Abstract

An optical fiber strain sensor based on capillary-taper compensation structure was proposed. The theoretical simulation by using the finite element analysis method shows a matching condition between the capillary length and the interference-cavity length to achieve the zero temperature crosstalk. Meanwhile, the strain sensitivity can also be improved greatly at the matching condition. We then set up an insertion controller system with high accuracy to make sure the interference-cavity length can match the capillary length. Finally the fiber strain sensor with both ultra-low temperature-crosstalk (0.05 pm/°C) and ultra-high sensitivity (214.35 pm/με) was achieved, and the experimental results agreed well with the calculated results. The “ladder-mode” and repeatability experiments showed that the proposed sensor was actually with the ultra-low detection limit of 0.047 µɛ.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Strain force sensor with ultra-high sensitivity based on fiber inline Fabry-Perot micro-cavity plugged by cantilever taper

Yi Liu, Changpeng Lang, Xiaocun Wei, and Shiliang Qu
Opt. Express 25(7) 7797-7806 (2017)

Simultaneous measurement of strain and temperature by two peanut tapers with embedded fiber Bragg grating

Lingya Lv, Sumei Wang, Lan Jiang, Fei Zhang, Zhitao Cao, Peng Wang, Yi Jiang, and Yongfeng Lu
Appl. Opt. 54(36) 10678-10683 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Tanaka and Y. Ohtsuka, “Fiber-optic strain sensor using a dual Mach–Zehnder interferometric configuration,” Opt. Commun. 81(5), 267–272 (1991).
    [Crossref]
  2. C. R. Liao, D. N. Wang, and Y. Wang, “Microfiber in-line Mach-Zehnder interferometer for strain sensing,” Opt. Lett. 38(5), 757–759 (2013).
    [Crossref] [PubMed]
  3. W. Shin, Y. L. Lee, B. Yu, Y.-C. Noh, and T. J. Ahn, “A highly sensitive strain and bending sensor based on in-line-fiber Mach– Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
    [Crossref]
  4. M. Jiang and E. Gerhard, “A simple strain sensor using a thin film as a low-finesse fiber-optic Fabry–Perot interferometer,” Sensor. Actuat. A-Phys. 88(1), 41–46 (2001).
  5. J. Zhang, G. D. Peng, L. Yuan, and W. Sun, “Composite-cavity-based Fabry-Perot interferometric strain sensors,” Opt. Lett. 32(13), 1833–1835 (2007).
    [Crossref] [PubMed]
  6. D. W. Duan, Y. J. Rao, Y. S. Hou, and T. Zhu, “Microbubble based fiber-optic Fabry-Perot interferometer formed by fusion splicing single-mode fibers for strain measurement,” Appl. Opt. 51(8), 1033–1036 (2012).
    [Crossref] [PubMed]
  7. C. Lin, Y. Wang, Y. Huang, C. Liao, Z. Bai, M. Hou, Z. Li, and Y. Wang, “Liquid modified photonic crystal fiber for simultaneous temperature and strain measurement,” Photon. Res. 5(2), 129–133 (2017).
    [Crossref]
  8. M. Hou, Y. Wang, S. Liu, Z. Li, and P. Lu, “Multi-components interferometer based on partially filled dual-core photonic crystal fiber for temperature and strain sensing,” IEEE Sens. J. 16(16), 6192–6196 (2016).
    [Crossref]
  9. S. H. Aref, R. Amezcua-Correa, J. P. Carvalho, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, H. Latifi, F. Farahi, L. A. Ferreira, and J. C. Knight, “Modal interferometer based on hollow-core photonic crystal fiber for strain and temperature measurement,” Opt. Express 17(21), 18669–18675 (2009).
    [Crossref] [PubMed]
  10. C. Chen, A. Laronche, G. Bouwmans, L. Bigot, Y. Quiquempois, and J. Albert, “Sensitivity of photonic crystal fiber modes to temperature, strain and external refractive index,” Opt. Express 16(13), 9645–9653 (2008).
    [Crossref] [PubMed]
  11. J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
    [Crossref]
  12. X. H. Yang, Y. Yu, Q. Zhang, and S. Sun, “A novel temperature-insensitive strain sensor based on tapered fiber grating,” Optoelectron. Lett. 3(5), 342–345 (2007).
    [Crossref]
  13. Z. C. Zhuo and B. S. Ham, “A temperature-insensitive strain sensor using a fiber Bragg grating,” Opt. Fiber Technol. 15(5–6), 442–444 (2009).
    [Crossref]
  14. T. Yang, X. Qiao, Q. Rong, and W. Bao, “Fiber Bragg gratings inscriptions in multimode fiber using 800 nm femtosecond laser for high-temperature strain measurement,” Opt. Laser Technol. 93, 138–142 (2017).
    [Crossref]
  15. T. Wei, Y. Han, Y. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008).
    [Crossref] [PubMed]
  16. Z. L. Ran, Y. J. Rao, J. Zhang, Z. W. Liu, and B. Xu, “A miniature fiber-optic refractive-index sensor based on laser–machined Fabry–Perot interferometer tip,” J. Lightwave Technol. 27(23), 5426–5429 (2009).
    [Crossref]
  17. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [Crossref] [PubMed]
  18. A. D. Kersey, T. A. Berkoff, and W. W. Morey, “Fiber-optic Bragg grating strain sensor with drift-compensated high-resolution interferometric wavelength-shift detection,” Opt. Lett. 18(1), 72–74 (1993).
    [Crossref] [PubMed]
  19. L. Y. Shao, X. Dong, A. P. Zhang, H.-Y. Tam, and S. He, “High-Resolution strain and temperature sensor based on distributed Bragg reflector fiber laser,” IEEE Photonics Technol. Lett. 19(20), 1598–1600 (2007).
    [Crossref]
  20. J. Huang, Z. D. Zhu, and X. Y. Wen, “A diaphragm-type fiber Bragg grating pressure sensor with temperature compensation,” Measurement 46(3), 1041–1046 (2013).
    [Crossref]
  21. Y. P. Wang, L. Xiao, D. N. Wang, and W. Jin, “Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity,” Opt. Lett. 31(23), 3414–3416 (2006).
    [Crossref] [PubMed]
  22. X. Zhang, W. Peng, and Y. Zhang, “Fiber Fabry-Perot interferometer with controllable temperature sensitivity,” Opt. Lett. 40(23), 5658–5661 (2015).
    [Crossref] [PubMed]
  23. F. Gu, H. Yu, W. Fang, and L. Tong, “Nanoimprinted polymer micro/nanofiber Bragg gratings for high-sensitivity strain sensing,” IEEE Photonics Technol. Lett. 25(1), 22–24 (2013).
    [Crossref]
  24. Y. L. Li, Y. B. Wang, and C. J. Wen, “Temperature and strain sensing properties of the zinc coated FBG,” Optik -International Journal for Light and Electron Optics 127(16), 6463–6469 (2016).
    [Crossref]
  25. K. Bhowmik, G. D. Peng, Y. Luo, E. Ambikairajah, V. Lovric, W. R. Walsh, and G. Rajan, “High intrinsic sensitivity etched polymer fiber Bragg grating pair for simultaneous strain and temperature measurements,” IEEE Sens. J. 16(8), 2453–2459 (2016).
    [Crossref]
  26. Y. Wu, Y. Zhang, J. Wu, and P. Yuan, “Temperature-insensitive fiber optic Fabry-Perot interferometer based on special air cavity for transverse load and strain measurements,” Opt. Express 25(8), 9443–9448 (2017).
    [Crossref] [PubMed]
  27. S. Pevec and D. Donlagic, “All-fiber, long-active-length Fabry-Perot strain sensor,” Opt. Express 19(16), 15641–15651 (2011).
    [Crossref] [PubMed]
  28. Y. Liu, C. Lang, X. Wei, and S. Qu, “Strain force sensor with ultra-high sensitivity based on fiber inline Fabry-Perot micro-cavity plugged by cantilever taper,” Opt. Express 25(7), 7797–7806 (2017).
    [Crossref] [PubMed]
  29. B. Sun, Y. Wang, J. Qu, C. Liao, G. Yin, J. He, J. Zhou, J. Tang, S. Liu, Z. Li, and Y. Liu, “Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet,” Opt. Express 23(3), 1906–1911 (2015).
    [Crossref] [PubMed]

2017 (4)

2016 (3)

M. Hou, Y. Wang, S. Liu, Z. Li, and P. Lu, “Multi-components interferometer based on partially filled dual-core photonic crystal fiber for temperature and strain sensing,” IEEE Sens. J. 16(16), 6192–6196 (2016).
[Crossref]

Y. L. Li, Y. B. Wang, and C. J. Wen, “Temperature and strain sensing properties of the zinc coated FBG,” Optik -International Journal for Light and Electron Optics 127(16), 6463–6469 (2016).
[Crossref]

K. Bhowmik, G. D. Peng, Y. Luo, E. Ambikairajah, V. Lovric, W. R. Walsh, and G. Rajan, “High intrinsic sensitivity etched polymer fiber Bragg grating pair for simultaneous strain and temperature measurements,” IEEE Sens. J. 16(8), 2453–2459 (2016).
[Crossref]

2015 (2)

2013 (3)

C. R. Liao, D. N. Wang, and Y. Wang, “Microfiber in-line Mach-Zehnder interferometer for strain sensing,” Opt. Lett. 38(5), 757–759 (2013).
[Crossref] [PubMed]

J. Huang, Z. D. Zhu, and X. Y. Wen, “A diaphragm-type fiber Bragg grating pressure sensor with temperature compensation,” Measurement 46(3), 1041–1046 (2013).
[Crossref]

F. Gu, H. Yu, W. Fang, and L. Tong, “Nanoimprinted polymer micro/nanofiber Bragg gratings for high-sensitivity strain sensing,” IEEE Photonics Technol. Lett. 25(1), 22–24 (2013).
[Crossref]

2012 (1)

2011 (1)

2010 (1)

W. Shin, Y. L. Lee, B. Yu, Y.-C. Noh, and T. J. Ahn, “A highly sensitive strain and bending sensor based on in-line-fiber Mach– Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
[Crossref]

2009 (3)

2008 (3)

2007 (4)

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

X. H. Yang, Y. Yu, Q. Zhang, and S. Sun, “A novel temperature-insensitive strain sensor based on tapered fiber grating,” Optoelectron. Lett. 3(5), 342–345 (2007).
[Crossref]

L. Y. Shao, X. Dong, A. P. Zhang, H.-Y. Tam, and S. He, “High-Resolution strain and temperature sensor based on distributed Bragg reflector fiber laser,” IEEE Photonics Technol. Lett. 19(20), 1598–1600 (2007).
[Crossref]

J. Zhang, G. D. Peng, L. Yuan, and W. Sun, “Composite-cavity-based Fabry-Perot interferometric strain sensors,” Opt. Lett. 32(13), 1833–1835 (2007).
[Crossref] [PubMed]

2006 (1)

2001 (1)

M. Jiang and E. Gerhard, “A simple strain sensor using a thin film as a low-finesse fiber-optic Fabry–Perot interferometer,” Sensor. Actuat. A-Phys. 88(1), 41–46 (2001).

1993 (1)

1991 (1)

S. Tanaka and Y. Ohtsuka, “Fiber-optic strain sensor using a dual Mach–Zehnder interferometric configuration,” Opt. Commun. 81(5), 267–272 (1991).
[Crossref]

Ahn, T. J.

W. Shin, Y. L. Lee, B. Yu, Y.-C. Noh, and T. J. Ahn, “A highly sensitive strain and bending sensor based on in-line-fiber Mach– Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
[Crossref]

Albert, J.

Ambikairajah, E.

K. Bhowmik, G. D. Peng, Y. Luo, E. Ambikairajah, V. Lovric, W. R. Walsh, and G. Rajan, “High intrinsic sensitivity etched polymer fiber Bragg grating pair for simultaneous strain and temperature measurements,” IEEE Sens. J. 16(8), 2453–2459 (2016).
[Crossref]

Amezcua-Correa, R.

Araújo, F. M.

Aref, S. H.

Badenes, G.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

Bai, Z.

Bao, W.

T. Yang, X. Qiao, Q. Rong, and W. Bao, “Fiber Bragg gratings inscriptions in multimode fiber using 800 nm femtosecond laser for high-temperature strain measurement,” Opt. Laser Technol. 93, 138–142 (2017).
[Crossref]

Berkoff, T. A.

Bhowmik, K.

K. Bhowmik, G. D. Peng, Y. Luo, E. Ambikairajah, V. Lovric, W. R. Walsh, and G. Rajan, “High intrinsic sensitivity etched polymer fiber Bragg grating pair for simultaneous strain and temperature measurements,” IEEE Sens. J. 16(8), 2453–2459 (2016).
[Crossref]

Bigot, L.

Bouwmans, G.

Caldas, P.

Carvalho, J. P.

Chen, C.

Dong, X.

L. Y. Shao, X. Dong, A. P. Zhang, H.-Y. Tam, and S. He, “High-Resolution strain and temperature sensor based on distributed Bragg reflector fiber laser,” IEEE Photonics Technol. Lett. 19(20), 1598–1600 (2007).
[Crossref]

Donlagic, D.

Duan, D. W.

Fan, X.

Fang, W.

F. Gu, H. Yu, W. Fang, and L. Tong, “Nanoimprinted polymer micro/nanofiber Bragg gratings for high-sensitivity strain sensing,” IEEE Photonics Technol. Lett. 25(1), 22–24 (2013).
[Crossref]

Farahi, F.

Ferreira, L. A.

Finazzi, V.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

Frazão, O.

Gerhard, E.

M. Jiang and E. Gerhard, “A simple strain sensor using a thin film as a low-finesse fiber-optic Fabry–Perot interferometer,” Sensor. Actuat. A-Phys. 88(1), 41–46 (2001).

Gu, F.

F. Gu, H. Yu, W. Fang, and L. Tong, “Nanoimprinted polymer micro/nanofiber Bragg gratings for high-sensitivity strain sensing,” IEEE Photonics Technol. Lett. 25(1), 22–24 (2013).
[Crossref]

Ham, B. S.

Z. C. Zhuo and B. S. Ham, “A temperature-insensitive strain sensor using a fiber Bragg grating,” Opt. Fiber Technol. 15(5–6), 442–444 (2009).
[Crossref]

Han, Y.

He, J.

He, S.

L. Y. Shao, X. Dong, A. P. Zhang, H.-Y. Tam, and S. He, “High-Resolution strain and temperature sensor based on distributed Bragg reflector fiber laser,” IEEE Photonics Technol. Lett. 19(20), 1598–1600 (2007).
[Crossref]

Hou, M.

C. Lin, Y. Wang, Y. Huang, C. Liao, Z. Bai, M. Hou, Z. Li, and Y. Wang, “Liquid modified photonic crystal fiber for simultaneous temperature and strain measurement,” Photon. Res. 5(2), 129–133 (2017).
[Crossref]

M. Hou, Y. Wang, S. Liu, Z. Li, and P. Lu, “Multi-components interferometer based on partially filled dual-core photonic crystal fiber for temperature and strain sensing,” IEEE Sens. J. 16(16), 6192–6196 (2016).
[Crossref]

Hou, Y. S.

Huang, J.

J. Huang, Z. D. Zhu, and X. Y. Wen, “A diaphragm-type fiber Bragg grating pressure sensor with temperature compensation,” Measurement 46(3), 1041–1046 (2013).
[Crossref]

Huang, Y.

Jiang, M.

M. Jiang and E. Gerhard, “A simple strain sensor using a thin film as a low-finesse fiber-optic Fabry–Perot interferometer,” Sensor. Actuat. A-Phys. 88(1), 41–46 (2001).

Jin, W.

Kersey, A. D.

Knight, J. C.

Lang, C.

Laronche, A.

Latifi, H.

Lee, Y. L.

W. Shin, Y. L. Lee, B. Yu, Y.-C. Noh, and T. J. Ahn, “A highly sensitive strain and bending sensor based on in-line-fiber Mach– Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
[Crossref]

Li, Y.

Li, Y. L.

Y. L. Li, Y. B. Wang, and C. J. Wen, “Temperature and strain sensing properties of the zinc coated FBG,” Optik -International Journal for Light and Electron Optics 127(16), 6463–6469 (2016).
[Crossref]

Li, Z.

Liao, C.

Liao, C. R.

Lin, C.

Liu, S.

M. Hou, Y. Wang, S. Liu, Z. Li, and P. Lu, “Multi-components interferometer based on partially filled dual-core photonic crystal fiber for temperature and strain sensing,” IEEE Sens. J. 16(16), 6192–6196 (2016).
[Crossref]

B. Sun, Y. Wang, J. Qu, C. Liao, G. Yin, J. He, J. Zhou, J. Tang, S. Liu, Z. Li, and Y. Liu, “Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet,” Opt. Express 23(3), 1906–1911 (2015).
[Crossref] [PubMed]

Liu, Y.

Liu, Z. W.

Lovric, V.

K. Bhowmik, G. D. Peng, Y. Luo, E. Ambikairajah, V. Lovric, W. R. Walsh, and G. Rajan, “High intrinsic sensitivity etched polymer fiber Bragg grating pair for simultaneous strain and temperature measurements,” IEEE Sens. J. 16(8), 2453–2459 (2016).
[Crossref]

Lu, P.

M. Hou, Y. Wang, S. Liu, Z. Li, and P. Lu, “Multi-components interferometer based on partially filled dual-core photonic crystal fiber for temperature and strain sensing,” IEEE Sens. J. 16(16), 6192–6196 (2016).
[Crossref]

Luo, Y.

K. Bhowmik, G. D. Peng, Y. Luo, E. Ambikairajah, V. Lovric, W. R. Walsh, and G. Rajan, “High intrinsic sensitivity etched polymer fiber Bragg grating pair for simultaneous strain and temperature measurements,” IEEE Sens. J. 16(8), 2453–2459 (2016).
[Crossref]

Minkovich, V. P.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

Morey, W. W.

Noh, Y.-C.

W. Shin, Y. L. Lee, B. Yu, Y.-C. Noh, and T. J. Ahn, “A highly sensitive strain and bending sensor based on in-line-fiber Mach– Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
[Crossref]

Ohtsuka, Y.

S. Tanaka and Y. Ohtsuka, “Fiber-optic strain sensor using a dual Mach–Zehnder interferometric configuration,” Opt. Commun. 81(5), 267–272 (1991).
[Crossref]

Peng, G. D.

K. Bhowmik, G. D. Peng, Y. Luo, E. Ambikairajah, V. Lovric, W. R. Walsh, and G. Rajan, “High intrinsic sensitivity etched polymer fiber Bragg grating pair for simultaneous strain and temperature measurements,” IEEE Sens. J. 16(8), 2453–2459 (2016).
[Crossref]

J. Zhang, G. D. Peng, L. Yuan, and W. Sun, “Composite-cavity-based Fabry-Perot interferometric strain sensors,” Opt. Lett. 32(13), 1833–1835 (2007).
[Crossref] [PubMed]

Peng, W.

Pevec, S.

Pruneri, V.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

Qiao, X.

T. Yang, X. Qiao, Q. Rong, and W. Bao, “Fiber Bragg gratings inscriptions in multimode fiber using 800 nm femtosecond laser for high-temperature strain measurement,” Opt. Laser Technol. 93, 138–142 (2017).
[Crossref]

Qu, J.

Qu, S.

Quiquempois, Y.

Rajan, G.

K. Bhowmik, G. D. Peng, Y. Luo, E. Ambikairajah, V. Lovric, W. R. Walsh, and G. Rajan, “High intrinsic sensitivity etched polymer fiber Bragg grating pair for simultaneous strain and temperature measurements,” IEEE Sens. J. 16(8), 2453–2459 (2016).
[Crossref]

Ran, Z. L.

Rao, Y. J.

Rong, Q.

T. Yang, X. Qiao, Q. Rong, and W. Bao, “Fiber Bragg gratings inscriptions in multimode fiber using 800 nm femtosecond laser for high-temperature strain measurement,” Opt. Laser Technol. 93, 138–142 (2017).
[Crossref]

Santos, J. L.

Shao, L. Y.

L. Y. Shao, X. Dong, A. P. Zhang, H.-Y. Tam, and S. He, “High-Resolution strain and temperature sensor based on distributed Bragg reflector fiber laser,” IEEE Photonics Technol. Lett. 19(20), 1598–1600 (2007).
[Crossref]

Shin, W.

W. Shin, Y. L. Lee, B. Yu, Y.-C. Noh, and T. J. Ahn, “A highly sensitive strain and bending sensor based on in-line-fiber Mach– Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
[Crossref]

Sun, B.

Sun, S.

X. H. Yang, Y. Yu, Q. Zhang, and S. Sun, “A novel temperature-insensitive strain sensor based on tapered fiber grating,” Optoelectron. Lett. 3(5), 342–345 (2007).
[Crossref]

Sun, W.

Tam, H.-Y.

L. Y. Shao, X. Dong, A. P. Zhang, H.-Y. Tam, and S. He, “High-Resolution strain and temperature sensor based on distributed Bragg reflector fiber laser,” IEEE Photonics Technol. Lett. 19(20), 1598–1600 (2007).
[Crossref]

Tanaka, S.

S. Tanaka and Y. Ohtsuka, “Fiber-optic strain sensor using a dual Mach–Zehnder interferometric configuration,” Opt. Commun. 81(5), 267–272 (1991).
[Crossref]

Tang, J.

Tong, L.

F. Gu, H. Yu, W. Fang, and L. Tong, “Nanoimprinted polymer micro/nanofiber Bragg gratings for high-sensitivity strain sensing,” IEEE Photonics Technol. Lett. 25(1), 22–24 (2013).
[Crossref]

Tsai, H. L.

Villatoro, J.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

Walsh, W. R.

K. Bhowmik, G. D. Peng, Y. Luo, E. Ambikairajah, V. Lovric, W. R. Walsh, and G. Rajan, “High intrinsic sensitivity etched polymer fiber Bragg grating pair for simultaneous strain and temperature measurements,” IEEE Sens. J. 16(8), 2453–2459 (2016).
[Crossref]

Wang, D. N.

Wang, Y.

Wang, Y. B.

Y. L. Li, Y. B. Wang, and C. J. Wen, “Temperature and strain sensing properties of the zinc coated FBG,” Optik -International Journal for Light and Electron Optics 127(16), 6463–6469 (2016).
[Crossref]

Wang, Y. P.

Wei, T.

Wei, X.

Wen, C. J.

Y. L. Li, Y. B. Wang, and C. J. Wen, “Temperature and strain sensing properties of the zinc coated FBG,” Optik -International Journal for Light and Electron Optics 127(16), 6463–6469 (2016).
[Crossref]

Wen, X. Y.

J. Huang, Z. D. Zhu, and X. Y. Wen, “A diaphragm-type fiber Bragg grating pressure sensor with temperature compensation,” Measurement 46(3), 1041–1046 (2013).
[Crossref]

White, I. M.

Wu, J.

Wu, Y.

Xiao, H.

Xiao, L.

Xu, B.

Yang, T.

T. Yang, X. Qiao, Q. Rong, and W. Bao, “Fiber Bragg gratings inscriptions in multimode fiber using 800 nm femtosecond laser for high-temperature strain measurement,” Opt. Laser Technol. 93, 138–142 (2017).
[Crossref]

Yang, X. H.

X. H. Yang, Y. Yu, Q. Zhang, and S. Sun, “A novel temperature-insensitive strain sensor based on tapered fiber grating,” Optoelectron. Lett. 3(5), 342–345 (2007).
[Crossref]

Yin, G.

Yu, B.

W. Shin, Y. L. Lee, B. Yu, Y.-C. Noh, and T. J. Ahn, “A highly sensitive strain and bending sensor based on in-line-fiber Mach– Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
[Crossref]

Yu, H.

F. Gu, H. Yu, W. Fang, and L. Tong, “Nanoimprinted polymer micro/nanofiber Bragg gratings for high-sensitivity strain sensing,” IEEE Photonics Technol. Lett. 25(1), 22–24 (2013).
[Crossref]

Yu, Y.

X. H. Yang, Y. Yu, Q. Zhang, and S. Sun, “A novel temperature-insensitive strain sensor based on tapered fiber grating,” Optoelectron. Lett. 3(5), 342–345 (2007).
[Crossref]

Yuan, L.

Yuan, P.

Zhang, A. P.

L. Y. Shao, X. Dong, A. P. Zhang, H.-Y. Tam, and S. He, “High-Resolution strain and temperature sensor based on distributed Bragg reflector fiber laser,” IEEE Photonics Technol. Lett. 19(20), 1598–1600 (2007).
[Crossref]

Zhang, J.

Zhang, Q.

X. H. Yang, Y. Yu, Q. Zhang, and S. Sun, “A novel temperature-insensitive strain sensor based on tapered fiber grating,” Optoelectron. Lett. 3(5), 342–345 (2007).
[Crossref]

Zhang, X.

Zhang, Y.

Zhou, J.

Zhu, T.

Zhu, Z. D.

J. Huang, Z. D. Zhu, and X. Y. Wen, “A diaphragm-type fiber Bragg grating pressure sensor with temperature compensation,” Measurement 46(3), 1041–1046 (2013).
[Crossref]

Zhuo, Z. C.

Z. C. Zhuo and B. S. Ham, “A temperature-insensitive strain sensor using a fiber Bragg grating,” Opt. Fiber Technol. 15(5–6), 442–444 (2009).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

IEEE Photonics Technol. Lett. (2)

L. Y. Shao, X. Dong, A. P. Zhang, H.-Y. Tam, and S. He, “High-Resolution strain and temperature sensor based on distributed Bragg reflector fiber laser,” IEEE Photonics Technol. Lett. 19(20), 1598–1600 (2007).
[Crossref]

F. Gu, H. Yu, W. Fang, and L. Tong, “Nanoimprinted polymer micro/nanofiber Bragg gratings for high-sensitivity strain sensing,” IEEE Photonics Technol. Lett. 25(1), 22–24 (2013).
[Crossref]

IEEE Sens. J. (2)

K. Bhowmik, G. D. Peng, Y. Luo, E. Ambikairajah, V. Lovric, W. R. Walsh, and G. Rajan, “High intrinsic sensitivity etched polymer fiber Bragg grating pair for simultaneous strain and temperature measurements,” IEEE Sens. J. 16(8), 2453–2459 (2016).
[Crossref]

M. Hou, Y. Wang, S. Liu, Z. Li, and P. Lu, “Multi-components interferometer based on partially filled dual-core photonic crystal fiber for temperature and strain sensing,” IEEE Sens. J. 16(16), 6192–6196 (2016).
[Crossref]

J. Lightwave Technol. (1)

Measurement (1)

J. Huang, Z. D. Zhu, and X. Y. Wen, “A diaphragm-type fiber Bragg grating pressure sensor with temperature compensation,” Measurement 46(3), 1041–1046 (2013).
[Crossref]

Opt. Commun. (2)

S. Tanaka and Y. Ohtsuka, “Fiber-optic strain sensor using a dual Mach–Zehnder interferometric configuration,” Opt. Commun. 81(5), 267–272 (1991).
[Crossref]

W. Shin, Y. L. Lee, B. Yu, Y.-C. Noh, and T. J. Ahn, “A highly sensitive strain and bending sensor based on in-line-fiber Mach– Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
[Crossref]

Opt. Express (8)

S. Pevec and D. Donlagic, “All-fiber, long-active-length Fabry-Perot strain sensor,” Opt. Express 19(16), 15641–15651 (2011).
[Crossref] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

T. Wei, Y. Han, Y. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008).
[Crossref] [PubMed]

C. Chen, A. Laronche, G. Bouwmans, L. Bigot, Y. Quiquempois, and J. Albert, “Sensitivity of photonic crystal fiber modes to temperature, strain and external refractive index,” Opt. Express 16(13), 9645–9653 (2008).
[Crossref] [PubMed]

S. H. Aref, R. Amezcua-Correa, J. P. Carvalho, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, H. Latifi, F. Farahi, L. A. Ferreira, and J. C. Knight, “Modal interferometer based on hollow-core photonic crystal fiber for strain and temperature measurement,” Opt. Express 17(21), 18669–18675 (2009).
[Crossref] [PubMed]

B. Sun, Y. Wang, J. Qu, C. Liao, G. Yin, J. He, J. Zhou, J. Tang, S. Liu, Z. Li, and Y. Liu, “Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet,” Opt. Express 23(3), 1906–1911 (2015).
[Crossref] [PubMed]

Y. Liu, C. Lang, X. Wei, and S. Qu, “Strain force sensor with ultra-high sensitivity based on fiber inline Fabry-Perot micro-cavity plugged by cantilever taper,” Opt. Express 25(7), 7797–7806 (2017).
[Crossref] [PubMed]

Y. Wu, Y. Zhang, J. Wu, and P. Yuan, “Temperature-insensitive fiber optic Fabry-Perot interferometer based on special air cavity for transverse load and strain measurements,” Opt. Express 25(8), 9443–9448 (2017).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

Z. C. Zhuo and B. S. Ham, “A temperature-insensitive strain sensor using a fiber Bragg grating,” Opt. Fiber Technol. 15(5–6), 442–444 (2009).
[Crossref]

Opt. Laser Technol. (1)

T. Yang, X. Qiao, Q. Rong, and W. Bao, “Fiber Bragg gratings inscriptions in multimode fiber using 800 nm femtosecond laser for high-temperature strain measurement,” Opt. Laser Technol. 93, 138–142 (2017).
[Crossref]

Opt. Lett. (5)

Optik -International Journal for Light and Electron Optics (1)

Y. L. Li, Y. B. Wang, and C. J. Wen, “Temperature and strain sensing properties of the zinc coated FBG,” Optik -International Journal for Light and Electron Optics 127(16), 6463–6469 (2016).
[Crossref]

Optoelectron. Lett. (1)

X. H. Yang, Y. Yu, Q. Zhang, and S. Sun, “A novel temperature-insensitive strain sensor based on tapered fiber grating,” Optoelectron. Lett. 3(5), 342–345 (2007).
[Crossref]

Photon. Res. (1)

Sensor. Actuat. A-Phys. (1)

M. Jiang and E. Gerhard, “A simple strain sensor using a thin film as a low-finesse fiber-optic Fabry–Perot interferometer,” Sensor. Actuat. A-Phys. 88(1), 41–46 (2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The schematic diagram of the sensing structure.

Fig. 2
Fig. 2

(a) Three-dimensional model diagram of the capillary. (b) Three-dimensional model diagram of the taper. (c) Simulation results of the capillary with length of 1000 μm. (d) Simulation results of the taper with length of 1000 μm.

Fig. 3
Fig. 3

The relations between the value of ∂L/∂T and the length.

Fig. 4
Fig. 4

(a) The micrograph of taper. (b) The micrograph of SMF with capillary. (c) The structure of accurately inserting controller. (d) The reflection spectra of the cavity variation with the tiny displacement. (e) The relationship between the push distance of three dimensional platform and advance distance of taper.

Fig. 5
Fig. 5

(a) The micrograph of the structure A. (b) The reflection spectrum of the structure A. (c)-(f) The micrographs and the reflection spectra of structures B–E.

Fig. 6
Fig. 6

(a)–(e) The temperature response of the structure A–D. (f) The strain response of the five structures. (g) The contrast between simulation results and experiment results to temperature response.

Fig. 7
Fig. 7

(a) The relationship between the interference wavelength dip shift and the strain for structures A–D. (b) The “ladder-mode” experiments: the structure was loaded with 0.23 με, 0.14 με, 0.047 με and 0 με, respectively to measure the reflection spectra for 20 min at each step. (c) The fluctuation of structure A without loading. (d) The repeatability experiments.

Tables (1)

Tables Icon

Table 1 Detailed parameter values of five fabricated structures

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

λ m = 2n m ( L 1 L 2 )
S T = λ m T = 2n m ( L 1 L 2 ) T = λ m ( L 1 L 2 ) ( L 1 T L 2 T )
L 1 T = L 2 T
f( L 1 ,ΔL)= L 1 ΔL b 1 b 2 ΔL( a 1 a 2 ) a 1 a 1 a 2 =0
λ m F = λ m AE L 1 ΔL
Δ λ m = 2n m ΔL
L= λ m λ m+1 2n( λ m λ m+1 )