Abstract

Lasing on the D1 transition (62P1/2 → 62S1/2) of cesium can be reached in both diode and excimer pumped alkali lasers. The first uses D2 transition (62S1/2 → 62P3/2) for pumping, whereas the second is pumped by photoexcitation of ground state Cs-Ar collisional pairs and subsequent dissociation of diatomic, electronically-excited CsAr molecules (excimers). Despite lasing on the same D1 transition, differences in pumping schemes enables chemical pathways and characteristic timescales unique for each system. We investigate unavoidable plasma formation during operation of both systems side by side in Ar/C2H6/Cs.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photoionization in alkali lasers

R.J. Knize, B.V. Zhdanov, and M.K. Shaffer
Opt. Express 19(8) 7894-7902 (2011)

Laser excitation and ionization of dense atomic vapors

T. B. Lucatorto and T. J. McIlrath
Appl. Opt. 19(23) 3948-3956 (1980)

References

  • View by:
  • |
  • |
  • |

  1. W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett. 28(23), 2336–2338 (2003).
    [Crossref] [PubMed]
  2. B. V. Zhdanov, T. Ehrenreich, and R.J. Knize, “Highly Efficient Optically Pumped Cesium Vapor Laser,” Opt. Commun. 260(2), 696–698 (2006).
    [Crossref]
  3. Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88, 141112 (2006).
    [Crossref]
  4. W. F. Krupke, J. B. Raymond, K. K. Vernon, A. P. Stephen, and T. E. James, “New class of cw high-power diode-pumped alkali lasers (DPALs),” Proc. SPIE 5448, 7–17 (2004).
  5. A. H. Markosyan and M. J. Kushner, “Plasma formation in diode pumped alkali lasers sustained in Cs,” J. Appl. Phys. 120, 193105 (2016).
    [Crossref]
  6. A. H. Markosyan, “On the importance of electron impact processes in excimer pumped alkali laser induced plasmas,” Opt. Lett. 42(21), 4295–4298 (2017).
    [Crossref] [PubMed]
  7. R. M. Measures, “Electron density and temperature elevation of a potassium seeded plasma by laser resonance pumping,” J. Quant. Spect. Rad. Trans. 10, 107 (1970).
    [Crossref]
  8. C. Vadla, V. Horvatic, D. Veza, and K. Kiemax, “Resonantly laser induced plasmas in gases: The role of energy pooling and exothermic collisions in plasma breakdown and heating,” Spect. Acta B 65, 33–45 (2010).
    [Crossref]
  9. Q. Zhu, B. Pan, L. Chen, Y. Wang, and X. Zhang, “Analysis of temperature distributions in diode-pumped alkali vapor lasers,” Opt. Commun. 283(11), 2406 (2010).
    [Crossref]
  10. R. J. Beach, W. F. Krupke, V. K. Kan, and S. A. Payne, “End-pumped continuous-wave alkali vapor lasers: Experiment, model, and power scaling,” J. Opt. Soc. Am. B 21, 2151 (2004).
    [Crossref]
  11. B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R.J. Knize, “Optically pumped cesium-Freon laser,” Opt. Express 16, 748 (2007).
    [Crossref]
  12. Ty. A. Perschbacher, D. A. Hostutler, and T. M. Shay, “High-efficiency diode-pumped rubidium laser: experimental results,” Proc. SPIE 6346, 634607 (2007).
    [Crossref]
  13. B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R.J. Knize, “Rubidium vapor laser pumped by two laser diode arrays,” Opt. Lett. 33, 414 (2008).
    [Crossref] [PubMed]
  14. B. D. Barmashenko, S. Rosenwaks, and M. C. Heaven, “Static diode pumped alkali lasers: Model calculations of the effects of heating, ionization, high electronic excitation and chemical reactions,” Opt. Commun. 292, 123 (2013).
    [Crossref]
  15. A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, and M. C. Heaven, “Multi–Dimensional Modeling of the XPAL System,” Proc. SPIE 7581, 75810L (2010).
    [Crossref]
  16. A. D. Palla, J. T. Verdeyen, and D. L. Carroll, “Exciplex pumped alkali laser (XPAL) modeling and theory,” Proc. SPIE 7751, 77510F (2010).
    [Crossref]
  17. A. D. Palla, D. L. Carroll, J. T. Verdeyen, and M. C. Heaven, “XPAL modeling and theory,” Proc. SPIE 7915, 79150B (2011).
    [Crossref]
  18. A. H. Markosyan, A. Luque, F. Gordillo-Vazquez, and U. Ebert, “PumpKin: A tool to find principal pathways in plasma chemical models,” Comp. Phys. Comm. 185, 2697–2702 (2014).
    [Crossref]
  19. A. H. Markosyan, A. Luque, F. Gordillo-Vazquez, and U. Ebert, “PumpKin: A tool to find principal pathways in plasma chemical models,” www.pumpkin-tool.org (2013).
  20. D. S. Stafford and M. J. Kushner, “O2(1Δ) Production in He/O2 Mixtures in Flowing Low Pressure Plasmas,” J. Appl. Phys. 96, 2451 (2004).
    [Crossref]
  21. O. Zatsarinny, K. Bartschat, N. Yu. Babaeva, and M. J. Kushner, “Electron collisions with cesium atoms–benchmark calculations and application to modeling an excimer-pumped alkali laser,” Plasma Sources Sci. Technol. 23, 035011 (2014).
    [Crossref]

2017 (1)

2016 (1)

A. H. Markosyan and M. J. Kushner, “Plasma formation in diode pumped alkali lasers sustained in Cs,” J. Appl. Phys. 120, 193105 (2016).
[Crossref]

2014 (2)

A. H. Markosyan, A. Luque, F. Gordillo-Vazquez, and U. Ebert, “PumpKin: A tool to find principal pathways in plasma chemical models,” Comp. Phys. Comm. 185, 2697–2702 (2014).
[Crossref]

O. Zatsarinny, K. Bartschat, N. Yu. Babaeva, and M. J. Kushner, “Electron collisions with cesium atoms–benchmark calculations and application to modeling an excimer-pumped alkali laser,” Plasma Sources Sci. Technol. 23, 035011 (2014).
[Crossref]

2013 (1)

B. D. Barmashenko, S. Rosenwaks, and M. C. Heaven, “Static diode pumped alkali lasers: Model calculations of the effects of heating, ionization, high electronic excitation and chemical reactions,” Opt. Commun. 292, 123 (2013).
[Crossref]

2011 (1)

A. D. Palla, D. L. Carroll, J. T. Verdeyen, and M. C. Heaven, “XPAL modeling and theory,” Proc. SPIE 7915, 79150B (2011).
[Crossref]

2010 (4)

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, and M. C. Heaven, “Multi–Dimensional Modeling of the XPAL System,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

A. D. Palla, J. T. Verdeyen, and D. L. Carroll, “Exciplex pumped alkali laser (XPAL) modeling and theory,” Proc. SPIE 7751, 77510F (2010).
[Crossref]

C. Vadla, V. Horvatic, D. Veza, and K. Kiemax, “Resonantly laser induced plasmas in gases: The role of energy pooling and exothermic collisions in plasma breakdown and heating,” Spect. Acta B 65, 33–45 (2010).
[Crossref]

Q. Zhu, B. Pan, L. Chen, Y. Wang, and X. Zhang, “Analysis of temperature distributions in diode-pumped alkali vapor lasers,” Opt. Commun. 283(11), 2406 (2010).
[Crossref]

2008 (1)

2007 (2)

B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R.J. Knize, “Optically pumped cesium-Freon laser,” Opt. Express 16, 748 (2007).
[Crossref]

Ty. A. Perschbacher, D. A. Hostutler, and T. M. Shay, “High-efficiency diode-pumped rubidium laser: experimental results,” Proc. SPIE 6346, 634607 (2007).
[Crossref]

2006 (2)

B. V. Zhdanov, T. Ehrenreich, and R.J. Knize, “Highly Efficient Optically Pumped Cesium Vapor Laser,” Opt. Commun. 260(2), 696–698 (2006).
[Crossref]

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88, 141112 (2006).
[Crossref]

2004 (3)

W. F. Krupke, J. B. Raymond, K. K. Vernon, A. P. Stephen, and T. E. James, “New class of cw high-power diode-pumped alkali lasers (DPALs),” Proc. SPIE 5448, 7–17 (2004).

R. J. Beach, W. F. Krupke, V. K. Kan, and S. A. Payne, “End-pumped continuous-wave alkali vapor lasers: Experiment, model, and power scaling,” J. Opt. Soc. Am. B 21, 2151 (2004).
[Crossref]

D. S. Stafford and M. J. Kushner, “O2(1Δ) Production in He/O2 Mixtures in Flowing Low Pressure Plasmas,” J. Appl. Phys. 96, 2451 (2004).
[Crossref]

2003 (1)

1970 (1)

R. M. Measures, “Electron density and temperature elevation of a potassium seeded plasma by laser resonance pumping,” J. Quant. Spect. Rad. Trans. 10, 107 (1970).
[Crossref]

Babaeva, N. Yu.

O. Zatsarinny, K. Bartschat, N. Yu. Babaeva, and M. J. Kushner, “Electron collisions with cesium atoms–benchmark calculations and application to modeling an excimer-pumped alkali laser,” Plasma Sources Sci. Technol. 23, 035011 (2014).
[Crossref]

Barmashenko, B. D.

B. D. Barmashenko, S. Rosenwaks, and M. C. Heaven, “Static diode pumped alkali lasers: Model calculations of the effects of heating, ionization, high electronic excitation and chemical reactions,” Opt. Commun. 292, 123 (2013).
[Crossref]

Bartschat, K.

O. Zatsarinny, K. Bartschat, N. Yu. Babaeva, and M. J. Kushner, “Electron collisions with cesium atoms–benchmark calculations and application to modeling an excimer-pumped alkali laser,” Plasma Sources Sci. Technol. 23, 035011 (2014).
[Crossref]

Beach, R. J.

Boyadjian, G.

Carroll, D. L.

A. D. Palla, D. L. Carroll, J. T. Verdeyen, and M. C. Heaven, “XPAL modeling and theory,” Proc. SPIE 7915, 79150B (2011).
[Crossref]

A. D. Palla, J. T. Verdeyen, and D. L. Carroll, “Exciplex pumped alkali laser (XPAL) modeling and theory,” Proc. SPIE 7751, 77510F (2010).
[Crossref]

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, and M. C. Heaven, “Multi–Dimensional Modeling of the XPAL System,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

Chen, L.

Q. Zhu, B. Pan, L. Chen, Y. Wang, and X. Zhang, “Analysis of temperature distributions in diode-pumped alkali vapor lasers,” Opt. Commun. 283(11), 2406 (2010).
[Crossref]

Ebert, U.

A. H. Markosyan, A. Luque, F. Gordillo-Vazquez, and U. Ebert, “PumpKin: A tool to find principal pathways in plasma chemical models,” Comp. Phys. Comm. 185, 2697–2702 (2014).
[Crossref]

Eden, J. G.

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, and M. C. Heaven, “Multi–Dimensional Modeling of the XPAL System,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

Ehrenreich, T.

B. V. Zhdanov, T. Ehrenreich, and R.J. Knize, “Highly Efficient Optically Pumped Cesium Vapor Laser,” Opt. Commun. 260(2), 696–698 (2006).
[Crossref]

Fukuoka, H.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88, 141112 (2006).
[Crossref]

Gordillo-Vazquez, F.

A. H. Markosyan, A. Luque, F. Gordillo-Vazquez, and U. Ebert, “PumpKin: A tool to find principal pathways in plasma chemical models,” Comp. Phys. Comm. 185, 2697–2702 (2014).
[Crossref]

Heaven, M. C.

B. D. Barmashenko, S. Rosenwaks, and M. C. Heaven, “Static diode pumped alkali lasers: Model calculations of the effects of heating, ionization, high electronic excitation and chemical reactions,” Opt. Commun. 292, 123 (2013).
[Crossref]

A. D. Palla, D. L. Carroll, J. T. Verdeyen, and M. C. Heaven, “XPAL modeling and theory,” Proc. SPIE 7915, 79150B (2011).
[Crossref]

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, and M. C. Heaven, “Multi–Dimensional Modeling of the XPAL System,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

Hiruma, T.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88, 141112 (2006).
[Crossref]

Horvatic, V.

C. Vadla, V. Horvatic, D. Veza, and K. Kiemax, “Resonantly laser induced plasmas in gases: The role of energy pooling and exothermic collisions in plasma breakdown and heating,” Spect. Acta B 65, 33–45 (2010).
[Crossref]

Hostutler, D. A.

Ty. A. Perschbacher, D. A. Hostutler, and T. M. Shay, “High-efficiency diode-pumped rubidium laser: experimental results,” Proc. SPIE 6346, 634607 (2007).
[Crossref]

James, T. E.

W. F. Krupke, J. B. Raymond, K. K. Vernon, A. P. Stephen, and T. E. James, “New class of cw high-power diode-pumped alkali lasers (DPALs),” Proc. SPIE 5448, 7–17 (2004).

Kan, H.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88, 141112 (2006).
[Crossref]

Kan, V. K.

Kanz, V. K.

Kasamatsu, T.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88, 141112 (2006).
[Crossref]

Kiemax, K.

C. Vadla, V. Horvatic, D. Veza, and K. Kiemax, “Resonantly laser induced plasmas in gases: The role of energy pooling and exothermic collisions in plasma breakdown and heating,” Spect. Acta B 65, 33–45 (2010).
[Crossref]

Knize, R.J.

Krupke, W. F.

Kubomura, H.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88, 141112 (2006).
[Crossref]

Kushner, M. J.

A. H. Markosyan and M. J. Kushner, “Plasma formation in diode pumped alkali lasers sustained in Cs,” J. Appl. Phys. 120, 193105 (2016).
[Crossref]

O. Zatsarinny, K. Bartschat, N. Yu. Babaeva, and M. J. Kushner, “Electron collisions with cesium atoms–benchmark calculations and application to modeling an excimer-pumped alkali laser,” Plasma Sources Sci. Technol. 23, 035011 (2014).
[Crossref]

D. S. Stafford and M. J. Kushner, “O2(1Δ) Production in He/O2 Mixtures in Flowing Low Pressure Plasmas,” J. Appl. Phys. 96, 2451 (2004).
[Crossref]

Luque, A.

A. H. Markosyan, A. Luque, F. Gordillo-Vazquez, and U. Ebert, “PumpKin: A tool to find principal pathways in plasma chemical models,” Comp. Phys. Comm. 185, 2697–2702 (2014).
[Crossref]

Markosyan, A. H.

A. H. Markosyan, “On the importance of electron impact processes in excimer pumped alkali laser induced plasmas,” Opt. Lett. 42(21), 4295–4298 (2017).
[Crossref] [PubMed]

A. H. Markosyan and M. J. Kushner, “Plasma formation in diode pumped alkali lasers sustained in Cs,” J. Appl. Phys. 120, 193105 (2016).
[Crossref]

A. H. Markosyan, A. Luque, F. Gordillo-Vazquez, and U. Ebert, “PumpKin: A tool to find principal pathways in plasma chemical models,” Comp. Phys. Comm. 185, 2697–2702 (2014).
[Crossref]

Matsuoka, S.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88, 141112 (2006).
[Crossref]

Measures, R. M.

R. M. Measures, “Electron density and temperature elevation of a potassium seeded plasma by laser resonance pumping,” J. Quant. Spect. Rad. Trans. 10, 107 (1970).
[Crossref]

Miyajima, H.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88, 141112 (2006).
[Crossref]

Niigaki, M.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88, 141112 (2006).
[Crossref]

Palla, A. D.

A. D. Palla, D. L. Carroll, J. T. Verdeyen, and M. C. Heaven, “XPAL modeling and theory,” Proc. SPIE 7915, 79150B (2011).
[Crossref]

A. D. Palla, J. T. Verdeyen, and D. L. Carroll, “Exciplex pumped alkali laser (XPAL) modeling and theory,” Proc. SPIE 7751, 77510F (2010).
[Crossref]

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, and M. C. Heaven, “Multi–Dimensional Modeling of the XPAL System,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

Pan, B.

Q. Zhu, B. Pan, L. Chen, Y. Wang, and X. Zhang, “Analysis of temperature distributions in diode-pumped alkali vapor lasers,” Opt. Commun. 283(11), 2406 (2010).
[Crossref]

Payne, S. A.

Perschbacher, Ty. A.

Ty. A. Perschbacher, D. A. Hostutler, and T. M. Shay, “High-efficiency diode-pumped rubidium laser: experimental results,” Proc. SPIE 6346, 634607 (2007).
[Crossref]

Raymond, J. B.

W. F. Krupke, J. B. Raymond, K. K. Vernon, A. P. Stephen, and T. E. James, “New class of cw high-power diode-pumped alkali lasers (DPALs),” Proc. SPIE 5448, 7–17 (2004).

Readle, J. D.

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, and M. C. Heaven, “Multi–Dimensional Modeling of the XPAL System,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

Rosenwaks, S.

B. D. Barmashenko, S. Rosenwaks, and M. C. Heaven, “Static diode pumped alkali lasers: Model calculations of the effects of heating, ionization, high electronic excitation and chemical reactions,” Opt. Commun. 292, 123 (2013).
[Crossref]

Shay, T. M.

Ty. A. Perschbacher, D. A. Hostutler, and T. M. Shay, “High-efficiency diode-pumped rubidium laser: experimental results,” Proc. SPIE 6346, 634607 (2007).
[Crossref]

Spinka, T. M.

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, and M. C. Heaven, “Multi–Dimensional Modeling of the XPAL System,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

Stafford, D. S.

D. S. Stafford and M. J. Kushner, “O2(1Δ) Production in He/O2 Mixtures in Flowing Low Pressure Plasmas,” J. Appl. Phys. 96, 2451 (2004).
[Crossref]

Stephen, A. P.

W. F. Krupke, J. B. Raymond, K. K. Vernon, A. P. Stephen, and T. E. James, “New class of cw high-power diode-pumped alkali lasers (DPALs),” Proc. SPIE 5448, 7–17 (2004).

Stooke, A.

Vadla, C.

C. Vadla, V. Horvatic, D. Veza, and K. Kiemax, “Resonantly laser induced plasmas in gases: The role of energy pooling and exothermic collisions in plasma breakdown and heating,” Spect. Acta B 65, 33–45 (2010).
[Crossref]

Verdeyen, J. T.

A. D. Palla, D. L. Carroll, J. T. Verdeyen, and M. C. Heaven, “XPAL modeling and theory,” Proc. SPIE 7915, 79150B (2011).
[Crossref]

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, and M. C. Heaven, “Multi–Dimensional Modeling of the XPAL System,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

A. D. Palla, J. T. Verdeyen, and D. L. Carroll, “Exciplex pumped alkali laser (XPAL) modeling and theory,” Proc. SPIE 7751, 77510F (2010).
[Crossref]

Vernon, K. K.

W. F. Krupke, J. B. Raymond, K. K. Vernon, A. P. Stephen, and T. E. James, “New class of cw high-power diode-pumped alkali lasers (DPALs),” Proc. SPIE 5448, 7–17 (2004).

Veza, D.

C. Vadla, V. Horvatic, D. Veza, and K. Kiemax, “Resonantly laser induced plasmas in gases: The role of energy pooling and exothermic collisions in plasma breakdown and heating,” Spect. Acta B 65, 33–45 (2010).
[Crossref]

Voci, A.

Wagner, C. J.

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, and M. C. Heaven, “Multi–Dimensional Modeling of the XPAL System,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

Wang, Y.

Q. Zhu, B. Pan, L. Chen, Y. Wang, and X. Zhang, “Analysis of temperature distributions in diode-pumped alkali vapor lasers,” Opt. Commun. 283(11), 2406 (2010).
[Crossref]

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88, 141112 (2006).
[Crossref]

Zatsarinny, O.

O. Zatsarinny, K. Bartschat, N. Yu. Babaeva, and M. J. Kushner, “Electron collisions with cesium atoms–benchmark calculations and application to modeling an excimer-pumped alkali laser,” Plasma Sources Sci. Technol. 23, 035011 (2014).
[Crossref]

Zhang, X.

Q. Zhu, B. Pan, L. Chen, Y. Wang, and X. Zhang, “Analysis of temperature distributions in diode-pumped alkali vapor lasers,” Opt. Commun. 283(11), 2406 (2010).
[Crossref]

Zhdanov, B. V.

Zheng, Y.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88, 141112 (2006).
[Crossref]

Zhu, Q.

Q. Zhu, B. Pan, L. Chen, Y. Wang, and X. Zhang, “Analysis of temperature distributions in diode-pumped alkali vapor lasers,” Opt. Commun. 283(11), 2406 (2010).
[Crossref]

Appl. Phys. Lett. (1)

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88, 141112 (2006).
[Crossref]

Comp. Phys. Comm. (1)

A. H. Markosyan, A. Luque, F. Gordillo-Vazquez, and U. Ebert, “PumpKin: A tool to find principal pathways in plasma chemical models,” Comp. Phys. Comm. 185, 2697–2702 (2014).
[Crossref]

J. Appl. Phys. (2)

D. S. Stafford and M. J. Kushner, “O2(1Δ) Production in He/O2 Mixtures in Flowing Low Pressure Plasmas,” J. Appl. Phys. 96, 2451 (2004).
[Crossref]

A. H. Markosyan and M. J. Kushner, “Plasma formation in diode pumped alkali lasers sustained in Cs,” J. Appl. Phys. 120, 193105 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Quant. Spect. Rad. Trans. (1)

R. M. Measures, “Electron density and temperature elevation of a potassium seeded plasma by laser resonance pumping,” J. Quant. Spect. Rad. Trans. 10, 107 (1970).
[Crossref]

Opt. Commun. (3)

B. V. Zhdanov, T. Ehrenreich, and R.J. Knize, “Highly Efficient Optically Pumped Cesium Vapor Laser,” Opt. Commun. 260(2), 696–698 (2006).
[Crossref]

Q. Zhu, B. Pan, L. Chen, Y. Wang, and X. Zhang, “Analysis of temperature distributions in diode-pumped alkali vapor lasers,” Opt. Commun. 283(11), 2406 (2010).
[Crossref]

B. D. Barmashenko, S. Rosenwaks, and M. C. Heaven, “Static diode pumped alkali lasers: Model calculations of the effects of heating, ionization, high electronic excitation and chemical reactions,” Opt. Commun. 292, 123 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Plasma Sources Sci. Technol. (1)

O. Zatsarinny, K. Bartschat, N. Yu. Babaeva, and M. J. Kushner, “Electron collisions with cesium atoms–benchmark calculations and application to modeling an excimer-pumped alkali laser,” Plasma Sources Sci. Technol. 23, 035011 (2014).
[Crossref]

Proc. SPIE (5)

W. F. Krupke, J. B. Raymond, K. K. Vernon, A. P. Stephen, and T. E. James, “New class of cw high-power diode-pumped alkali lasers (DPALs),” Proc. SPIE 5448, 7–17 (2004).

Ty. A. Perschbacher, D. A. Hostutler, and T. M. Shay, “High-efficiency diode-pumped rubidium laser: experimental results,” Proc. SPIE 6346, 634607 (2007).
[Crossref]

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, and M. C. Heaven, “Multi–Dimensional Modeling of the XPAL System,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

A. D. Palla, J. T. Verdeyen, and D. L. Carroll, “Exciplex pumped alkali laser (XPAL) modeling and theory,” Proc. SPIE 7751, 77510F (2010).
[Crossref]

A. D. Palla, D. L. Carroll, J. T. Verdeyen, and M. C. Heaven, “XPAL modeling and theory,” Proc. SPIE 7915, 79150B (2011).
[Crossref]

Spect. Acta B (1)

C. Vadla, V. Horvatic, D. Veza, and K. Kiemax, “Resonantly laser induced plasmas in gases: The role of energy pooling and exothermic collisions in plasma breakdown and heating,” Spect. Acta B 65, 33–45 (2010).
[Crossref]

Other (1)

A. H. Markosyan, A. Luque, F. Gordillo-Vazquez, and U. Ebert, “PumpKin: A tool to find principal pathways in plasma chemical models,” www.pumpkin-tool.org (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Energy level diagram for cesium (Cs), DPAL and XPAL pumping schemes.
Fig. 2
Fig. 2 (a) Density of species responsible for lasing during the first 10 µs of CW pumping for DPAL at 425 K, [C2H6] = 0.15, 600 Torr. (b) Output laser intensity (894 nm) as a function of input pump powers of 4 – 12 kW/cm2.
Fig. 3
Fig. 3 (a) Density of species responsible for lasing during the first 10 µs of CW pumping for XPAL at 425 K, [C2H6] = 0.15, 600 Torr. (b) Output laser intensity (894 nm) as a function of input pump powers of 0.44 – 0.52 MW/cm2.
Fig. 4
Fig. 4 Densities of species responsible for lasing at low frequency (1 kHz) pumping of (a) DPAL and (b) XPAL. The results are at 50th pulse.
Fig. 5
Fig. 5 Densities of species responsible for lasing at high frequency (1 MHz) pumping of (a) DPAL and (b) XPAL. The results are at 50th pulse.
Fig. 6
Fig. 6 894 nm laser intensity for DPAL and XPAL as a function of pump intensity for 1 kHz and 1 MHz pump frequencies.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Cs ( 6 2 P 3 / 2 ) + Ar + M CsAr ( A 2 Π 3 / 2 ) + M 1 × 10 32 cm 6 s 1 ,
Cs ( 6 2 P 3 / 2 ) + Ar + M CsAr ( B 2 Σ 1 / 2 + ) + M 1 × 10 32 cm 6 s 1 ,
Cs ( 6 2 P 1 / 2 ) + Ar + M CsAr ( A 2 Π 1 / 2 ) + M 2 × 10 32 cm 6 s 1 ,
φ p ( 837 nm ) + Cs ( 6 2 S 1 / 2 ) + Ar CsAr ( B 2 Σ 1 / 2 ) 6 × 10 26 cm 6 s 1 ,

Metrics