X. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Ma, D.

Z. H. Jiang, L. Lin, D. Ma, S. Yun, D. H. Werner, Z. Liu, and T. S. Mayer, “Broadband and wide field-of-view plasmonic metasurface-enabled waveplates,” Sci. Rep. 4(1), 7511 (2014).
[Crossref] [PubMed]

Ma, G. B.

S. C. Jiang, X. Xiong, Y. S. Hu, Y. H. Hu, G. B. Ma, R. W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Ma, S. J.

Ma, X.

X. Ma, W. Pan, C. Huang, M. Pu, Y. Wang, B. Zhao, J. Cui, C. Wang, and X. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Mansfield, W. M.

Z. Marcet, H. B. Chan, D. W. Carr, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and I. I. Kravchenko, “A half wave retarder made of bilayer subwavelength metallic apertures,” Appl. Phys. Lett. 98(15), 151107 (2011).
[Crossref]

Marcet, Z.

Z. Marcet, H. B. Chan, D. W. Carr, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and I. I. Kravchenko, “A half wave retarder made of bilayer subwavelength metallic apertures,” Appl. Phys. Lett. 98(15), 151107 (2011).
[Crossref]

Mayer, T. S.

Z. H. Jiang, L. Lin, D. Ma, S. Yun, D. H. Werner, Z. Liu, and T. S. Mayer, “Broadband and wide field-of-view plasmonic metasurface-enabled waveplates,” Sci. Rep. 4(1), 7511 (2014).
[Crossref] [PubMed]

Miner, J. F.

Z. Marcet, H. B. Chan, D. W. Carr, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and I. I. Kravchenko, “A half wave retarder made of bilayer subwavelength metallic apertures,” Appl. Phys. Lett. 98(15), 151107 (2011).
[Crossref]

Mironov, E.

Moitra, P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Oussaid, R.

F. I. Baida, M. Boutria, R. Oussaid, and D. Van Labeke, “Enhanced-transmission metamaterials as anisotropic plates,” Phys. Rev. B 84(3), 035107 (2011).
[Crossref]

Pai, C. S.

Z. Marcet, H. B. Chan, D. W. Carr, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and I. I. Kravchenko, “A half wave retarder made of bilayer subwavelength metallic apertures,” Appl. Phys. Lett. 98(15), 151107 (2011).
[Crossref]

Palashov, O.

Pan, W.

X. Ma, W. Pan, C. Huang, M. Pu, Y. Wang, B. Zhao, J. Cui, C. Wang, and X. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Patel, J. S.

Z. Zhuang, Y. J. Kim, and J. S. Patel, “Achromatic linear polarization rotator using twisted nematic liquid crystals,” Appl. Phys. Lett. 76(26), 3995–3997 (2000).
[Crossref]

Peng, R. W.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

S. C. Jiang, X. Xiong, Y. S. Hu, Y. H. Hu, G. B. Ma, R. W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Poumellec, B.

R. Desmarchelier, M. Lancry, M. Gecevicius, M. Beresna, P. G. Kazansky, and B. Poumellec, “Achromatic polarization rotator imprinted by ultrafast laser nanostructuring in glass,” Appl. Phys. Lett. 107(18), 181111 (2015).
[Crossref]

Pu, M.

X. Ma, W. Pan, C. Huang, M. Pu, Y. Wang, B. Zhao, J. Cui, C. Wang, and X. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Reano, R. M.

Q. Xu, L. Chen, M. G. Wood, P. Sun, and R. M. Reano, “Electrically tunable optical polarization rotation on a silicon chip using Berry’s phase,” Nat. Commun. 5, 5337 (2014).
[Crossref] [PubMed]

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Ren, H.

H. Ren and S. T. Wu, “Liquid-crystal-based linear polarization rotator,” Appl. Phys. Lett. 90(12), 121123 (2007).
[Crossref]

Ren, X. P.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Shen, Z.

J. Wang, Z. Shen, and W. Wu, “Cavity-based high-efficiency and wideband 90° polarization rotator,” Appl. Phys. Lett. 109(15), 153504 (2016).
[Crossref]

Singh, R.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Snetkov, I.

Starobor, A.

Steinle, T.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Stritzker, B.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Sun, C.

S. C. Jiang, X. Xiong, Y. S. Hu, Y. H. Hu, G. B. Ma, R. W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Sun, P.

Q. Xu, L. Chen, M. G. Wood, P. Sun, and R. M. Reano, “Electrically tunable optical polarization rotation on a silicon chip using Berry’s phase,” Nat. Commun. 5, 5337 (2014).
[Crossref] [PubMed]

Taylor, A. J.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Tian, J.

Z. Li, S. Chen, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, and J. Tian, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10(6), 1703–1711 (2015).
[Crossref]

Tian, Z.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Valentine, J.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Van Labeke, D.

F. I. Baida, M. Boutria, R. Oussaid, and D. Van Labeke, “Enhanced-transmission metamaterials as anisotropic plates,” Phys. Rev. B 84(3), 035107 (2011).
[Crossref]

Wang, C.

X. Ma, W. Pan, C. Huang, M. Pu, Y. Wang, B. Zhao, J. Cui, C. Wang, and X. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Wang, J.

J. Wang, Z. Shen, and W. Wu, “Cavity-based high-efficiency and wideband 90° polarization rotator,” Appl. Phys. Lett. 109(15), 153504 (2016).
[Crossref]

Wang, M.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

S. C. Jiang, X. Xiong, Y. S. Hu, Y. H. Hu, G. B. Ma, R. W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Wang, Q. J.

C. P. Huang, Q. J. Wang, X. G. Yin, Y. Zhang, J. Q. Li, and Y. Y. Zhu, “Break through the limitation of Malus’ law with plasmonic polarizers,” Adv. Opt. Mater. 2(8), 723–728 (2014).
[Crossref]

Wang, W.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Wang, Y.

X. Ma, W. Pan, C. Huang, M. Pu, Y. Wang, B. Zhao, J. Cui, C. Wang, and X. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Watts, M. R.

Wehlus, T.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Weiss, T.

D. Floess, J. Y. Chin, A. Kawatani, D. Dregely, H. U. Habermeier, T. Weiss, and H. Giessen, “Tunable and switchable polarization rotation with non-reciprocal plasmonic thin films at designated wavelengths,” Light Sci. Appl. 4(5), e284 (2015).
[Crossref]

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Werner, D. H.

Z. H. Jiang, L. Lin, D. Ma, S. Yun, D. H. Werner, Z. Liu, and T. S. Mayer, “Broadband and wide field-of-view plasmonic metasurface-enabled waveplates,” Sci. Rep. 4(1), 7511 (2014).
[Crossref] [PubMed]

Wood, M. G.

Q. Xu, L. Chen, M. G. Wood, P. Sun, and R. M. Reano, “Electrically tunable optical polarization rotation on a silicon chip using Berry’s phase,” Nat. Commun. 5, 5337 (2014).
[Crossref] [PubMed]

Wu, S.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Wu, S. T.

H. Ren and S. T. Wu, “Liquid-crystal-based linear polarization rotator,” Appl. Phys. Lett. 90(12), 121123 (2007).
[Crossref]

Wu, W.

J. Wang, Z. Shen, and W. Wu, “Cavity-based high-efficiency and wideband 90° polarization rotator,” Appl. Phys. Lett. 109(15), 153504 (2016).
[Crossref]

Xie, B.

Z. Li, S. Chen, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, and J. Tian, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10(6), 1703–1711 (2015).
[Crossref]

Xiong, X.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

S. C. Jiang, X. Xiong, Y. S. Hu, Y. H. Hu, G. B. Ma, R. W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Xu, D. H.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Xu, Q.

Q. Xu, L. Chen, M. G. Wood, P. Sun, and R. M. Reano, “Electrically tunable optical polarization rotation on a silicon chip using Berry’s phase,” Nat. Commun. 5, 5337 (2014).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Yasuhara, R.

Ye, Y.

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

Yen, T.

Y. Chiang and T. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013).
[Crossref]

Yin, X. G.

C. P. Huang, Q. J. Wang, X. G. Yin, Y. Zhang, J. Q. Li, and Y. Y. Zhu, “Break through the limitation of Malus’ law with plasmonic polarizers,” Adv. Opt. Mater. 2(8), 723–728 (2014).
[Crossref]

Yu, P.

Z. Li, S. Chen, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, and J. Tian, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10(6), 1703–1711 (2015).
[Crossref]

Yun, S.

Z. H. Jiang, L. Lin, D. Ma, S. Yun, D. H. Werner, Z. Liu, and T. S. Mayer, “Broadband and wide field-of-view plasmonic metasurface-enabled waveplates,” Sci. Rep. 4(1), 7511 (2014).
[Crossref] [PubMed]

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Zhang, K.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhang, W.

Y. Jia, Y. Liu, W. Zhang, and S. Gong, “Ultra-wideband and high-efficiency polarization rotator based on metasurface,” Appl. Phys. Lett. 109(5), 051901 (2016).
[Crossref]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Zhang, X.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, J. Z. Zhu, C. P. Huang, and S. J. Ma, “Wide-band and high-efficiency 90° polarization rotator based on tri-layered perforated metal films,” J. Lightwave Technol. 35(21), 4817–4823 (2017).
[Crossref]

C. P. Huang, Q. J. Wang, X. G. Yin, Y. Zhang, J. Q. Li, and Y. Y. Zhu, “Break through the limitation of Malus’ law with plasmonic polarizers,” Adv. Opt. Mater. 2(8), 723–728 (2014).
[Crossref]

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhang, Z.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhao, B.

X. Ma, W. Pan, C. Huang, M. Pu, Y. Wang, B. Zhao, J. Cui, C. Wang, and X. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Zhao, Y.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Zhou, L.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhou, Y.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Zhu, J. Z.

Zhu, Y.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhu, Y. Y.

C. P. Huang, Q. J. Wang, X. G. Yin, Y. Zhang, J. Q. Li, and Y. Y. Zhu, “Break through the limitation of Malus’ law with plasmonic polarizers,” Adv. Opt. Mater. 2(8), 723–728 (2014).
[Crossref]

Zhuang, Z.

Z. Zhuang, Y. J. Kim, and J. S. Patel, “Achromatic linear polarization rotator using twisted nematic liquid crystals,” Appl. Phys. Lett. 76(26), 3995–3997 (2000).
[Crossref]

Adv. Mater. (1)

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Adv. Opt. Mater. (2)

C. P. Huang, Q. J. Wang, X. G. Yin, Y. Zhang, J. Q. Li, and Y. Y. Zhu, “Break through the limitation of Malus’ law with plasmonic polarizers,” Adv. Opt. Mater. 2(8), 723–728 (2014).
[Crossref]

X. Ma, W. Pan, C. Huang, M. Pu, Y. Wang, B. Zhao, J. Cui, C. Wang, and X. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Appl. Phys. Lett. (10)

Y. Chiang and T. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013).
[Crossref]

Z. Marcet, H. B. Chan, D. W. Carr, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and I. I. Kravchenko, “A half wave retarder made of bilayer subwavelength metallic apertures,” Appl. Phys. Lett. 98(15), 151107 (2011).
[Crossref]

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

Y. Jia, Y. Liu, W. Zhang, and S. Gong, “Ultra-wideband and high-efficiency polarization rotator based on metasurface,” Appl. Phys. Lett. 109(5), 051901 (2016).
[Crossref]

J. Wang, Z. Shen, and W. Wu, “Cavity-based high-efficiency and wideband 90° polarization rotator,” Appl. Phys. Lett. 109(15), 153504 (2016).
[Crossref]

Z. Zhuang, Y. J. Kim, and J. S. Patel, “Achromatic linear polarization rotator using twisted nematic liquid crystals,” Appl. Phys. Lett. 76(26), 3995–3997 (2000).
[Crossref]

H. Ren and S. T. Wu, “Liquid-crystal-based linear polarization rotator,” Appl. Phys. Lett. 90(12), 121123 (2007).
[Crossref]

R. Desmarchelier, M. Lancry, M. Gecevicius, M. Beresna, P. G. Kazansky, and B. Poumellec, “Achromatic polarization rotator imprinted by ultrafast laser nanostructuring in glass,” Appl. Phys. Lett. 107(18), 181111 (2015).
[Crossref]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

J. Lightwave Technol. (1)

Light Sci. Appl. (1)

D. Floess, J. Y. Chin, A. Kawatani, D. Dregely, H. U. Habermeier, T. Weiss, and H. Giessen, “Tunable and switchable polarization rotation with non-reciprocal plasmonic thin films at designated wavelengths,” Light Sci. Appl. 4(5), e284 (2015).
[Crossref]

Nano Lett. (1)

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Nat. Commun. (3)

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Q. Xu, L. Chen, M. G. Wood, P. Sun, and R. M. Reano, “Electrically tunable optical polarization rotation on a silicon chip using Berry’s phase,” Nat. Commun. 5, 5337 (2014).
[Crossref] [PubMed]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (1)

F. I. Baida, M. Boutria, R. Oussaid, and D. Van Labeke, “Enhanced-transmission metamaterials as anisotropic plates,” Phys. Rev. B 84(3), 035107 (2011).
[Crossref]

Phys. Rev. Lett. (1)

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Phys. Rev. X (1)

S. C. Jiang, X. Xiong, Y. S. Hu, Y. H. Hu, G. B. Ma, R. W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Plasmonics (1)

Z. Li, S. Chen, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, and J. Tian, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10(6), 1703–1711 (2015).
[Crossref]

Sci. Rep. (1)

Z. H. Jiang, L. Lin, D. Ma, S. Yun, D. H. Werner, Z. Liu, and T. S. Mayer, “Broadband and wide field-of-view plasmonic metasurface-enabled waveplates,” Sci. Rep. 4(1), 7511 (2014).
[Crossref] [PubMed]

Science (1)

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Other (2)

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

F. Wikipedia, “Polarizer,” https://en.wikipedia.org/wiki/Polarizer .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the broadband 90-degree polarization rotator.

Fig. 2
Fig. 2

SEM images of the broadband 90-degree polarization rotator sample: (a) SEM image of the first grating layer S1; (b) SEM image of the second grating layer S2; (c) SEM image of the third grating layer S3. In all images, the scale bar is 1 µm. (d) Calculated and (e) measured transmission components Τ // (90°) and T(90°) of this polarization rotator. (f) Calculated and (g) measured reflection components R // and R of this polarization rotator. The electric field of the incident light along Y axis, d1 = d3 = 300 nm, d2 = 350 nm, w = 125 nm, h = 30 nm, and s = 60 nm.

Fig. 3
Fig. 3

The cross-sectional distribution of the electric fields at λ = 1310 nm: (a) |Ex|2 and (b) |Ey|2 30 nm before S1; (c) |Ex|2 and (d) |Ey|2 between S1 and S2; (e) |Ex|2 and (f) |Ey|2 between S2 and S3; (g) |Ex|2 and (h) |Ey|2 30 nm after S3. The electric field of the incident light along Y axis, d1 = d3 = 300 nm, d2 = 350 nm, w = 125 nm, h = 30 nm, and s = 60 nm.

Fig. 4
Fig. 4

The averaged electric fields |Ex|2 and |Ey|2 among the cross section: (a) and (b) 30nm before S1; (c) and (d) between S1 and S2; (e) and (f) between S2 and S3; (g) and (h) 30nm after S3. The electric field of the incident light along Y axis, d1 = d3 = 300 nm, d2 = 350 nm, w = 125 nm, h = 30 nm, and s = 60 nm.

Fig. 5
Fig. 5

Schematic of the broadband integrated polarization rotator.

Fig. 6
Fig. 6

Calculated transmission components: (a) Τ // (Φ) and (b) T(Φ) of the polarization rotator with varying angles Φ from 0° to 90°. The color bars show their intensity levels. The incident light is TM-polarized with respect to the first grating S1, d1 = d3 = 300 nm, d2 = 350 nm, w = 125 nm, h = 30 nm, and s = 60 nm.

Fig. 7
Fig. 7

(a) Photograph of a broadband IPR that combines five rotators with Φ = 30°, 45°, 60°, 90°, and 0°, the white scale bar is 50 µm. SEM images and the measured Τ // (Φ) and T(Φ) of the rotators: (b) and (c) Φ = 0°; (d) and (e) Φ = 30°; (f) and (g) Φ = 45°; (h) and (i) Φ = 60°; (j) and (k) Φ = 90°. The orange scale bar is 1 µm, the incident wave is TM-polarized with respect to the first grating S1, d1 = d3 = 300 nm, d2 = 350 nm, w = 125 nm, h = 30 nm, and s = 60 nm.