Abstract

A composite crystal consisting of a 1.5-mm-thick Er:Yb:YAl3(BO3)4 crystal between two 1.2-mm-thick sapphire crystals was fabricated by the thermal diffusion bonding technique. Compared with a lone Er:Yb:YAl3(BO3)4 crystal measured under the identical experimental conditions, higher laser performances were demonstrated in the sapphire/Er:Yb:YAl3(BO3)4/sapphire composite crystal due to the reduction of the thermal effects. End-pumped by a 976 nm laser diode in a hemispherical cavity, a 1.55 μm continuous-wave laser with a maximum output power of 1.75 W and a slope efficiency of 36% was obtained in the composite crystal when the incident pump power was 6.54 W. Passively Q-switched by a Co2+:MgAl2O4 crystal, a 1.52 μm pulse laser with energy of 10 μJ and repetition frequency of 105 kHz was also realized in the composite crystal. Pulse width was 315 ns. The results show that the sapphire/Er:Yb:YAl3(BO3)4/sapphire composite crystal is an excellent active element for 1.55 μm laser.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication and diode-pumped 1.55 μm continuous-wave laser performance of a diffusion-bonded Er:Yb:YAl3(BO3)4/YAl3(BO3)4 composite crystal

Yujin Chen, Yanfu Lin, Jianhua Huang, Xinghong Gong, Zundu Luo, and Yidong Huang
Opt. Express 25(15) 17128-17133 (2017)

Enhanced performances of diode-pumped sapphire/Er3+:Yb3+:LuAl3(BO3)4/sapphire micro-laser at 1.5-1.6 μm

Yujin Chen, Yanfu Lin, Jianhua Huang, Xinghong Gong, Zundu Luo, and Yidong Huang
Opt. Express 23(9) 12401-12406 (2015)

Efficient diode-pumped acousto-optic Q-switched Er:Yb:GdAl3(BO3)4 pulse laser at 1522  nm

Y. J. Chen, Y. F. Lin, J. H. Huang, X. H. Gong, Z. D. Luo, and Y. D. Huang
Opt. Lett. 40(21) 4927-4930 (2015)

References

  • View by:
  • |
  • |
  • |

  1. T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
    [Crossref]
  2. V. Lupei, “Efficiency enhancement and power scaling of Nd lasers,” Opt. Mater. 24(1–2), 353–368 (2003).
    [Crossref]
  3. G. Huber, C. Kränkel, and K. Petermann, “Solid-state lasers: status and future,” J. Opt. Soc. Am. B 27(11), B93–B105 (2010).
    [Crossref]
  4. Y. J. Huang and Y. F. Chen, “High-power diode-end-pumped laser with multi-segmented Nd-doped yttrium vanadate,” Opt. Express 21(13), 16063–16068 (2013).
    [Crossref] [PubMed]
  5. P. Ye, S. Zhu, Z. Li, H. Yin, P. Zhang, S. Fu, and Z. Chen, “Passively Q-switched dual-wavelength green laser with an Yb:YAG/Cr4+:YAG/YAG composite crystal,” Opt. Express 25(5), 5179–5185 (2017).
    [Crossref] [PubMed]
  6. H. Ichikawa, K. Yamaguchi, T. Katsumata, and I. Shoji, “High-power and highly efficient composite laser with an anti-reflection coated layer between a laser crystal and a diamond heat spreader fabricated by room-temperature bonding,” Opt. Express 25(19), 22797–22804 (2017).
    [Crossref] [PubMed]
  7. Y. Zhou, J. Xu, and Y. Tang, “Composite Nd:YAG-SiC-bonding laser with orthogonal-linear-polarization output,” Opt. Express 25(2), 1515–1520 (2017).
    [Crossref] [PubMed]
  8. M. Tsunekane, N. Taguchi, and H. Inaba, “Reduction of thermal effects in a diode-end-pumped, composite Nd:YAG rod with a sapphire end,” Appl. Opt. 37(15), 3290–3294 (1998).
    [Crossref] [PubMed]
  9. M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2–3), 269–316 (2008).
    [Crossref]
  10. S. Setzler, M. Francis, Y. Young, J. Konves, and E. Chicklis, “Resonantly pumped eye-safe erbium lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 645–657 (2005).
    [Crossref]
  11. S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and F. Laurell, “230-mW diode-pumped single-frequency Er:Yb:laser at 1.5 μm,” IEEE Photonics Technol. Lett. 13(1), 19–21 (2001).
    [Crossref]
  12. J. Mlyńczak, K. Kopczynski, Z. Mierczyk, M. Malinowska, and P. Osiwianski, “Comparison of cw laser generation in Er3+,Yb3+:glass microchip lasers with different types of glasses,” Opto-Electron. Rev. 19(4), 491–495 (2011).
    [Crossref]
  13. N. A. Tolstik, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, O. V. Pilipenko, E. V. Koporulina, and N. I. Leonyuk, “Efficient 1 W continuous-wave diode-pumped Er,Yb:YAl3(BO3)4 laser,” Opt. Lett. 32(22), 3233–3235 (2007).
    [Crossref] [PubMed]
  14. K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, V. V. Maltsev, N. I. Leonyuk, and N. V. Kuleshov, “Highly efficient continuous-wave diode-pumped Er, Yb:GdAl3(BO3)4 laser,” Opt. Lett. 38(14), 2446–2448 (2013).
    [Crossref] [PubMed]
  15. Y. Chen, Y. Lin, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Enhanced performances of diode-pumped sapphire/Er3+:Yb3+:LuAl3(BO3)4/sapphire micro-laser at 1.5-1.6 μm,” Opt. Express 23(9), 12401–12406 (2015).
    [Crossref] [PubMed]
  16. Y. Li, J. Feng, P. Li, K. Zhang, Y. Chen, Y. Lin, and Y. Huang, “400 mW low noise continuous-wave single-frequency Er,Yb:YAl3(BO3)4 laser at 1.55 μm,” Opt. Express 21(5), 6082–6090 (2013).
    [Crossref] [PubMed]
  17. Y. Chen, Y. Lin, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Fabrication and diode-pumped 1.55 μm continuous-wave laser performance of a diffusion-bonded Er3+:Yb3+:YAl3(BO3)4/YAl3(BO3)4 composite crystal,” Opt. Express 25(15), 17128–17133 (2017).
    [Crossref] [PubMed]
  18. H. Liu, J. Li, S. Fang, J. Wang, and N. Ye, “Growth of YAl3(BO3)4 crystals with tungstate based flux,” Mater. Res. Innov. 15(2), 102–106 (2011).
    [Crossref]
  19. Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for 4F 3/2→4I 11/2 and 4F 3/2→4I 13/2 transitions,” Opt. Express 16(25), 21155–21160 (2008).
    [Crossref] [PubMed]
  20. F. Träger, Springer Handbook of Lasers and Optics (Springer, 2007), Chap. 6.
  21. N. Hodgson and H. Weber, Laser Resonators and Beam Propagation (Springer, 2005).
  22. V. E. Kisel, K. N. Gorbachenya, A. S. Yasukevich, A. M. Ivashko, N. V. Kuleshov, V. V. Maltsev, and N. I. Leonyuk, “Passively Q-switched microchip Er, Yb:YAl3(BO3)4 diode-pumped laser,” Opt. Lett. 37(13), 2745–2747 (2012).
    [Crossref] [PubMed]
  23. J. Mlyńczak, K. Kopczynski, and Z. Mierczyk, “Wavelength tuning in Er3+,Yb3+:glass microchip lasers,” Opto-Electron. Rev. 17(1), 84–88 (2009).
    [Crossref]
  24. I. Foldvári, E. Beregi, A. Munoz F, R. Sosa, and V. Horváth, “The energy levels of Er3+ ion in yttrium aluminum borate (YAB) single crystals,” Opt. Mater. 19(2), 241–244 (2002).
    [Crossref]
  25. J. Mlyńczak and N. Belghachem, “High peak power generation in thermally bonded Er3+,Yb3+:glass/Co2+:MgAl2O3 microchip laser for telemetry application,” Laser Phys. Lett. 12(4), 045803 (2015).
    [Crossref]
  26. J. Mlyńczak and N. Belghachem, “Monolithic thermally bonded Er3+,Yb3+:glass/Co2+:MgAl2O3 microchip lasers,” Opt. Commun. 356, 166–169 (2015).
    [Crossref]
  27. J. Mlyńczak, K. Kopczynski, and Z. Mierczyk, “Optimization of passively repetitively Q-switched three-level lasers,” IEEE J. Quantum Electron. 44(12), 1152–1157 (2008).
    [Crossref]

2017 (4)

2015 (3)

Y. Chen, Y. Lin, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Enhanced performances of diode-pumped sapphire/Er3+:Yb3+:LuAl3(BO3)4/sapphire micro-laser at 1.5-1.6 μm,” Opt. Express 23(9), 12401–12406 (2015).
[Crossref] [PubMed]

J. Mlyńczak and N. Belghachem, “High peak power generation in thermally bonded Er3+,Yb3+:glass/Co2+:MgAl2O3 microchip laser for telemetry application,” Laser Phys. Lett. 12(4), 045803 (2015).
[Crossref]

J. Mlyńczak and N. Belghachem, “Monolithic thermally bonded Er3+,Yb3+:glass/Co2+:MgAl2O3 microchip lasers,” Opt. Commun. 356, 166–169 (2015).
[Crossref]

2013 (3)

2012 (1)

2011 (2)

H. Liu, J. Li, S. Fang, J. Wang, and N. Ye, “Growth of YAl3(BO3)4 crystals with tungstate based flux,” Mater. Res. Innov. 15(2), 102–106 (2011).
[Crossref]

J. Mlyńczak, K. Kopczynski, Z. Mierczyk, M. Malinowska, and P. Osiwianski, “Comparison of cw laser generation in Er3+,Yb3+:glass microchip lasers with different types of glasses,” Opto-Electron. Rev. 19(4), 491–495 (2011).
[Crossref]

2010 (1)

2009 (1)

J. Mlyńczak, K. Kopczynski, and Z. Mierczyk, “Wavelength tuning in Er3+,Yb3+:glass microchip lasers,” Opto-Electron. Rev. 17(1), 84–88 (2009).
[Crossref]

2008 (3)

J. Mlyńczak, K. Kopczynski, and Z. Mierczyk, “Optimization of passively repetitively Q-switched three-level lasers,” IEEE J. Quantum Electron. 44(12), 1152–1157 (2008).
[Crossref]

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2–3), 269–316 (2008).
[Crossref]

Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for 4F 3/2→4I 11/2 and 4F 3/2→4I 13/2 transitions,” Opt. Express 16(25), 21155–21160 (2008).
[Crossref] [PubMed]

2007 (1)

2005 (1)

S. Setzler, M. Francis, Y. Young, J. Konves, and E. Chicklis, “Resonantly pumped eye-safe erbium lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 645–657 (2005).
[Crossref]

2003 (1)

V. Lupei, “Efficiency enhancement and power scaling of Nd lasers,” Opt. Mater. 24(1–2), 353–368 (2003).
[Crossref]

2002 (1)

I. Foldvári, E. Beregi, A. Munoz F, R. Sosa, and V. Horváth, “The energy levels of Er3+ ion in yttrium aluminum borate (YAB) single crystals,” Opt. Mater. 19(2), 241–244 (2002).
[Crossref]

2001 (1)

S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and F. Laurell, “230-mW diode-pumped single-frequency Er:Yb:laser at 1.5 μm,” IEEE Photonics Technol. Lett. 13(1), 19–21 (2001).
[Crossref]

1998 (1)

1993 (1)

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
[Crossref]

Belghachem, N.

J. Mlyńczak and N. Belghachem, “High peak power generation in thermally bonded Er3+,Yb3+:glass/Co2+:MgAl2O3 microchip laser for telemetry application,” Laser Phys. Lett. 12(4), 045803 (2015).
[Crossref]

J. Mlyńczak and N. Belghachem, “Monolithic thermally bonded Er3+,Yb3+:glass/Co2+:MgAl2O3 microchip lasers,” Opt. Commun. 356, 166–169 (2015).
[Crossref]

Beregi, E.

I. Foldvári, E. Beregi, A. Munoz F, R. Sosa, and V. Horváth, “The energy levels of Er3+ ion in yttrium aluminum borate (YAB) single crystals,” Opt. Mater. 19(2), 241–244 (2002).
[Crossref]

Chang, Y. T.

Chen, Y.

Chen, Y. F.

Chen, Z.

Chicklis, E.

S. Setzler, M. Francis, Y. Young, J. Konves, and E. Chicklis, “Resonantly pumped eye-safe erbium lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 645–657 (2005).
[Crossref]

Eichhorn, M.

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2–3), 269–316 (2008).
[Crossref]

Fan, T. Y.

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
[Crossref]

Fang, S.

H. Liu, J. Li, S. Fang, J. Wang, and N. Ye, “Growth of YAl3(BO3)4 crystals with tungstate based flux,” Mater. Res. Innov. 15(2), 102–106 (2011).
[Crossref]

Feng, J.

Foldvári, I.

I. Foldvári, E. Beregi, A. Munoz F, R. Sosa, and V. Horváth, “The energy levels of Er3+ ion in yttrium aluminum borate (YAB) single crystals,” Opt. Mater. 19(2), 241–244 (2002).
[Crossref]

Francis, M.

S. Setzler, M. Francis, Y. Young, J. Konves, and E. Chicklis, “Resonantly pumped eye-safe erbium lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 645–657 (2005).
[Crossref]

Fu, S.

Gong, X.

Gorbachenya, K. N.

Horváth, V.

I. Foldvári, E. Beregi, A. Munoz F, R. Sosa, and V. Horváth, “The energy levels of Er3+ ion in yttrium aluminum borate (YAB) single crystals,” Opt. Mater. 19(2), 241–244 (2002).
[Crossref]

Huang, J.

Huang, Y.

Huang, Y. J.

Huang, Y. P.

Huber, G.

Ichikawa, H.

Inaba, H.

Ivashko, A. M.

Karlsson, G.

S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and F. Laurell, “230-mW diode-pumped single-frequency Er:Yb:laser at 1.5 μm,” IEEE Photonics Technol. Lett. 13(1), 19–21 (2001).
[Crossref]

Katsumata, T.

Kisel, V. E.

Konves, J.

S. Setzler, M. Francis, Y. Young, J. Konves, and E. Chicklis, “Resonantly pumped eye-safe erbium lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 645–657 (2005).
[Crossref]

Kopczynski, K.

J. Mlyńczak, K. Kopczynski, Z. Mierczyk, M. Malinowska, and P. Osiwianski, “Comparison of cw laser generation in Er3+,Yb3+:glass microchip lasers with different types of glasses,” Opto-Electron. Rev. 19(4), 491–495 (2011).
[Crossref]

J. Mlyńczak, K. Kopczynski, and Z. Mierczyk, “Wavelength tuning in Er3+,Yb3+:glass microchip lasers,” Opto-Electron. Rev. 17(1), 84–88 (2009).
[Crossref]

J. Mlyńczak, K. Kopczynski, and Z. Mierczyk, “Optimization of passively repetitively Q-switched three-level lasers,” IEEE J. Quantum Electron. 44(12), 1152–1157 (2008).
[Crossref]

Koporulina, E. V.

Kränkel, C.

Kuleshov, N. V.

Kurilchik, S. V.

Laporta, P.

S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and F. Laurell, “230-mW diode-pumped single-frequency Er:Yb:laser at 1.5 μm,” IEEE Photonics Technol. Lett. 13(1), 19–21 (2001).
[Crossref]

Laurell, F.

S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and F. Laurell, “230-mW diode-pumped single-frequency Er:Yb:laser at 1.5 μm,” IEEE Photonics Technol. Lett. 13(1), 19–21 (2001).
[Crossref]

Leonyuk, N. I.

Li, J.

H. Liu, J. Li, S. Fang, J. Wang, and N. Ye, “Growth of YAl3(BO3)4 crystals with tungstate based flux,” Mater. Res. Innov. 15(2), 102–106 (2011).
[Crossref]

Li, P.

Li, Y.

Li, Z.

Lin, Y.

Liu, H.

H. Liu, J. Li, S. Fang, J. Wang, and N. Ye, “Growth of YAl3(BO3)4 crystals with tungstate based flux,” Mater. Res. Innov. 15(2), 102–106 (2011).
[Crossref]

Luo, Z.

Lupei, V.

V. Lupei, “Efficiency enhancement and power scaling of Nd lasers,” Opt. Mater. 24(1–2), 353–368 (2003).
[Crossref]

Malinowska, M.

J. Mlyńczak, K. Kopczynski, Z. Mierczyk, M. Malinowska, and P. Osiwianski, “Comparison of cw laser generation in Er3+,Yb3+:glass microchip lasers with different types of glasses,” Opto-Electron. Rev. 19(4), 491–495 (2011).
[Crossref]

Maltsev, V. V.

Mierczyk, Z.

J. Mlyńczak, K. Kopczynski, Z. Mierczyk, M. Malinowska, and P. Osiwianski, “Comparison of cw laser generation in Er3+,Yb3+:glass microchip lasers with different types of glasses,” Opto-Electron. Rev. 19(4), 491–495 (2011).
[Crossref]

J. Mlyńczak, K. Kopczynski, and Z. Mierczyk, “Wavelength tuning in Er3+,Yb3+:glass microchip lasers,” Opto-Electron. Rev. 17(1), 84–88 (2009).
[Crossref]

J. Mlyńczak, K. Kopczynski, and Z. Mierczyk, “Optimization of passively repetitively Q-switched three-level lasers,” IEEE J. Quantum Electron. 44(12), 1152–1157 (2008).
[Crossref]

Mlynczak, J.

J. Mlyńczak and N. Belghachem, “High peak power generation in thermally bonded Er3+,Yb3+:glass/Co2+:MgAl2O3 microchip laser for telemetry application,” Laser Phys. Lett. 12(4), 045803 (2015).
[Crossref]

J. Mlyńczak and N. Belghachem, “Monolithic thermally bonded Er3+,Yb3+:glass/Co2+:MgAl2O3 microchip lasers,” Opt. Commun. 356, 166–169 (2015).
[Crossref]

J. Mlyńczak, K. Kopczynski, Z. Mierczyk, M. Malinowska, and P. Osiwianski, “Comparison of cw laser generation in Er3+,Yb3+:glass microchip lasers with different types of glasses,” Opto-Electron. Rev. 19(4), 491–495 (2011).
[Crossref]

J. Mlyńczak, K. Kopczynski, and Z. Mierczyk, “Wavelength tuning in Er3+,Yb3+:glass microchip lasers,” Opto-Electron. Rev. 17(1), 84–88 (2009).
[Crossref]

J. Mlyńczak, K. Kopczynski, and Z. Mierczyk, “Optimization of passively repetitively Q-switched three-level lasers,” IEEE J. Quantum Electron. 44(12), 1152–1157 (2008).
[Crossref]

Munoz F, A.

I. Foldvári, E. Beregi, A. Munoz F, R. Sosa, and V. Horváth, “The energy levels of Er3+ ion in yttrium aluminum borate (YAB) single crystals,” Opt. Mater. 19(2), 241–244 (2002).
[Crossref]

Osiwianski, P.

J. Mlyńczak, K. Kopczynski, Z. Mierczyk, M. Malinowska, and P. Osiwianski, “Comparison of cw laser generation in Er3+,Yb3+:glass microchip lasers with different types of glasses,” Opto-Electron. Rev. 19(4), 491–495 (2011).
[Crossref]

Petermann, K.

Pilipenko, O. V.

Setzler, S.

S. Setzler, M. Francis, Y. Young, J. Konves, and E. Chicklis, “Resonantly pumped eye-safe erbium lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 645–657 (2005).
[Crossref]

Shoji, I.

Sorbello, G.

S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and F. Laurell, “230-mW diode-pumped single-frequency Er:Yb:laser at 1.5 μm,” IEEE Photonics Technol. Lett. 13(1), 19–21 (2001).
[Crossref]

Sosa, R.

I. Foldvári, E. Beregi, A. Munoz F, R. Sosa, and V. Horváth, “The energy levels of Er3+ ion in yttrium aluminum borate (YAB) single crystals,” Opt. Mater. 19(2), 241–244 (2002).
[Crossref]

Su, K. W.

Taccheo, S.

S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and F. Laurell, “230-mW diode-pumped single-frequency Er:Yb:laser at 1.5 μm,” IEEE Photonics Technol. Lett. 13(1), 19–21 (2001).
[Crossref]

Taguchi, N.

Tang, Y.

Tolstik, N. A.

Tsunekane, M.

Wang, J.

H. Liu, J. Li, S. Fang, J. Wang, and N. Ye, “Growth of YAl3(BO3)4 crystals with tungstate based flux,” Mater. Res. Innov. 15(2), 102–106 (2011).
[Crossref]

Xu, J.

Yamaguchi, K.

Yasukevich, A. S.

Ye, N.

H. Liu, J. Li, S. Fang, J. Wang, and N. Ye, “Growth of YAl3(BO3)4 crystals with tungstate based flux,” Mater. Res. Innov. 15(2), 102–106 (2011).
[Crossref]

Ye, P.

Yin, H.

Young, Y.

S. Setzler, M. Francis, Y. Young, J. Konves, and E. Chicklis, “Resonantly pumped eye-safe erbium lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 645–657 (2005).
[Crossref]

Zhang, K.

Zhang, P.

Zhou, Y.

Zhu, S.

Appl. Opt. (1)

Appl. Phys. B (1)

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2–3), 269–316 (2008).
[Crossref]

IEEE J. Quantum Electron. (2)

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
[Crossref]

J. Mlyńczak, K. Kopczynski, and Z. Mierczyk, “Optimization of passively repetitively Q-switched three-level lasers,” IEEE J. Quantum Electron. 44(12), 1152–1157 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Setzler, M. Francis, Y. Young, J. Konves, and E. Chicklis, “Resonantly pumped eye-safe erbium lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 645–657 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and F. Laurell, “230-mW diode-pumped single-frequency Er:Yb:laser at 1.5 μm,” IEEE Photonics Technol. Lett. 13(1), 19–21 (2001).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

J. Mlyńczak and N. Belghachem, “High peak power generation in thermally bonded Er3+,Yb3+:glass/Co2+:MgAl2O3 microchip laser for telemetry application,” Laser Phys. Lett. 12(4), 045803 (2015).
[Crossref]

Mater. Res. Innov. (1)

H. Liu, J. Li, S. Fang, J. Wang, and N. Ye, “Growth of YAl3(BO3)4 crystals with tungstate based flux,” Mater. Res. Innov. 15(2), 102–106 (2011).
[Crossref]

Opt. Commun. (1)

J. Mlyńczak and N. Belghachem, “Monolithic thermally bonded Er3+,Yb3+:glass/Co2+:MgAl2O3 microchip lasers,” Opt. Commun. 356, 166–169 (2015).
[Crossref]

Opt. Express (8)

Y. Chen, Y. Lin, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Enhanced performances of diode-pumped sapphire/Er3+:Yb3+:LuAl3(BO3)4/sapphire micro-laser at 1.5-1.6 μm,” Opt. Express 23(9), 12401–12406 (2015).
[Crossref] [PubMed]

Y. Li, J. Feng, P. Li, K. Zhang, Y. Chen, Y. Lin, and Y. Huang, “400 mW low noise continuous-wave single-frequency Er,Yb:YAl3(BO3)4 laser at 1.55 μm,” Opt. Express 21(5), 6082–6090 (2013).
[Crossref] [PubMed]

Y. Chen, Y. Lin, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Fabrication and diode-pumped 1.55 μm continuous-wave laser performance of a diffusion-bonded Er3+:Yb3+:YAl3(BO3)4/YAl3(BO3)4 composite crystal,” Opt. Express 25(15), 17128–17133 (2017).
[Crossref] [PubMed]

Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for 4F 3/2→4I 11/2 and 4F 3/2→4I 13/2 transitions,” Opt. Express 16(25), 21155–21160 (2008).
[Crossref] [PubMed]

Y. J. Huang and Y. F. Chen, “High-power diode-end-pumped laser with multi-segmented Nd-doped yttrium vanadate,” Opt. Express 21(13), 16063–16068 (2013).
[Crossref] [PubMed]

P. Ye, S. Zhu, Z. Li, H. Yin, P. Zhang, S. Fu, and Z. Chen, “Passively Q-switched dual-wavelength green laser with an Yb:YAG/Cr4+:YAG/YAG composite crystal,” Opt. Express 25(5), 5179–5185 (2017).
[Crossref] [PubMed]

H. Ichikawa, K. Yamaguchi, T. Katsumata, and I. Shoji, “High-power and highly efficient composite laser with an anti-reflection coated layer between a laser crystal and a diamond heat spreader fabricated by room-temperature bonding,” Opt. Express 25(19), 22797–22804 (2017).
[Crossref] [PubMed]

Y. Zhou, J. Xu, and Y. Tang, “Composite Nd:YAG-SiC-bonding laser with orthogonal-linear-polarization output,” Opt. Express 25(2), 1515–1520 (2017).
[Crossref] [PubMed]

Opt. Lett. (3)

Opt. Mater. (2)

I. Foldvári, E. Beregi, A. Munoz F, R. Sosa, and V. Horváth, “The energy levels of Er3+ ion in yttrium aluminum borate (YAB) single crystals,” Opt. Mater. 19(2), 241–244 (2002).
[Crossref]

V. Lupei, “Efficiency enhancement and power scaling of Nd lasers,” Opt. Mater. 24(1–2), 353–368 (2003).
[Crossref]

Opto-Electron. Rev. (2)

J. Mlyńczak, K. Kopczynski, Z. Mierczyk, M. Malinowska, and P. Osiwianski, “Comparison of cw laser generation in Er3+,Yb3+:glass microchip lasers with different types of glasses,” Opto-Electron. Rev. 19(4), 491–495 (2011).
[Crossref]

J. Mlyńczak, K. Kopczynski, and Z. Mierczyk, “Wavelength tuning in Er3+,Yb3+:glass microchip lasers,” Opto-Electron. Rev. 17(1), 84–88 (2009).
[Crossref]

Other (2)

F. Träger, Springer Handbook of Lasers and Optics (Springer, 2007), Chap. 6.

N. Hodgson and H. Weber, Laser Resonators and Beam Propagation (Springer, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Fabrication process of a sap/Er:Yb:YAB/sap composite crystal. (b) Photograph of the composite crystal (left) and enlarged view of one face of the composite crystal (right).
Fig. 2
Fig. 2 Transmission spectra in 1400–1650 nm of the sap/Er:Yb:YAB/sap composite and Er:Yb:YAB crystals. The inset shows the absorption spectrum of the composite crystal in 875–1050 nm.
Fig. 3
Fig. 3 Experimental setup of a 976 nm-diode-pumped sap/Er:Yb:YAB/sap 1.55 μm laser.
Fig. 4
Fig. 4 (a) Output power of the sap/Er:Yb:YAB/sap laser as a function of incident pump power. (b) Laser spectra for different OM transmissivities T at an incident pump power of 6.54 W. (c) Squared beam radius ω2 of the output laser as a function of the distance Z from the focusing lens at an incident pump power of 6.54 W and an OM transmissivity of 5.8%. (d) Beam quality factors M2 for different pump powers at an OM transmissivity of 5.8%.
Fig. 5
Fig. 5 (a) Output power versus incident pump power at an OM transmissivity of 5.8% when the sap/Er:Yb:YAB/sap composite crystal and the lone Er:Yb:YAB crystal were used as active element under identical experimental conditions, respectively. The insets show the laser spectra recorded in both the crystals at an incident pump power of 6.54 W. (b) Squared beam radius ω2 of the output laser in the lone Er:Yb:YAB crystal versus the distance Z from the focusing lens at an incident pump power of 6.54 W. (c) Energy level diagram of Er3+ in YAB crystal.
Fig. 6
Fig. 6 Average output power of the passively Q-switched sap/Er:Yb:YAB/sap pulse laser as a function of incident pump power for 5.8% OM transmissivity. The insets show the laser spectrum and squared beam radius ω2 of the pulse laser as a function of the distance Z from the focusing lens at an incident pump power of 6.54 W
Fig. 7
Fig. 7 Pulse repetition frequency of the sap/Er:Yb:YAB/sap laser at an incident pump power of 2.2 W (a) and 6.54 W (b). (c) Repetition frequency (left) and energy (right) of the pulse laser versus incident pump power. (d) Width of the pulse laser at an incident pump power of 6.54 W.

Metrics