Abstract

We demonstrate a technique allowing to develop a fully distributed optical fiber hot-wire anemometer capable of reaching a wind speed uncertainty of ≈ ±0.15m/s (±0.54km/h) at only 60 mW/m of dissipated power in the sensing fiber, and within only four minutes of measurement time. This corresponds to similar uncertainty values than previous papers on distributed optical fiber anemometry but requires two orders of magnitude smaller dissipated power and covers at least one order of magnitude longer distance. This breakthrough is possible thanks to the extreme temperature sensitivity and single-shot performance of chirped-pulse phase-sensitive optical time domain reflectometry (ΦOTDR), together with the availability of metal-coated fibers. To achieve these results, a modulated current is fed through the metal coating of the fiber, causing a modulated temperature variation of the fiber core due to Joule effect. The amplitude of this temperature modulation is strongly dependent on the wind speed at which the fiber is subject. Continuous monitoring of the temperature modulation along the fiber allows to determine the wind speed with singular low power injection requirements. Moreover, this procedure makes the system immune to temperature drifts of the fiber, potentially allowing for a simple field deployment. Being a much less power-hungry scheme, this method also allows for monitoring over much longer distances, in the orders of 10s of km. We expect that this system can have application in dynamic line rating and lateral wind monitoring in railway catenary wires.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fiber-optic anemometer based on single-walled carbon nanotube coated tilted fiber Bragg grating

Yang Zhang, Fang Wang, Zigeng Liu, Zhihui Duan, Wenli Cui, Jie Han, Yiying Gu, Zhenlin Wu, Zhenguo Jing, Changsen Sun, and Wei Peng
Opt. Express 25(20) 24521-24530 (2017)

All-optical fiber anemometer based on laser heated fiber Bragg gratings

Shaorui Gao, A. Ping Zhang, Hwa-Yaw Tam, L. H. Cho, and Chao Lu
Opt. Express 19(11) 10124-10130 (2011)

Distributed flow sensing using optical hot -wire grid

Tong Chen, Qingqing Wang, Botao Zhang, Rongzhang Chen, and Kevin P. Chen
Opt. Express 20(8) 8240-8249 (2012)

References

  • View by:
  • |
  • |
  • |

  1. L. V. King, “On the convection of heat from small cylinders in a stream of fluid: determination of the convection constants of small platinum wires with applications to hot-wire anemometry,” Philos.Trans. Royal Soc. A 214, 373–432 (1914).
    [Crossref]
  2. H. H. Bruun, Hot-wire Anemometry-principles and Signal Analysis (Oxford Science Publications, 1995).
  3. J. Mandle, “System for determining the airspeed of an aircraft,” US Patent 8,718,971 (2014).
  4. R. Gawthorpe, “Wind effects on ground transportation,” Journal of Wind Engineering and Industrial Aerodynamics 52, 73–92 (1994).
    [Crossref]
  5. C. Proppe and C. Wetzel, “Overturning probability of railway vehicles under wind gust loads,” in IUTAM Symposium on Dynamics and Control of Nonlinear Systems with Uncertainty, vol. 2 (Springer, 2007), pp. 23–32.
    [Crossref]
  6. O. Chabart and J.-L. Lilien, “Galloping of electrical lines in wind tunnel facilities,” Journal of Wind Engineering and Industrial Aerodynamics 74, 967–976 (1998).
    [Crossref]
  7. J. Wang and J.-L. Lilien, “Overhead electrical transmission line galloping. A full multi-span 3-DOF model, some applications and design recommendations,” IEEE Trans. Power Del. 13, 909–916 (1998).
    [Crossref]
  8. G.-M. Ma, C.-R. Li, J. Jiang, J.-Y. Liang, Y.-T. Luo, and Y.-C. Cheng, “A passive optical fiber anemometer for wind speed measurement on high-voltage overhead transmission lines,” IEEE Trans. Instrum. Meas. 61, 539–544 (2012).
    [Crossref]
  9. S. D. Foss and R. A. Maraio, “Dynamic line rating in the operating environment,” IEEE Trans. Power Del. 5, 1095–1105 (1990).
    [Crossref]
  10. Y. Yang, D. Divan, R. G. Harley, and T. G. Habetler, “Power line sensornet - A new concept for power grid monitoring,” in Power Engineering Society General Meeting (IEEE, 2006).
  11. A. Michiorri, H.-M. Nguyen, S. Alessandrini, J. B. Bremnes, S. Dierer, E. Ferrero, B.-E. Nygaard, P. Pinson, N. Thomaidis, and S. Uski, “Forecasting for dynamic line rating,” Renew. Sust. Energ. Rev. 52, 1713–1730 (2015).
    [Crossref]
  12. J. Fu, S. Abbott, B. Fox, D. J. Morrow, and S. Abdelkader, “Wind cooling effect on dynamic overhead line ratings,” in Universities Power Engineering Conference (IEEE, 2010), pp. 1–6.
  13. B. Culshaw and A. Kersey, “Fiber-optic sensing: a historical perspective,” J. Lightw. Tech. 26, 1064–1078 (2008).
    [Crossref]
  14. L. Palmieri and L. Schenato, “Distributed optical fiber sensing based on Rayleigh scattering,” The Open Optics Journal 7, 104–127 (2013).
    [Crossref]
  15. L. Schenato, A. Pasuto, A. Galtarossa, and L. Palmieri, “Optical fiber load sensor based on a semi-auxetic structure: a proof of concept,” in Sixth European Workshop on Optical Fibre Sensors, (International Society for Optics and Photonics, 2016), pp. 99160N.
  16. L. X. Chen, X. G. Huang, J. H. Zhu, G. C. Li, and S. Lan, “Fiber magnetic-field sensor based on nanoparticle magnetic fluid and Fresnel reflection,” Opt. Lett. 36, 2761–2763 (2011).
    [Crossref] [PubMed]
  17. L. Xia, L. Li, W. Li, T. Kou, and D. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sensors and Actuators A: Physical 190, 1–5 (2013).
    [Crossref]
  18. M. Calcerrada, C. García-Ruiz, and M. González-Herráez, “Chemical and biochemical sensing applications of microstructured optical fiber-based systems,” Las. Photon. Rev. 9, 604–627 (2015).
    [Crossref]
  19. Y. Antman, A. Clain, Y. London, and A. Zadok, “Optomechanical sensing of liquids outside standard fibers using forward stimulated Brillouin scattering,” Optica 3, 510–516 (2016).
    [Crossref]
  20. A. Garcia-Ruiz, J. Pastor-Graells, H. F. Martins, K. H. Tow, L. Thévenaz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Distributed photothermal spectroscopy in microstructured optical fibers: towards high-resolution mapping of gas presence over long distances,” Opt. Express 25, 1789–1805 (2017).
    [Crossref]
  21. J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martín-López, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24, 13121–13133 (2016).
    [Crossref] [PubMed]
  22. A. Garcia-Ruiz, H. Martins, J. Pastor-Graells, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-Shot True Distributed Strain Variation Measurements Over >10 km Using Phase-Sensitive OTDR with Chirped Pulses,” in Asia-Pacific Optical Sensors Conference (Optical Society of America, 2016), pp. Th3A–2.
    [Crossref]
  23. T. L. Bergman, F. P. Incropera, D. P. DeWitt, and A. S. Lavine, Fundamentals of Heat and Mass Transfer (John Wiley & Sons, 2011).
  24. V. T. Morgan, “The overall convective heat transfer from smooth circular cylinders,” Adv. in Heat Trans. 11, 199–264 (1975).
    [Crossref]
  25. A. Abdel-Rahman, “On the yaw-angle characteristics of hot-wire anemometers,” Flow Measurement and Instrumentation 6, 271–278 (1995).
    [Crossref]
  26. L. Di Mare, T. Jelly, and I. Day, “Angular response of hot wire probes,” Meas. Sci. Tech. 28, 035303 (2017).
    [Crossref]
  27. T. Chen, Q. Wang, B. Zhang, R. Chen, and K. P. Chen, “Distributed flow sensing using optical hot-wire grid,” Opt. Express 20, 8240–8249 (2012).
    [Crossref] [PubMed]
  28. G. Pitt, A. Prabakaran, R. Williamson, D. Wilson, and D. Batchelder, “Optical fibre flowmeters,” in 2nd International Conference on Optical Fiber Sensors (International Society for Optics and Photonics, 1984), pp. 23–28.
  29. G. Liu, W. Hou, W. Qiao, and M. Han, “Fast-response fiber-optic anemometer with temperature self-compensation,” Opt. Express 23, 13562–13570 (2015).
    [Crossref] [PubMed]
  30. S. Gao, A. P. Zhang, H.-Y. Tam, L. Cho, and C. Lu, “All-optical fiber anemometer based on laser heated fiber Bragg gratings,” Opt. Express 19, 10124–10130 (2011).
    [Crossref] [PubMed]
  31. Y. Liu, W. Peng, X. Zhang, Y. Liang, Z. Gong, and M. Han, “Fiber-optic anemometer based on distributed Bragg reflector fiber laser technology,” IEEE Photon. Tech. Lett. 25, 1246–1249 (2013).
    [Crossref]
  32. X. Wang, X. Dong, Y. Zhou, K. Ni, J. Cheng, and Z. Chen, “Hot-wire anemometer based on silver-coated fiber Bragg grating assisted by no-core fiber,” IEEE Photon. Tech. Lett. 25, 2458–2461 (2013).
    [Crossref]
  33. L. C. Bobb, J. P. Davis, A. Samouris, and D. C. Larson, “An optical fiber hot-wire anemometer,” in “OE/FIBERS’89,” (International Society for Optics and Photonics, 1990), pp. 567–572.
  34. M. T. Wylie, A. W. Brown, and B. G. Colpitts, “Distributed hot-wire anemometry based on Brillouin optical time-domain analysis,” Opt. Express 20, 15669–15678 (2012).
    [Crossref] [PubMed]
  35. L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed strain and vibration sensing system based on phase-sensitive OTDR,” IEEE Photon. Tech. Lett. 27, 1884–1887 (2015).
    [Crossref]
  36. Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightw. Tech. 27, 1142–1146 (2009).
    [Crossref]
  37. G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The Development of an ΦOTDR System for Quantitative Vibration Measurement,” IEEE Photon. Tech. Lett. 27, 1349–1352 (2015).
    [Crossref]
  38. A. Garcia-Ruiz, J. Pastor-Graells, H. F. Martins, S. Martin-Lopez, and M. Gonzalez-Herraez, “Speckle Analysis Method for Distributed Detection of Temperature Gradients With ΦOTDR,” IEEE Photon. Tech. Lett. 28, 2000–2003 (2016).
    [Crossref]
  39. S. Liehr, Y. S. Muanenda, S. Münzenberger, and K. Krebber, “Relative change measurement of physical quantities using dual-wavelength coherent OTDR,” Opt. Express 25, 720–729 (2017).
    [Crossref] [PubMed]
  40. G. Failleau, O. Beaumont, R. Razouk, S. Delepine-Lesoille, M. Landolt, B. Courthial, J. Hénault, F. Martinot, J. Bertrand, and B. Hay, “A metrological comparison of Raman-distributed temperature sensors,” Measurement 116, 18–24 (2018).
    [Crossref]
  41. M. Wang, H. Wu, M. Tang, Z. Zhao, Y. Dang, C. Zhao, R. Liao, W. Chen, S. Fu, C. Yang, W. Tong, P. P. Shum, and D. Liu, “Few-mode fiber based Raman distributed temperature sensing,” Opt. Express 25, 4907–4916 (2017).
    [Crossref] [PubMed]
  42. X. Angulo-Vinuesa, A. Dominguez-Lopez, A. Lopez-Gil, J. D. Ania-Castañón, S. Martin-Lopez, and M. Gonzalez-Herraez, “Limits of BOTDA range extension techniques,” IEEE Sensors 16, 3387–3395 (2015).
  43. Y. Dang, Z. Zhao, M. Tang, C. Zhao, L. Gan, S. Fu, T. Liu, W. Tong, P. P. Shum, and D. Liu, “Towards large dynamic range and ultrahigh measurement resolution in distributed fiber sensing based on multicore fiber,” Opt. Express 25, 20183–20193 (2017).
    [Crossref] [PubMed]
  44. J. Pastor-Graells, J. Nuño, M. R. Fernández-Ruiz, A. Garcia-Ruiz, H. F. Martins, S. Martin-Lopez, and M. Gonzalez-Herraez, “Chirped-pulse Phase-sensitive Reflectometer Assisted by First Order Raman Amplification,” J. Lightw. Tech. 35, 4677–4683 (2017).
    [Crossref]
  45. H. Zhu, C. Pan, and X. Sun, “Vibration pattern recognition and classification in OTDR based distributed optical-fiber vibration sensing system,” in “SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring” (International Society for Optics and Photonics, 2014), pp. 906205.
  46. Q. Sun, H. Feng, X. Yan, and Z. Zeng, “Recognition of a phase-sensitivity OTDR sensing system based on morphologic feature extraction,” Sensors 15, 15179–15197 (2015).
    [Crossref] [PubMed]

2018 (1)

G. Failleau, O. Beaumont, R. Razouk, S. Delepine-Lesoille, M. Landolt, B. Courthial, J. Hénault, F. Martinot, J. Bertrand, and B. Hay, “A metrological comparison of Raman-distributed temperature sensors,” Measurement 116, 18–24 (2018).
[Crossref]

2017 (6)

2016 (3)

2015 (7)

G. Liu, W. Hou, W. Qiao, and M. Han, “Fast-response fiber-optic anemometer with temperature self-compensation,” Opt. Express 23, 13562–13570 (2015).
[Crossref] [PubMed]

Q. Sun, H. Feng, X. Yan, and Z. Zeng, “Recognition of a phase-sensitivity OTDR sensing system based on morphologic feature extraction,” Sensors 15, 15179–15197 (2015).
[Crossref] [PubMed]

X. Angulo-Vinuesa, A. Dominguez-Lopez, A. Lopez-Gil, J. D. Ania-Castañón, S. Martin-Lopez, and M. Gonzalez-Herraez, “Limits of BOTDA range extension techniques,” IEEE Sensors 16, 3387–3395 (2015).

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The Development of an ΦOTDR System for Quantitative Vibration Measurement,” IEEE Photon. Tech. Lett. 27, 1349–1352 (2015).
[Crossref]

L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed strain and vibration sensing system based on phase-sensitive OTDR,” IEEE Photon. Tech. Lett. 27, 1884–1887 (2015).
[Crossref]

M. Calcerrada, C. García-Ruiz, and M. González-Herráez, “Chemical and biochemical sensing applications of microstructured optical fiber-based systems,” Las. Photon. Rev. 9, 604–627 (2015).
[Crossref]

A. Michiorri, H.-M. Nguyen, S. Alessandrini, J. B. Bremnes, S. Dierer, E. Ferrero, B.-E. Nygaard, P. Pinson, N. Thomaidis, and S. Uski, “Forecasting for dynamic line rating,” Renew. Sust. Energ. Rev. 52, 1713–1730 (2015).
[Crossref]

2013 (4)

L. Palmieri and L. Schenato, “Distributed optical fiber sensing based on Rayleigh scattering,” The Open Optics Journal 7, 104–127 (2013).
[Crossref]

L. Xia, L. Li, W. Li, T. Kou, and D. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sensors and Actuators A: Physical 190, 1–5 (2013).
[Crossref]

Y. Liu, W. Peng, X. Zhang, Y. Liang, Z. Gong, and M. Han, “Fiber-optic anemometer based on distributed Bragg reflector fiber laser technology,” IEEE Photon. Tech. Lett. 25, 1246–1249 (2013).
[Crossref]

X. Wang, X. Dong, Y. Zhou, K. Ni, J. Cheng, and Z. Chen, “Hot-wire anemometer based on silver-coated fiber Bragg grating assisted by no-core fiber,” IEEE Photon. Tech. Lett. 25, 2458–2461 (2013).
[Crossref]

2012 (3)

2011 (2)

2009 (1)

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightw. Tech. 27, 1142–1146 (2009).
[Crossref]

2008 (1)

B. Culshaw and A. Kersey, “Fiber-optic sensing: a historical perspective,” J. Lightw. Tech. 26, 1064–1078 (2008).
[Crossref]

1998 (2)

O. Chabart and J.-L. Lilien, “Galloping of electrical lines in wind tunnel facilities,” Journal of Wind Engineering and Industrial Aerodynamics 74, 967–976 (1998).
[Crossref]

J. Wang and J.-L. Lilien, “Overhead electrical transmission line galloping. A full multi-span 3-DOF model, some applications and design recommendations,” IEEE Trans. Power Del. 13, 909–916 (1998).
[Crossref]

1995 (1)

A. Abdel-Rahman, “On the yaw-angle characteristics of hot-wire anemometers,” Flow Measurement and Instrumentation 6, 271–278 (1995).
[Crossref]

1994 (1)

R. Gawthorpe, “Wind effects on ground transportation,” Journal of Wind Engineering and Industrial Aerodynamics 52, 73–92 (1994).
[Crossref]

1990 (1)

S. D. Foss and R. A. Maraio, “Dynamic line rating in the operating environment,” IEEE Trans. Power Del. 5, 1095–1105 (1990).
[Crossref]

1975 (1)

V. T. Morgan, “The overall convective heat transfer from smooth circular cylinders,” Adv. in Heat Trans. 11, 199–264 (1975).
[Crossref]

1914 (1)

L. V. King, “On the convection of heat from small cylinders in a stream of fluid: determination of the convection constants of small platinum wires with applications to hot-wire anemometry,” Philos.Trans. Royal Soc. A 214, 373–432 (1914).
[Crossref]

Abbott, S.

J. Fu, S. Abbott, B. Fox, D. J. Morrow, and S. Abdelkader, “Wind cooling effect on dynamic overhead line ratings,” in Universities Power Engineering Conference (IEEE, 2010), pp. 1–6.

Abdelkader, S.

J. Fu, S. Abbott, B. Fox, D. J. Morrow, and S. Abdelkader, “Wind cooling effect on dynamic overhead line ratings,” in Universities Power Engineering Conference (IEEE, 2010), pp. 1–6.

Abdel-Rahman, A.

A. Abdel-Rahman, “On the yaw-angle characteristics of hot-wire anemometers,” Flow Measurement and Instrumentation 6, 271–278 (1995).
[Crossref]

Alessandrini, S.

A. Michiorri, H.-M. Nguyen, S. Alessandrini, J. B. Bremnes, S. Dierer, E. Ferrero, B.-E. Nygaard, P. Pinson, N. Thomaidis, and S. Uski, “Forecasting for dynamic line rating,” Renew. Sust. Energ. Rev. 52, 1713–1730 (2015).
[Crossref]

Angulo-Vinuesa, X.

X. Angulo-Vinuesa, A. Dominguez-Lopez, A. Lopez-Gil, J. D. Ania-Castañón, S. Martin-Lopez, and M. Gonzalez-Herraez, “Limits of BOTDA range extension techniques,” IEEE Sensors 16, 3387–3395 (2015).

Ania-Castañón, J. D.

X. Angulo-Vinuesa, A. Dominguez-Lopez, A. Lopez-Gil, J. D. Ania-Castañón, S. Martin-Lopez, and M. Gonzalez-Herraez, “Limits of BOTDA range extension techniques,” IEEE Sensors 16, 3387–3395 (2015).

Antman, Y.

Batchelder, D.

G. Pitt, A. Prabakaran, R. Williamson, D. Wilson, and D. Batchelder, “Optical fibre flowmeters,” in 2nd International Conference on Optical Fiber Sensors (International Society for Optics and Photonics, 1984), pp. 23–28.

Beaumont, O.

G. Failleau, O. Beaumont, R. Razouk, S. Delepine-Lesoille, M. Landolt, B. Courthial, J. Hénault, F. Martinot, J. Bertrand, and B. Hay, “A metrological comparison of Raman-distributed temperature sensors,” Measurement 116, 18–24 (2018).
[Crossref]

Bergman, T. L.

T. L. Bergman, F. P. Incropera, D. P. DeWitt, and A. S. Lavine, Fundamentals of Heat and Mass Transfer (John Wiley & Sons, 2011).

Bertrand, J.

G. Failleau, O. Beaumont, R. Razouk, S. Delepine-Lesoille, M. Landolt, B. Courthial, J. Hénault, F. Martinot, J. Bertrand, and B. Hay, “A metrological comparison of Raman-distributed temperature sensors,” Measurement 116, 18–24 (2018).
[Crossref]

Bobb, L. C.

L. C. Bobb, J. P. Davis, A. Samouris, and D. C. Larson, “An optical fiber hot-wire anemometer,” in “OE/FIBERS’89,” (International Society for Optics and Photonics, 1990), pp. 567–572.

Bremnes, J. B.

A. Michiorri, H.-M. Nguyen, S. Alessandrini, J. B. Bremnes, S. Dierer, E. Ferrero, B.-E. Nygaard, P. Pinson, N. Thomaidis, and S. Uski, “Forecasting for dynamic line rating,” Renew. Sust. Energ. Rev. 52, 1713–1730 (2015).
[Crossref]

Brown, A. W.

Bruun, H. H.

H. H. Bruun, Hot-wire Anemometry-principles and Signal Analysis (Oxford Science Publications, 1995).

Calcerrada, M.

M. Calcerrada, C. García-Ruiz, and M. González-Herráez, “Chemical and biochemical sensing applications of microstructured optical fiber-based systems,” Las. Photon. Rev. 9, 604–627 (2015).
[Crossref]

Chabart, O.

O. Chabart and J.-L. Lilien, “Galloping of electrical lines in wind tunnel facilities,” Journal of Wind Engineering and Industrial Aerodynamics 74, 967–976 (1998).
[Crossref]

Chen, K. P.

Chen, L. X.

Chen, R.

Chen, T.

Chen, W.

Chen, Z.

X. Wang, X. Dong, Y. Zhou, K. Ni, J. Cheng, and Z. Chen, “Hot-wire anemometer based on silver-coated fiber Bragg grating assisted by no-core fiber,” IEEE Photon. Tech. Lett. 25, 2458–2461 (2013).
[Crossref]

Cheng, J.

X. Wang, X. Dong, Y. Zhou, K. Ni, J. Cheng, and Z. Chen, “Hot-wire anemometer based on silver-coated fiber Bragg grating assisted by no-core fiber,” IEEE Photon. Tech. Lett. 25, 2458–2461 (2013).
[Crossref]

Cheng, Y.-C.

G.-M. Ma, C.-R. Li, J. Jiang, J.-Y. Liang, Y.-T. Luo, and Y.-C. Cheng, “A passive optical fiber anemometer for wind speed measurement on high-voltage overhead transmission lines,” IEEE Trans. Instrum. Meas. 61, 539–544 (2012).
[Crossref]

Cho, L.

Clain, A.

Colpitts, B. G.

Courthial, B.

G. Failleau, O. Beaumont, R. Razouk, S. Delepine-Lesoille, M. Landolt, B. Courthial, J. Hénault, F. Martinot, J. Bertrand, and B. Hay, “A metrological comparison of Raman-distributed temperature sensors,” Measurement 116, 18–24 (2018).
[Crossref]

Culshaw, B.

B. Culshaw and A. Kersey, “Fiber-optic sensing: a historical perspective,” J. Lightw. Tech. 26, 1064–1078 (2008).
[Crossref]

Dang, Y.

Davis, J. P.

L. C. Bobb, J. P. Davis, A. Samouris, and D. C. Larson, “An optical fiber hot-wire anemometer,” in “OE/FIBERS’89,” (International Society for Optics and Photonics, 1990), pp. 567–572.

Day, I.

L. Di Mare, T. Jelly, and I. Day, “Angular response of hot wire probes,” Meas. Sci. Tech. 28, 035303 (2017).
[Crossref]

Delepine-Lesoille, S.

G. Failleau, O. Beaumont, R. Razouk, S. Delepine-Lesoille, M. Landolt, B. Courthial, J. Hénault, F. Martinot, J. Bertrand, and B. Hay, “A metrological comparison of Raman-distributed temperature sensors,” Measurement 116, 18–24 (2018).
[Crossref]

DeWitt, D. P.

T. L. Bergman, F. P. Incropera, D. P. DeWitt, and A. S. Lavine, Fundamentals of Heat and Mass Transfer (John Wiley & Sons, 2011).

Di Mare, L.

L. Di Mare, T. Jelly, and I. Day, “Angular response of hot wire probes,” Meas. Sci. Tech. 28, 035303 (2017).
[Crossref]

Dierer, S.

A. Michiorri, H.-M. Nguyen, S. Alessandrini, J. B. Bremnes, S. Dierer, E. Ferrero, B.-E. Nygaard, P. Pinson, N. Thomaidis, and S. Uski, “Forecasting for dynamic line rating,” Renew. Sust. Energ. Rev. 52, 1713–1730 (2015).
[Crossref]

Divan, D.

Y. Yang, D. Divan, R. G. Harley, and T. G. Habetler, “Power line sensornet - A new concept for power grid monitoring,” in Power Engineering Society General Meeting (IEEE, 2006).

Dominguez-Lopez, A.

X. Angulo-Vinuesa, A. Dominguez-Lopez, A. Lopez-Gil, J. D. Ania-Castañón, S. Martin-Lopez, and M. Gonzalez-Herraez, “Limits of BOTDA range extension techniques,” IEEE Sensors 16, 3387–3395 (2015).

Dong, X.

X. Wang, X. Dong, Y. Zhou, K. Ni, J. Cheng, and Z. Chen, “Hot-wire anemometer based on silver-coated fiber Bragg grating assisted by no-core fiber,” IEEE Photon. Tech. Lett. 25, 2458–2461 (2013).
[Crossref]

Failleau, G.

G. Failleau, O. Beaumont, R. Razouk, S. Delepine-Lesoille, M. Landolt, B. Courthial, J. Hénault, F. Martinot, J. Bertrand, and B. Hay, “A metrological comparison of Raman-distributed temperature sensors,” Measurement 116, 18–24 (2018).
[Crossref]

Feng, H.

Q. Sun, H. Feng, X. Yan, and Z. Zeng, “Recognition of a phase-sensitivity OTDR sensing system based on morphologic feature extraction,” Sensors 15, 15179–15197 (2015).
[Crossref] [PubMed]

Fernández-Ruiz, M. R.

J. Pastor-Graells, J. Nuño, M. R. Fernández-Ruiz, A. Garcia-Ruiz, H. F. Martins, S. Martin-Lopez, and M. Gonzalez-Herraez, “Chirped-pulse Phase-sensitive Reflectometer Assisted by First Order Raman Amplification,” J. Lightw. Tech. 35, 4677–4683 (2017).
[Crossref]

Ferrero, E.

A. Michiorri, H.-M. Nguyen, S. Alessandrini, J. B. Bremnes, S. Dierer, E. Ferrero, B.-E. Nygaard, P. Pinson, N. Thomaidis, and S. Uski, “Forecasting for dynamic line rating,” Renew. Sust. Energ. Rev. 52, 1713–1730 (2015).
[Crossref]

Foss, S. D.

S. D. Foss and R. A. Maraio, “Dynamic line rating in the operating environment,” IEEE Trans. Power Del. 5, 1095–1105 (1990).
[Crossref]

Fox, B.

J. Fu, S. Abbott, B. Fox, D. J. Morrow, and S. Abdelkader, “Wind cooling effect on dynamic overhead line ratings,” in Universities Power Engineering Conference (IEEE, 2010), pp. 1–6.

Fu, J.

J. Fu, S. Abbott, B. Fox, D. J. Morrow, and S. Abdelkader, “Wind cooling effect on dynamic overhead line ratings,” in Universities Power Engineering Conference (IEEE, 2010), pp. 1–6.

Fu, S.

Galtarossa, A.

L. Schenato, A. Pasuto, A. Galtarossa, and L. Palmieri, “Optical fiber load sensor based on a semi-auxetic structure: a proof of concept,” in Sixth European Workshop on Optical Fibre Sensors, (International Society for Optics and Photonics, 2016), pp. 99160N.

Gan, L.

Gao, S.

Garcia-Ruiz, A.

J. Pastor-Graells, J. Nuño, M. R. Fernández-Ruiz, A. Garcia-Ruiz, H. F. Martins, S. Martin-Lopez, and M. Gonzalez-Herraez, “Chirped-pulse Phase-sensitive Reflectometer Assisted by First Order Raman Amplification,” J. Lightw. Tech. 35, 4677–4683 (2017).
[Crossref]

A. Garcia-Ruiz, J. Pastor-Graells, H. F. Martins, K. H. Tow, L. Thévenaz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Distributed photothermal spectroscopy in microstructured optical fibers: towards high-resolution mapping of gas presence over long distances,” Opt. Express 25, 1789–1805 (2017).
[Crossref]

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martín-López, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24, 13121–13133 (2016).
[Crossref] [PubMed]

A. Garcia-Ruiz, J. Pastor-Graells, H. F. Martins, S. Martin-Lopez, and M. Gonzalez-Herraez, “Speckle Analysis Method for Distributed Detection of Temperature Gradients With ΦOTDR,” IEEE Photon. Tech. Lett. 28, 2000–2003 (2016).
[Crossref]

A. Garcia-Ruiz, H. Martins, J. Pastor-Graells, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-Shot True Distributed Strain Variation Measurements Over >10 km Using Phase-Sensitive OTDR with Chirped Pulses,” in Asia-Pacific Optical Sensors Conference (Optical Society of America, 2016), pp. Th3A–2.
[Crossref]

García-Ruiz, C.

M. Calcerrada, C. García-Ruiz, and M. González-Herráez, “Chemical and biochemical sensing applications of microstructured optical fiber-based systems,” Las. Photon. Rev. 9, 604–627 (2015).
[Crossref]

Gawthorpe, R.

R. Gawthorpe, “Wind effects on ground transportation,” Journal of Wind Engineering and Industrial Aerodynamics 52, 73–92 (1994).
[Crossref]

Gong, Z.

Y. Liu, W. Peng, X. Zhang, Y. Liang, Z. Gong, and M. Han, “Fiber-optic anemometer based on distributed Bragg reflector fiber laser technology,” IEEE Photon. Tech. Lett. 25, 1246–1249 (2013).
[Crossref]

Gonzalez-Herraez, M.

J. Pastor-Graells, J. Nuño, M. R. Fernández-Ruiz, A. Garcia-Ruiz, H. F. Martins, S. Martin-Lopez, and M. Gonzalez-Herraez, “Chirped-pulse Phase-sensitive Reflectometer Assisted by First Order Raman Amplification,” J. Lightw. Tech. 35, 4677–4683 (2017).
[Crossref]

A. Garcia-Ruiz, J. Pastor-Graells, H. F. Martins, K. H. Tow, L. Thévenaz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Distributed photothermal spectroscopy in microstructured optical fibers: towards high-resolution mapping of gas presence over long distances,” Opt. Express 25, 1789–1805 (2017).
[Crossref]

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martín-López, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24, 13121–13133 (2016).
[Crossref] [PubMed]

A. Garcia-Ruiz, J. Pastor-Graells, H. F. Martins, S. Martin-Lopez, and M. Gonzalez-Herraez, “Speckle Analysis Method for Distributed Detection of Temperature Gradients With ΦOTDR,” IEEE Photon. Tech. Lett. 28, 2000–2003 (2016).
[Crossref]

X. Angulo-Vinuesa, A. Dominguez-Lopez, A. Lopez-Gil, J. D. Ania-Castañón, S. Martin-Lopez, and M. Gonzalez-Herraez, “Limits of BOTDA range extension techniques,” IEEE Sensors 16, 3387–3395 (2015).

A. Garcia-Ruiz, H. Martins, J. Pastor-Graells, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-Shot True Distributed Strain Variation Measurements Over >10 km Using Phase-Sensitive OTDR with Chirped Pulses,” in Asia-Pacific Optical Sensors Conference (Optical Society of America, 2016), pp. Th3A–2.
[Crossref]

González-Herráez, M.

M. Calcerrada, C. García-Ruiz, and M. González-Herráez, “Chemical and biochemical sensing applications of microstructured optical fiber-based systems,” Las. Photon. Rev. 9, 604–627 (2015).
[Crossref]

Habetler, T. G.

Y. Yang, D. Divan, R. G. Harley, and T. G. Habetler, “Power line sensornet - A new concept for power grid monitoring,” in Power Engineering Society General Meeting (IEEE, 2006).

Han, M.

G. Liu, W. Hou, W. Qiao, and M. Han, “Fast-response fiber-optic anemometer with temperature self-compensation,” Opt. Express 23, 13562–13570 (2015).
[Crossref] [PubMed]

Y. Liu, W. Peng, X. Zhang, Y. Liang, Z. Gong, and M. Han, “Fiber-optic anemometer based on distributed Bragg reflector fiber laser technology,” IEEE Photon. Tech. Lett. 25, 1246–1249 (2013).
[Crossref]

Harley, R. G.

Y. Yang, D. Divan, R. G. Harley, and T. G. Habetler, “Power line sensornet - A new concept for power grid monitoring,” in Power Engineering Society General Meeting (IEEE, 2006).

Hay, B.

G. Failleau, O. Beaumont, R. Razouk, S. Delepine-Lesoille, M. Landolt, B. Courthial, J. Hénault, F. Martinot, J. Bertrand, and B. Hay, “A metrological comparison of Raman-distributed temperature sensors,” Measurement 116, 18–24 (2018).
[Crossref]

Hénault, J.

G. Failleau, O. Beaumont, R. Razouk, S. Delepine-Lesoille, M. Landolt, B. Courthial, J. Hénault, F. Martinot, J. Bertrand, and B. Hay, “A metrological comparison of Raman-distributed temperature sensors,” Measurement 116, 18–24 (2018).
[Crossref]

Hogari, K.

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightw. Tech. 27, 1142–1146 (2009).
[Crossref]

Hou, W.

Hua, J.

L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed strain and vibration sensing system based on phase-sensitive OTDR,” IEEE Photon. Tech. Lett. 27, 1884–1887 (2015).
[Crossref]

Huang, X. G.

Imahama, M.

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightw. Tech. 27, 1142–1146 (2009).
[Crossref]

Incropera, F. P.

T. L. Bergman, F. P. Incropera, D. P. DeWitt, and A. S. Lavine, Fundamentals of Heat and Mass Transfer (John Wiley & Sons, 2011).

Jelly, T.

L. Di Mare, T. Jelly, and I. Day, “Angular response of hot wire probes,” Meas. Sci. Tech. 28, 035303 (2017).
[Crossref]

Jiang, J.

G.-M. Ma, C.-R. Li, J. Jiang, J.-Y. Liang, Y.-T. Luo, and Y.-C. Cheng, “A passive optical fiber anemometer for wind speed measurement on high-voltage overhead transmission lines,” IEEE Trans. Instrum. Meas. 61, 539–544 (2012).
[Crossref]

Kersey, A.

B. Culshaw and A. Kersey, “Fiber-optic sensing: a historical perspective,” J. Lightw. Tech. 26, 1064–1078 (2008).
[Crossref]

King, L. V.

L. V. King, “On the convection of heat from small cylinders in a stream of fluid: determination of the convection constants of small platinum wires with applications to hot-wire anemometry,” Philos.Trans. Royal Soc. A 214, 373–432 (1914).
[Crossref]

Kou, T.

L. Xia, L. Li, W. Li, T. Kou, and D. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sensors and Actuators A: Physical 190, 1–5 (2013).
[Crossref]

Koyamada, Y.

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightw. Tech. 27, 1142–1146 (2009).
[Crossref]

Krebber, K.

Kubota, K.

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightw. Tech. 27, 1142–1146 (2009).
[Crossref]

Lan, S.

Landolt, M.

G. Failleau, O. Beaumont, R. Razouk, S. Delepine-Lesoille, M. Landolt, B. Courthial, J. Hénault, F. Martinot, J. Bertrand, and B. Hay, “A metrological comparison of Raman-distributed temperature sensors,” Measurement 116, 18–24 (2018).
[Crossref]

Larson, D. C.

L. C. Bobb, J. P. Davis, A. Samouris, and D. C. Larson, “An optical fiber hot-wire anemometer,” in “OE/FIBERS’89,” (International Society for Optics and Photonics, 1990), pp. 567–572.

Lavine, A. S.

T. L. Bergman, F. P. Incropera, D. P. DeWitt, and A. S. Lavine, Fundamentals of Heat and Mass Transfer (John Wiley & Sons, 2011).

Li, C.-R.

G.-M. Ma, C.-R. Li, J. Jiang, J.-Y. Liang, Y.-T. Luo, and Y.-C. Cheng, “A passive optical fiber anemometer for wind speed measurement on high-voltage overhead transmission lines,” IEEE Trans. Instrum. Meas. 61, 539–544 (2012).
[Crossref]

Li, G. C.

Li, L.

L. Xia, L. Li, W. Li, T. Kou, and D. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sensors and Actuators A: Physical 190, 1–5 (2013).
[Crossref]

Li, W.

L. Xia, L. Li, W. Li, T. Kou, and D. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sensors and Actuators A: Physical 190, 1–5 (2013).
[Crossref]

Liang, J.-Y.

G.-M. Ma, C.-R. Li, J. Jiang, J.-Y. Liang, Y.-T. Luo, and Y.-C. Cheng, “A passive optical fiber anemometer for wind speed measurement on high-voltage overhead transmission lines,” IEEE Trans. Instrum. Meas. 61, 539–544 (2012).
[Crossref]

Liang, Y.

Y. Liu, W. Peng, X. Zhang, Y. Liang, Z. Gong, and M. Han, “Fiber-optic anemometer based on distributed Bragg reflector fiber laser technology,” IEEE Photon. Tech. Lett. 25, 1246–1249 (2013).
[Crossref]

Liao, R.

Liehr, S.

Lilien, J.-L.

O. Chabart and J.-L. Lilien, “Galloping of electrical lines in wind tunnel facilities,” Journal of Wind Engineering and Industrial Aerodynamics 74, 967–976 (1998).
[Crossref]

J. Wang and J.-L. Lilien, “Overhead electrical transmission line galloping. A full multi-span 3-DOF model, some applications and design recommendations,” IEEE Trans. Power Del. 13, 909–916 (1998).
[Crossref]

Liu, D.

Liu, G.

Liu, T.

Liu, Y.

Y. Liu, W. Peng, X. Zhang, Y. Liang, Z. Gong, and M. Han, “Fiber-optic anemometer based on distributed Bragg reflector fiber laser technology,” IEEE Photon. Tech. Lett. 25, 1246–1249 (2013).
[Crossref]

London, Y.

Lopez-Gil, A.

X. Angulo-Vinuesa, A. Dominguez-Lopez, A. Lopez-Gil, J. D. Ania-Castañón, S. Martin-Lopez, and M. Gonzalez-Herraez, “Limits of BOTDA range extension techniques,” IEEE Sensors 16, 3387–3395 (2015).

Lu, C.

Luo, Y.-T.

G.-M. Ma, C.-R. Li, J. Jiang, J.-Y. Liang, Y.-T. Luo, and Y.-C. Cheng, “A passive optical fiber anemometer for wind speed measurement on high-voltage overhead transmission lines,” IEEE Trans. Instrum. Meas. 61, 539–544 (2012).
[Crossref]

Ma, G.-M.

G.-M. Ma, C.-R. Li, J. Jiang, J.-Y. Liang, Y.-T. Luo, and Y.-C. Cheng, “A passive optical fiber anemometer for wind speed measurement on high-voltage overhead transmission lines,” IEEE Trans. Instrum. Meas. 61, 539–544 (2012).
[Crossref]

Mandle, J.

J. Mandle, “System for determining the airspeed of an aircraft,” US Patent 8,718,971 (2014).

Maraio, R. A.

S. D. Foss and R. A. Maraio, “Dynamic line rating in the operating environment,” IEEE Trans. Power Del. 5, 1095–1105 (1990).
[Crossref]

Martin-Lopez, S.

J. Pastor-Graells, J. Nuño, M. R. Fernández-Ruiz, A. Garcia-Ruiz, H. F. Martins, S. Martin-Lopez, and M. Gonzalez-Herraez, “Chirped-pulse Phase-sensitive Reflectometer Assisted by First Order Raman Amplification,” J. Lightw. Tech. 35, 4677–4683 (2017).
[Crossref]

A. Garcia-Ruiz, J. Pastor-Graells, H. F. Martins, K. H. Tow, L. Thévenaz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Distributed photothermal spectroscopy in microstructured optical fibers: towards high-resolution mapping of gas presence over long distances,” Opt. Express 25, 1789–1805 (2017).
[Crossref]

A. Garcia-Ruiz, J. Pastor-Graells, H. F. Martins, S. Martin-Lopez, and M. Gonzalez-Herraez, “Speckle Analysis Method for Distributed Detection of Temperature Gradients With ΦOTDR,” IEEE Photon. Tech. Lett. 28, 2000–2003 (2016).
[Crossref]

X. Angulo-Vinuesa, A. Dominguez-Lopez, A. Lopez-Gil, J. D. Ania-Castañón, S. Martin-Lopez, and M. Gonzalez-Herraez, “Limits of BOTDA range extension techniques,” IEEE Sensors 16, 3387–3395 (2015).

A. Garcia-Ruiz, H. Martins, J. Pastor-Graells, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-Shot True Distributed Strain Variation Measurements Over >10 km Using Phase-Sensitive OTDR with Chirped Pulses,” in Asia-Pacific Optical Sensors Conference (Optical Society of America, 2016), pp. Th3A–2.
[Crossref]

Martín-López, S.

Martinot, F.

G. Failleau, O. Beaumont, R. Razouk, S. Delepine-Lesoille, M. Landolt, B. Courthial, J. Hénault, F. Martinot, J. Bertrand, and B. Hay, “A metrological comparison of Raman-distributed temperature sensors,” Measurement 116, 18–24 (2018).
[Crossref]

Martins, H.

A. Garcia-Ruiz, H. Martins, J. Pastor-Graells, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-Shot True Distributed Strain Variation Measurements Over >10 km Using Phase-Sensitive OTDR with Chirped Pulses,” in Asia-Pacific Optical Sensors Conference (Optical Society of America, 2016), pp. Th3A–2.
[Crossref]

Martins, H. F.

J. Pastor-Graells, J. Nuño, M. R. Fernández-Ruiz, A. Garcia-Ruiz, H. F. Martins, S. Martin-Lopez, and M. Gonzalez-Herraez, “Chirped-pulse Phase-sensitive Reflectometer Assisted by First Order Raman Amplification,” J. Lightw. Tech. 35, 4677–4683 (2017).
[Crossref]

A. Garcia-Ruiz, J. Pastor-Graells, H. F. Martins, K. H. Tow, L. Thévenaz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Distributed photothermal spectroscopy in microstructured optical fibers: towards high-resolution mapping of gas presence over long distances,” Opt. Express 25, 1789–1805 (2017).
[Crossref]

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martín-López, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24, 13121–13133 (2016).
[Crossref] [PubMed]

A. Garcia-Ruiz, J. Pastor-Graells, H. F. Martins, S. Martin-Lopez, and M. Gonzalez-Herraez, “Speckle Analysis Method for Distributed Detection of Temperature Gradients With ΦOTDR,” IEEE Photon. Tech. Lett. 28, 2000–2003 (2016).
[Crossref]

Michiorri, A.

A. Michiorri, H.-M. Nguyen, S. Alessandrini, J. B. Bremnes, S. Dierer, E. Ferrero, B.-E. Nygaard, P. Pinson, N. Thomaidis, and S. Uski, “Forecasting for dynamic line rating,” Renew. Sust. Energ. Rev. 52, 1713–1730 (2015).
[Crossref]

Morgan, V. T.

V. T. Morgan, “The overall convective heat transfer from smooth circular cylinders,” Adv. in Heat Trans. 11, 199–264 (1975).
[Crossref]

Morrow, D. J.

J. Fu, S. Abbott, B. Fox, D. J. Morrow, and S. Abdelkader, “Wind cooling effect on dynamic overhead line ratings,” in Universities Power Engineering Conference (IEEE, 2010), pp. 1–6.

Muanenda, Y. S.

Münzenberger, S.

Nakarmi, B.

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The Development of an ΦOTDR System for Quantitative Vibration Measurement,” IEEE Photon. Tech. Lett. 27, 1349–1352 (2015).
[Crossref]

Nguyen, H.-M.

A. Michiorri, H.-M. Nguyen, S. Alessandrini, J. B. Bremnes, S. Dierer, E. Ferrero, B.-E. Nygaard, P. Pinson, N. Thomaidis, and S. Uski, “Forecasting for dynamic line rating,” Renew. Sust. Energ. Rev. 52, 1713–1730 (2015).
[Crossref]

Ni, K.

X. Wang, X. Dong, Y. Zhou, K. Ni, J. Cheng, and Z. Chen, “Hot-wire anemometer based on silver-coated fiber Bragg grating assisted by no-core fiber,” IEEE Photon. Tech. Lett. 25, 2458–2461 (2013).
[Crossref]

Nuño, J.

J. Pastor-Graells, J. Nuño, M. R. Fernández-Ruiz, A. Garcia-Ruiz, H. F. Martins, S. Martin-Lopez, and M. Gonzalez-Herraez, “Chirped-pulse Phase-sensitive Reflectometer Assisted by First Order Raman Amplification,” J. Lightw. Tech. 35, 4677–4683 (2017).
[Crossref]

Nygaard, B.-E.

A. Michiorri, H.-M. Nguyen, S. Alessandrini, J. B. Bremnes, S. Dierer, E. Ferrero, B.-E. Nygaard, P. Pinson, N. Thomaidis, and S. Uski, “Forecasting for dynamic line rating,” Renew. Sust. Energ. Rev. 52, 1713–1730 (2015).
[Crossref]

Palmieri, L.

L. Palmieri and L. Schenato, “Distributed optical fiber sensing based on Rayleigh scattering,” The Open Optics Journal 7, 104–127 (2013).
[Crossref]

L. Schenato, A. Pasuto, A. Galtarossa, and L. Palmieri, “Optical fiber load sensor based on a semi-auxetic structure: a proof of concept,” in Sixth European Workshop on Optical Fibre Sensors, (International Society for Optics and Photonics, 2016), pp. 99160N.

Pan, C.

H. Zhu, C. Pan, and X. Sun, “Vibration pattern recognition and classification in OTDR based distributed optical-fiber vibration sensing system,” in “SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring” (International Society for Optics and Photonics, 2014), pp. 906205.

Pan, Y.

L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed strain and vibration sensing system based on phase-sensitive OTDR,” IEEE Photon. Tech. Lett. 27, 1884–1887 (2015).
[Crossref]

Pastor-Graells, J.

J. Pastor-Graells, J. Nuño, M. R. Fernández-Ruiz, A. Garcia-Ruiz, H. F. Martins, S. Martin-Lopez, and M. Gonzalez-Herraez, “Chirped-pulse Phase-sensitive Reflectometer Assisted by First Order Raman Amplification,” J. Lightw. Tech. 35, 4677–4683 (2017).
[Crossref]

A. Garcia-Ruiz, J. Pastor-Graells, H. F. Martins, K. H. Tow, L. Thévenaz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Distributed photothermal spectroscopy in microstructured optical fibers: towards high-resolution mapping of gas presence over long distances,” Opt. Express 25, 1789–1805 (2017).
[Crossref]

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martín-López, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24, 13121–13133 (2016).
[Crossref] [PubMed]

A. Garcia-Ruiz, J. Pastor-Graells, H. F. Martins, S. Martin-Lopez, and M. Gonzalez-Herraez, “Speckle Analysis Method for Distributed Detection of Temperature Gradients With ΦOTDR,” IEEE Photon. Tech. Lett. 28, 2000–2003 (2016).
[Crossref]

A. Garcia-Ruiz, H. Martins, J. Pastor-Graells, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-Shot True Distributed Strain Variation Measurements Over >10 km Using Phase-Sensitive OTDR with Chirped Pulses,” in Asia-Pacific Optical Sensors Conference (Optical Society of America, 2016), pp. Th3A–2.
[Crossref]

Pasuto, A.

L. Schenato, A. Pasuto, A. Galtarossa, and L. Palmieri, “Optical fiber load sensor based on a semi-auxetic structure: a proof of concept,” in Sixth European Workshop on Optical Fibre Sensors, (International Society for Optics and Photonics, 2016), pp. 99160N.

Peng, W.

Y. Liu, W. Peng, X. Zhang, Y. Liang, Z. Gong, and M. Han, “Fiber-optic anemometer based on distributed Bragg reflector fiber laser technology,” IEEE Photon. Tech. Lett. 25, 1246–1249 (2013).
[Crossref]

Pinson, P.

A. Michiorri, H.-M. Nguyen, S. Alessandrini, J. B. Bremnes, S. Dierer, E. Ferrero, B.-E. Nygaard, P. Pinson, N. Thomaidis, and S. Uski, “Forecasting for dynamic line rating,” Renew. Sust. Energ. Rev. 52, 1713–1730 (2015).
[Crossref]

Pitt, G.

G. Pitt, A. Prabakaran, R. Williamson, D. Wilson, and D. Batchelder, “Optical fibre flowmeters,” in 2nd International Conference on Optical Fiber Sensors (International Society for Optics and Photonics, 1984), pp. 23–28.

Prabakaran, A.

G. Pitt, A. Prabakaran, R. Williamson, D. Wilson, and D. Batchelder, “Optical fibre flowmeters,” in 2nd International Conference on Optical Fiber Sensors (International Society for Optics and Photonics, 1984), pp. 23–28.

Proppe, C.

C. Proppe and C. Wetzel, “Overturning probability of railway vehicles under wind gust loads,” in IUTAM Symposium on Dynamics and Control of Nonlinear Systems with Uncertainty, vol. 2 (Springer, 2007), pp. 23–32.
[Crossref]

Qiao, W.

Razouk, R.

G. Failleau, O. Beaumont, R. Razouk, S. Delepine-Lesoille, M. Landolt, B. Courthial, J. Hénault, F. Martinot, J. Bertrand, and B. Hay, “A metrological comparison of Raman-distributed temperature sensors,” Measurement 116, 18–24 (2018).
[Crossref]

Samouris, A.

L. C. Bobb, J. P. Davis, A. Samouris, and D. C. Larson, “An optical fiber hot-wire anemometer,” in “OE/FIBERS’89,” (International Society for Optics and Photonics, 1990), pp. 567–572.

Schenato, L.

L. Palmieri and L. Schenato, “Distributed optical fiber sensing based on Rayleigh scattering,” The Open Optics Journal 7, 104–127 (2013).
[Crossref]

L. Schenato, A. Pasuto, A. Galtarossa, and L. Palmieri, “Optical fiber load sensor based on a semi-auxetic structure: a proof of concept,” in Sixth European Workshop on Optical Fibre Sensors, (International Society for Optics and Photonics, 2016), pp. 99160N.

Shum, P. P.

Sun, Q.

Q. Sun, H. Feng, X. Yan, and Z. Zeng, “Recognition of a phase-sensitivity OTDR sensing system based on morphologic feature extraction,” Sensors 15, 15179–15197 (2015).
[Crossref] [PubMed]

Sun, X.

H. Zhu, C. Pan, and X. Sun, “Vibration pattern recognition and classification in OTDR based distributed optical-fiber vibration sensing system,” in “SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring” (International Society for Optics and Photonics, 2014), pp. 906205.

Sun, Z.

L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed strain and vibration sensing system based on phase-sensitive OTDR,” IEEE Photon. Tech. Lett. 27, 1884–1887 (2015).
[Crossref]

Tam, H.-Y.

Tang, M.

Thévenaz, L.

Thomaidis, N.

A. Michiorri, H.-M. Nguyen, S. Alessandrini, J. B. Bremnes, S. Dierer, E. Ferrero, B.-E. Nygaard, P. Pinson, N. Thomaidis, and S. Uski, “Forecasting for dynamic line rating,” Renew. Sust. Energ. Rev. 52, 1713–1730 (2015).
[Crossref]

Tong, W.

Tow, K. H.

Tu, G.

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The Development of an ΦOTDR System for Quantitative Vibration Measurement,” IEEE Photon. Tech. Lett. 27, 1349–1352 (2015).
[Crossref]

Uski, S.

A. Michiorri, H.-M. Nguyen, S. Alessandrini, J. B. Bremnes, S. Dierer, E. Ferrero, B.-E. Nygaard, P. Pinson, N. Thomaidis, and S. Uski, “Forecasting for dynamic line rating,” Renew. Sust. Energ. Rev. 52, 1713–1730 (2015).
[Crossref]

Wang, F.

L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed strain and vibration sensing system based on phase-sensitive OTDR,” IEEE Photon. Tech. Lett. 27, 1884–1887 (2015).
[Crossref]

Wang, J.

J. Wang and J.-L. Lilien, “Overhead electrical transmission line galloping. A full multi-span 3-DOF model, some applications and design recommendations,” IEEE Trans. Power Del. 13, 909–916 (1998).
[Crossref]

Wang, M.

Wang, Q.

Wang, X.

L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed strain and vibration sensing system based on phase-sensitive OTDR,” IEEE Photon. Tech. Lett. 27, 1884–1887 (2015).
[Crossref]

X. Wang, X. Dong, Y. Zhou, K. Ni, J. Cheng, and Z. Chen, “Hot-wire anemometer based on silver-coated fiber Bragg grating assisted by no-core fiber,” IEEE Photon. Tech. Lett. 25, 2458–2461 (2013).
[Crossref]

Wetzel, C.

C. Proppe and C. Wetzel, “Overturning probability of railway vehicles under wind gust loads,” in IUTAM Symposium on Dynamics and Control of Nonlinear Systems with Uncertainty, vol. 2 (Springer, 2007), pp. 23–32.
[Crossref]

Williamson, R.

G. Pitt, A. Prabakaran, R. Williamson, D. Wilson, and D. Batchelder, “Optical fibre flowmeters,” in 2nd International Conference on Optical Fiber Sensors (International Society for Optics and Photonics, 1984), pp. 23–28.

Wilson, D.

G. Pitt, A. Prabakaran, R. Williamson, D. Wilson, and D. Batchelder, “Optical fibre flowmeters,” in 2nd International Conference on Optical Fiber Sensors (International Society for Optics and Photonics, 1984), pp. 23–28.

Wu, H.

Wylie, M. T.

Xia, L.

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The Development of an ΦOTDR System for Quantitative Vibration Measurement,” IEEE Photon. Tech. Lett. 27, 1349–1352 (2015).
[Crossref]

L. Xia, L. Li, W. Li, T. Kou, and D. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sensors and Actuators A: Physical 190, 1–5 (2013).
[Crossref]

Yan, X.

Q. Sun, H. Feng, X. Yan, and Z. Zeng, “Recognition of a phase-sensitivity OTDR sensing system based on morphologic feature extraction,” Sensors 15, 15179–15197 (2015).
[Crossref] [PubMed]

Yang, C.

Yang, Y.

Y. Yang, D. Divan, R. G. Harley, and T. G. Habetler, “Power line sensornet - A new concept for power grid monitoring,” in Power Engineering Society General Meeting (IEEE, 2006).

Zadok, A.

Zeng, Z.

Q. Sun, H. Feng, X. Yan, and Z. Zeng, “Recognition of a phase-sensitivity OTDR sensing system based on morphologic feature extraction,” Sensors 15, 15179–15197 (2015).
[Crossref] [PubMed]

Zhang, A. P.

Zhang, B.

Zhang, X.

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The Development of an ΦOTDR System for Quantitative Vibration Measurement,” IEEE Photon. Tech. Lett. 27, 1349–1352 (2015).
[Crossref]

L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed strain and vibration sensing system based on phase-sensitive OTDR,” IEEE Photon. Tech. Lett. 27, 1884–1887 (2015).
[Crossref]

Y. Liu, W. Peng, X. Zhang, Y. Liang, Z. Gong, and M. Han, “Fiber-optic anemometer based on distributed Bragg reflector fiber laser technology,” IEEE Photon. Tech. Lett. 25, 1246–1249 (2013).
[Crossref]

Zhang, Y.

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The Development of an ΦOTDR System for Quantitative Vibration Measurement,” IEEE Photon. Tech. Lett. 27, 1349–1352 (2015).
[Crossref]

Zhao, C.

Zhao, Z.

Zhou, L.

L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed strain and vibration sensing system based on phase-sensitive OTDR,” IEEE Photon. Tech. Lett. 27, 1884–1887 (2015).
[Crossref]

Zhou, Y.

X. Wang, X. Dong, Y. Zhou, K. Ni, J. Cheng, and Z. Chen, “Hot-wire anemometer based on silver-coated fiber Bragg grating assisted by no-core fiber,” IEEE Photon. Tech. Lett. 25, 2458–2461 (2013).
[Crossref]

Zhu, F.

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The Development of an ΦOTDR System for Quantitative Vibration Measurement,” IEEE Photon. Tech. Lett. 27, 1349–1352 (2015).
[Crossref]

Zhu, H.

H. Zhu, C. Pan, and X. Sun, “Vibration pattern recognition and classification in OTDR based distributed optical-fiber vibration sensing system,” in “SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring” (International Society for Optics and Photonics, 2014), pp. 906205.

Zhu, J. H.

Adv. in Heat Trans. (1)

V. T. Morgan, “The overall convective heat transfer from smooth circular cylinders,” Adv. in Heat Trans. 11, 199–264 (1975).
[Crossref]

Flow Measurement and Instrumentation (1)

A. Abdel-Rahman, “On the yaw-angle characteristics of hot-wire anemometers,” Flow Measurement and Instrumentation 6, 271–278 (1995).
[Crossref]

IEEE Photon. Tech. Lett. (5)

Y. Liu, W. Peng, X. Zhang, Y. Liang, Z. Gong, and M. Han, “Fiber-optic anemometer based on distributed Bragg reflector fiber laser technology,” IEEE Photon. Tech. Lett. 25, 1246–1249 (2013).
[Crossref]

X. Wang, X. Dong, Y. Zhou, K. Ni, J. Cheng, and Z. Chen, “Hot-wire anemometer based on silver-coated fiber Bragg grating assisted by no-core fiber,” IEEE Photon. Tech. Lett. 25, 2458–2461 (2013).
[Crossref]

L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed strain and vibration sensing system based on phase-sensitive OTDR,” IEEE Photon. Tech. Lett. 27, 1884–1887 (2015).
[Crossref]

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The Development of an ΦOTDR System for Quantitative Vibration Measurement,” IEEE Photon. Tech. Lett. 27, 1349–1352 (2015).
[Crossref]

A. Garcia-Ruiz, J. Pastor-Graells, H. F. Martins, S. Martin-Lopez, and M. Gonzalez-Herraez, “Speckle Analysis Method for Distributed Detection of Temperature Gradients With ΦOTDR,” IEEE Photon. Tech. Lett. 28, 2000–2003 (2016).
[Crossref]

IEEE Sensors (1)

X. Angulo-Vinuesa, A. Dominguez-Lopez, A. Lopez-Gil, J. D. Ania-Castañón, S. Martin-Lopez, and M. Gonzalez-Herraez, “Limits of BOTDA range extension techniques,” IEEE Sensors 16, 3387–3395 (2015).

IEEE Trans. Instrum. Meas. (1)

G.-M. Ma, C.-R. Li, J. Jiang, J.-Y. Liang, Y.-T. Luo, and Y.-C. Cheng, “A passive optical fiber anemometer for wind speed measurement on high-voltage overhead transmission lines,” IEEE Trans. Instrum. Meas. 61, 539–544 (2012).
[Crossref]

IEEE Trans. Power Del. (2)

S. D. Foss and R. A. Maraio, “Dynamic line rating in the operating environment,” IEEE Trans. Power Del. 5, 1095–1105 (1990).
[Crossref]

J. Wang and J.-L. Lilien, “Overhead electrical transmission line galloping. A full multi-span 3-DOF model, some applications and design recommendations,” IEEE Trans. Power Del. 13, 909–916 (1998).
[Crossref]

J. Lightw. Tech. (3)

B. Culshaw and A. Kersey, “Fiber-optic sensing: a historical perspective,” J. Lightw. Tech. 26, 1064–1078 (2008).
[Crossref]

J. Pastor-Graells, J. Nuño, M. R. Fernández-Ruiz, A. Garcia-Ruiz, H. F. Martins, S. Martin-Lopez, and M. Gonzalez-Herraez, “Chirped-pulse Phase-sensitive Reflectometer Assisted by First Order Raman Amplification,” J. Lightw. Tech. 35, 4677–4683 (2017).
[Crossref]

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightw. Tech. 27, 1142–1146 (2009).
[Crossref]

Journal of Wind Engineering and Industrial Aerodynamics (2)

O. Chabart and J.-L. Lilien, “Galloping of electrical lines in wind tunnel facilities,” Journal of Wind Engineering and Industrial Aerodynamics 74, 967–976 (1998).
[Crossref]

R. Gawthorpe, “Wind effects on ground transportation,” Journal of Wind Engineering and Industrial Aerodynamics 52, 73–92 (1994).
[Crossref]

Las. Photon. Rev. (1)

M. Calcerrada, C. García-Ruiz, and M. González-Herráez, “Chemical and biochemical sensing applications of microstructured optical fiber-based systems,” Las. Photon. Rev. 9, 604–627 (2015).
[Crossref]

Meas. Sci. Tech. (1)

L. Di Mare, T. Jelly, and I. Day, “Angular response of hot wire probes,” Meas. Sci. Tech. 28, 035303 (2017).
[Crossref]

Measurement (1)

G. Failleau, O. Beaumont, R. Razouk, S. Delepine-Lesoille, M. Landolt, B. Courthial, J. Hénault, F. Martinot, J. Bertrand, and B. Hay, “A metrological comparison of Raman-distributed temperature sensors,” Measurement 116, 18–24 (2018).
[Crossref]

Opt. Express (9)

T. Chen, Q. Wang, B. Zhang, R. Chen, and K. P. Chen, “Distributed flow sensing using optical hot-wire grid,” Opt. Express 20, 8240–8249 (2012).
[Crossref] [PubMed]

M. T. Wylie, A. W. Brown, and B. G. Colpitts, “Distributed hot-wire anemometry based on Brillouin optical time-domain analysis,” Opt. Express 20, 15669–15678 (2012).
[Crossref] [PubMed]

G. Liu, W. Hou, W. Qiao, and M. Han, “Fast-response fiber-optic anemometer with temperature self-compensation,” Opt. Express 23, 13562–13570 (2015).
[Crossref] [PubMed]

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martín-López, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24, 13121–13133 (2016).
[Crossref] [PubMed]

S. Liehr, Y. S. Muanenda, S. Münzenberger, and K. Krebber, “Relative change measurement of physical quantities using dual-wavelength coherent OTDR,” Opt. Express 25, 720–729 (2017).
[Crossref] [PubMed]

A. Garcia-Ruiz, J. Pastor-Graells, H. F. Martins, K. H. Tow, L. Thévenaz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Distributed photothermal spectroscopy in microstructured optical fibers: towards high-resolution mapping of gas presence over long distances,” Opt. Express 25, 1789–1805 (2017).
[Crossref]

M. Wang, H. Wu, M. Tang, Z. Zhao, Y. Dang, C. Zhao, R. Liao, W. Chen, S. Fu, C. Yang, W. Tong, P. P. Shum, and D. Liu, “Few-mode fiber based Raman distributed temperature sensing,” Opt. Express 25, 4907–4916 (2017).
[Crossref] [PubMed]

Y. Dang, Z. Zhao, M. Tang, C. Zhao, L. Gan, S. Fu, T. Liu, W. Tong, P. P. Shum, and D. Liu, “Towards large dynamic range and ultrahigh measurement resolution in distributed fiber sensing based on multicore fiber,” Opt. Express 25, 20183–20193 (2017).
[Crossref] [PubMed]

S. Gao, A. P. Zhang, H.-Y. Tam, L. Cho, and C. Lu, “All-optical fiber anemometer based on laser heated fiber Bragg gratings,” Opt. Express 19, 10124–10130 (2011).
[Crossref] [PubMed]

Opt. Lett. (1)

Optica (1)

Philos.Trans. Royal Soc. A (1)

L. V. King, “On the convection of heat from small cylinders in a stream of fluid: determination of the convection constants of small platinum wires with applications to hot-wire anemometry,” Philos.Trans. Royal Soc. A 214, 373–432 (1914).
[Crossref]

Renew. Sust. Energ. Rev. (1)

A. Michiorri, H.-M. Nguyen, S. Alessandrini, J. B. Bremnes, S. Dierer, E. Ferrero, B.-E. Nygaard, P. Pinson, N. Thomaidis, and S. Uski, “Forecasting for dynamic line rating,” Renew. Sust. Energ. Rev. 52, 1713–1730 (2015).
[Crossref]

Sensors (1)

Q. Sun, H. Feng, X. Yan, and Z. Zeng, “Recognition of a phase-sensitivity OTDR sensing system based on morphologic feature extraction,” Sensors 15, 15179–15197 (2015).
[Crossref] [PubMed]

Sensors and Actuators A: Physical (1)

L. Xia, L. Li, W. Li, T. Kou, and D. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sensors and Actuators A: Physical 190, 1–5 (2013).
[Crossref]

The Open Optics Journal (1)

L. Palmieri and L. Schenato, “Distributed optical fiber sensing based on Rayleigh scattering,” The Open Optics Journal 7, 104–127 (2013).
[Crossref]

Other (11)

L. Schenato, A. Pasuto, A. Galtarossa, and L. Palmieri, “Optical fiber load sensor based on a semi-auxetic structure: a proof of concept,” in Sixth European Workshop on Optical Fibre Sensors, (International Society for Optics and Photonics, 2016), pp. 99160N.

J. Fu, S. Abbott, B. Fox, D. J. Morrow, and S. Abdelkader, “Wind cooling effect on dynamic overhead line ratings,” in Universities Power Engineering Conference (IEEE, 2010), pp. 1–6.

G. Pitt, A. Prabakaran, R. Williamson, D. Wilson, and D. Batchelder, “Optical fibre flowmeters,” in 2nd International Conference on Optical Fiber Sensors (International Society for Optics and Photonics, 1984), pp. 23–28.

H. H. Bruun, Hot-wire Anemometry-principles and Signal Analysis (Oxford Science Publications, 1995).

J. Mandle, “System for determining the airspeed of an aircraft,” US Patent 8,718,971 (2014).

C. Proppe and C. Wetzel, “Overturning probability of railway vehicles under wind gust loads,” in IUTAM Symposium on Dynamics and Control of Nonlinear Systems with Uncertainty, vol. 2 (Springer, 2007), pp. 23–32.
[Crossref]

Y. Yang, D. Divan, R. G. Harley, and T. G. Habetler, “Power line sensornet - A new concept for power grid monitoring,” in Power Engineering Society General Meeting (IEEE, 2006).

H. Zhu, C. Pan, and X. Sun, “Vibration pattern recognition and classification in OTDR based distributed optical-fiber vibration sensing system,” in “SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring” (International Society for Optics and Photonics, 2014), pp. 906205.

A. Garcia-Ruiz, H. Martins, J. Pastor-Graells, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-Shot True Distributed Strain Variation Measurements Over >10 km Using Phase-Sensitive OTDR with Chirped Pulses,” in Asia-Pacific Optical Sensors Conference (Optical Society of America, 2016), pp. Th3A–2.
[Crossref]

T. L. Bergman, F. P. Incropera, D. P. DeWitt, and A. S. Lavine, Fundamentals of Heat and Mass Transfer (John Wiley & Sons, 2011).

L. C. Bobb, J. P. Davis, A. Samouris, and D. C. Larson, “An optical fiber hot-wire anemometer,” in “OE/FIBERS’89,” (International Society for Optics and Photonics, 1990), pp. 567–572.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Diagram of the sensor setup. The deployment of the fiber under test is shown in Fig. 2. Acronyms are explained within the text.
Fig. 2
Fig. 2 Diagram of the experimental sensing fiber deployment. The coated fiber is suspended from seven points (5cm diameter fiber reels) inside the wind tunnel.
Fig. 3
Fig. 3 Demonstration of the working principle which allows to perform fast wind speed measurements. The temperature evolution of the fiber is plotted along a few driving current cycles (≈80mA), while the wind speed inside the tunnel was configured at three different values: u1 ≈ 0.6m/s, u2 ≈ 1.9m/s, and u3 = 0m/s. It is appreciable the time-response of the system is conditioned by the wind speed.
Fig. 4
Fig. 4 Left: FFT of the cyclic exponential-like thermal time-response for several values of u. The shown FFT magnitude corresponds to half the peak-to-peak range of the time series. The value at the FFT peak corresponding to the frequency of the heating cycles (inset) and its first harmonics scale with the applied wind speed. Right: the evolution of the maximum at 100mHz for different reference anemometer readings has been plotted and fitted.
Fig. 5
Fig. 5 Left: example of the thermal switching curves considered for the exponential fits. The data corresponds to a set of 24 consecutive cycles registered under a wind flow of speed 0.56 m/s. The corresponding fittings (blue markers) was performed on the average curves (dashed lines). Right: c ¯ eff emp as obtained for different wind speeds from the fitting time constant and the FFT magnitudes; the disagreement at high wind speed is due to the inrush of fiber vibrations in the temperature measurements (inset).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P = h ( u ) S ( T w T ) .
T w ( t ) T = A e k t ,
δ t ( z ) = 6.92 × 10 6 K 1 ν o δ ν τ p δ T ( z ) ,

Metrics