Abstract

This paper presents the device design and performance analysis of a novel design of planar optical cross-connect (OXC) using nematic liquid crystal (NLC) waveguides. It employs N × N switching matrix in cross-bar fabric. In each unit cell, the input light is set in either the transverse electric (TE) mode or the transverse magnetic (TM) mode by electrically reorienting the NLC in the waveguide. The light then enters a passive waveguide and is routed to different paths depending on the polarization state (TE/TM mode). A sample device of 8 × 8 OXC is analyzed for performance estimation, which predicts a maximum on-chip insertion loss of 3 dB, an average cross-talk of −40 dB, ~1 ms switching time, and 2 mm × 2 mm footprint. The proposed OXC is unique in the switching mechanism of polarization-dependent routing and allows non-blocking switching with high compactness and broad bandwidth. It is potential for optical circuit switching in data centers and optical communication networks.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Electro-optic routing in a nematic liquid-crystal waveguide

Rita Asquini, Andrea Fratalocchi, Antonio d’Alessandro, and Gaetano Assanto
Appl. Opt. 44(19) 4136-4143 (2005)

Wide tuning of SiN microring resonators by auto-realigning nematic liquid crystal

Tzyy-Jiann Wang, Shun-Chen Yang, Tien-Jung Chen, and Bo-Yu Chen
Opt. Express 20(14) 15853-15858 (2012)

Dynamic electro-optic response of graphene/graphitic flakes in nematic liquid crystals

Weiwei Tie, Surjya Sarathi Bhattacharyya, Young Jin Lim, Sang Won Lee, Tae Hoon Lee, Young Hee Lee, and Seung Hee Lee
Opt. Express 21(17) 19867-19879 (2013)

References

  • View by:
  • |
  • |
  • |

  1. T. S. El-Bawab, Optical Switching (Springer Press, 2006), pp. 1–32.
  2. C. Kachris, K. Kanonakis, and I. Tomkos, “Optical interconnection networks in data centers: recent rrends and future challenges,” IEEE Commun. Mag. 51(9), 39–45 (2013).
    [Crossref]
  3. G. Wang, D. G. Andersen, M. Kaminsky, T. S. E. Ng, K. Papagiannaki, M. Glick, and L. Mummert, “Your data center is a router: the case for reconfigurable optical circuit switched paths,” in 2009 ACM HotNets-VIII, 1–6.
  4. K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen, and Y. Chen, “OSA: an optical switching architecture for data center networks with unprecedented flexibility,” IEEE/ACM Trans. Netw. 22(2), 498–511 (2014).
    [Crossref]
  5. J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
    [Crossref]
  6. R. Stabile, A. Albores-Mejia, A. Rohit, and K. A. Williams, “Integrated optical switch matrices for packet data networks,” Microsystems & Nanoengineering 2, 15042 (2016).
    [Crossref]
  7. L. Chen and Y. K. Chen, “Compact, low-loss and low-power 8×8 broadband silicon optical switch,” Opt. Express 20(17), 18977–18985 (2012).
    [Crossref] [PubMed]
  8. R. Ji, L. Yang, L. Zhang, Y. Tian, J. Ding, H. Chen, Y. Lu, P. Zhou, and W. Zhu, “Five-port optical router for photonic networks-on-chip,” Opt. Express 19(21), 20258–20268 (2011).
    [Crossref] [PubMed]
  9. Q. Cheng, M. Ding, A. Wonfor, and I. H. White, “The feasibility of building a 64 x 64 port count SOA-based optical switch,” in 2015International Conference on Photonics in Switching (PS2015), pp. 199–201.
    [Crossref]
  10. S. Han, T. Seok, N. Quack, B. Yoo, and M. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2(4), 370–375 (2015).
    [Crossref]
  11. T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3(1), 64–70 (2016).
    [Crossref]
  12. H. Du, F. Chau, and G. Zhou, “Mechanically-tunable photonic devices with on-chip integrated MEMS/NEMS actuators,” Micromachines (Basel) 7(4), 69 (2016).
    [Crossref]
  13. D. K. Yang and S. T. Wu, Fundmentals of Liquid Crystal Devices (John Wiley & Sons, 2015), pp. 1–285.
  14. Z. Zhuang, Y. J. Kim, and J. S. Patel, “Achromatic linear polarization rotator using twisted nematic liquid crystals,” Appl. Phys. Lett. 76(26), 3995–3997 (2000).
    [Crossref]
  15. P. Fiala, C. Dorrer, and K. Marshall, “Twisted-nematic liquid crystal polarization rotators for broadband laser applications,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper JW2A.68.
    [Crossref]
  16. Q. Wang and G. Farrell, “Integrated liquid-crystal switch for both TE and TM modes: proposal and design,” J. Opt. Soc. Am. A 24(10), 3303–3308 (2007).
    [Crossref] [PubMed]
  17. G. Chen and J. U. Kang, “Waveguide mode converter based on two-dimensional photonic crystals,” Opt. Lett. 30(13), 1656–1658 (2005).
    [Crossref] [PubMed]
  18. P. Wang, G. Brambilla, Y. Semenova, Q. Wu, J. Zheng, and G. Farrell, “Proposal for a simple polarization converter based on integrated optical ion exchanged waveguide,” Optical Communications and Networks (ICOCN 2010), 9th International Conference on, Nanjing, 2010, 441–444.
  19. Q. Gong, S. Gong, H. Zhang, L. Liu, and Y. Wang, “Synthesis of a novel polyimide used as liquid crystal vertical alignment layers,” RSC Advances 5(70), 57245–57253 (2015).
    [Crossref]
  20. W. J. Zheng and M. H. Huang, “Use of polydimethylsiloxane thin film as vertical liquid crystal alignment layer,” Thin Solid Films 520(7), 2841–2845 (2012).
    [Crossref]
  21. P. J. Hamelinck and W. T. S. Huck, “Homeotropic alignment on surface-initiated liquid crystalline polymer brushes,” J. Mater. Chem. 15(3), 381–385 (2005).
    [Crossref]
  22. Norland Products, Inc., Norland Optical Adhesive 84, Available at https://www.norlandprod.com/adhesives/noa%2084.html .
  23. T. D. Flaim, Y. Wang, and R. Mercado, “High refractive index polymer coatings for optoelectronic applications,” Proc. SPIE 5250, 423–434 (2004).
    [Crossref]
  24. R. Jones, O. Cohen, H. Chan, D. Rubin, A. Fang, and M. Paniccia, “Integration of SiON gratings with SOI,” IEEE International Conference on Group IV Photonics, 2005, 192–194 (2005).
  25. A. V. Zakharov and R. Y. Dong, “Dielectric and elastic properties of liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(3 Pt 1), 031701 (2001).
    [Crossref] [PubMed]
  26. J. Li and S. T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
    [Crossref]
  27. D. Hermann, Integrated Optics with Liquid Crystals, Available at http://fy.chalmers.se/-f9adh/pub/LCIO-Hermann.pdf , Chalmers Univ. of Tech., Goteberg, SE, (2000), 1–33.
  28. S. Ertman, T. R. Wolinski, D. Pysz, R. Buczynski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Low-loss propagation and continuously tunable birefringence in high-index photonic crystal fibers filled with nematic liquid crystals,” Opt. Express 17(21), 19298–19310 (2009).
    [Crossref] [PubMed]
  29. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  30. Norland Products, Inc., Norland Optical Adhesive 61, Available at https://www.norlandprod.com/adhesives/noa%2061.html .
  31. L. Colombo, J. J. Chamber, and H. Niimi, “Gate dielectric process technology for the sub-1 nm equivalent oxide thickness (EOT) era,” Electrochem. Soc. Interface 16(3), 51–55 (2007).
  32. Y. Fu, T. Ye, W. Tang, and T. Chu, “Efficient adiabatic silicon-on-insulator waveguide taper,” Photon. Res. 2(3), A41–A44 (2014).
    [Crossref]
  33. A. Melloni, R. Costa, G. Cusmai, and F. Morichetti, “The role of index contrast in dielectric optical waveguides,” Int. J. Mater. Prod. Technol. 34(4), 421–437 (2009).
    [Crossref]
  34. I.-C. Khoo, Liquid Crystals (John Wiley & Sons, 2007), pp. 1–190.
  35. A. G. Maksimochkin, S. V. Pasechnik, G. I. Maksimochkin, and V. G. Chigrinov, “Electrically controlled waveguide mode in LC layer for fiber optic applications,” Opt. Commun. 283(16), 3136–3141 (2010).
    [Crossref]
  36. A. K. Pitilakis, D. C. Zografopoulos, and E. E. Kriezis, “In-line polarization controller based on liquid-crystal photonic crystal fibers,” J. Lightwave Technol. 29(17), 2560–2569 (2011).
    [Crossref]
  37. D. C. Zografopoulos and R. Beccherelli, “Design of a vertically coupled liquid-crystal long-range plasmonic optical switch,” Appl. Phys. Lett. 102(10), 101103 (2013).
    [Crossref]
  38. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
    [Crossref] [PubMed]
  39. Q. Wang and S. Kumar, “Submillisecond switching of nematic liquid crystal in cells fabricated by anisotropic phase-separation of liquid crystal and polymer mixture,” Appl. Phys. Lett. 86(7), 071119 (2005).
    [Crossref]
  40. J. P. Barber, D. B. Conkey, M. M. Smith, J. R. Lee, B. A. Peeni, Z. A. George, A. R. Hawkins, D. Yin, and H. Schmidt, “Hollow waveguides on planar substrates with selectable geometry cores,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CTuD4.
    [Crossref]
  41. Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3(10), 1–10 (2014).
    [Crossref]
  42. X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 36(6), 796–798 (2011).
    [Crossref] [PubMed]
  43. P. Xu, Y. Zhang, Z. Shao, L. Liu, L. Zhou, C. Yang, Y. Chen, and S. Yu, “High-efficiency wideband SiNx-on-SOI grating coupler with low fabrication complexity,” Opt. Lett. 42(17), 3391–3394 (2017).
    [Crossref] [PubMed]
  44. C.-C. Chiu and D.-W. Huang, “Polarization independent grating coupler for silicon-on-insulator waveguides,” in 2010 International Conference on Optical MEMS and Nanophotonics (OPT MEMS), 2010, 171–172.
    [Crossref]
  45. W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007).
    [Crossref] [PubMed]
  46. C. Alonso-Ramos, L. Zavargo-Peche, A. Ortega-Moñux, R. Halir, I. Molina-Fernández, and P. Cheben, “Polarization-independent grating coupler for micrometric silicon rib waveguides,” Opt. Lett. 37(17), 3663–3665 (2012).
    [Crossref] [PubMed]
  47. V. Passaro and G. Masanovic, “Design of SiON-based grating-assisted vertical directional couplers,” Opt. Express 14(3), 1055–1063 (2006).
    [Crossref] [PubMed]
  48. Y. J. Liu, P. X. Gao, B. Wong, and S. Keshav, “Quartz: a new design element for low-latency DCNs,” in Proceedings of the 2014 ACM conference on SIGCOMM, Chicago, 2014, 283–294.
    [Crossref]
  49. S. Aleksic, “The future of optical interconnects for data centers: a review of technology trends,” in Telecommunications (ConTEL), 2017 14th International Conference on, Zagreb, 2017, 41–46.
    [Crossref]

2017 (1)

2016 (3)

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3(1), 64–70 (2016).
[Crossref]

R. Stabile, A. Albores-Mejia, A. Rohit, and K. A. Williams, “Integrated optical switch matrices for packet data networks,” Microsystems & Nanoengineering 2, 15042 (2016).
[Crossref]

H. Du, F. Chau, and G. Zhou, “Mechanically-tunable photonic devices with on-chip integrated MEMS/NEMS actuators,” Micromachines (Basel) 7(4), 69 (2016).
[Crossref]

2015 (2)

Q. Gong, S. Gong, H. Zhang, L. Liu, and Y. Wang, “Synthesis of a novel polyimide used as liquid crystal vertical alignment layers,” RSC Advances 5(70), 57245–57253 (2015).
[Crossref]

S. Han, T. Seok, N. Quack, B. Yoo, and M. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2(4), 370–375 (2015).
[Crossref]

2014 (3)

Y. Fu, T. Ye, W. Tang, and T. Chu, “Efficient adiabatic silicon-on-insulator waveguide taper,” Photon. Res. 2(3), A41–A44 (2014).
[Crossref]

K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen, and Y. Chen, “OSA: an optical switching architecture for data center networks with unprecedented flexibility,” IEEE/ACM Trans. Netw. 22(2), 498–511 (2014).
[Crossref]

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3(10), 1–10 (2014).
[Crossref]

2013 (2)

D. C. Zografopoulos and R. Beccherelli, “Design of a vertically coupled liquid-crystal long-range plasmonic optical switch,” Appl. Phys. Lett. 102(10), 101103 (2013).
[Crossref]

C. Kachris, K. Kanonakis, and I. Tomkos, “Optical interconnection networks in data centers: recent rrends and future challenges,” IEEE Commun. Mag. 51(9), 39–45 (2013).
[Crossref]

2012 (3)

2011 (4)

2010 (1)

A. G. Maksimochkin, S. V. Pasechnik, G. I. Maksimochkin, and V. G. Chigrinov, “Electrically controlled waveguide mode in LC layer for fiber optic applications,” Opt. Commun. 283(16), 3136–3141 (2010).
[Crossref]

2009 (2)

2007 (3)

2006 (1)

2005 (3)

Q. Wang and S. Kumar, “Submillisecond switching of nematic liquid crystal in cells fabricated by anisotropic phase-separation of liquid crystal and polymer mixture,” Appl. Phys. Lett. 86(7), 071119 (2005).
[Crossref]

G. Chen and J. U. Kang, “Waveguide mode converter based on two-dimensional photonic crystals,” Opt. Lett. 30(13), 1656–1658 (2005).
[Crossref] [PubMed]

P. J. Hamelinck and W. T. S. Huck, “Homeotropic alignment on surface-initiated liquid crystalline polymer brushes,” J. Mater. Chem. 15(3), 381–385 (2005).
[Crossref]

2004 (2)

T. D. Flaim, Y. Wang, and R. Mercado, “High refractive index polymer coatings for optoelectronic applications,” Proc. SPIE 5250, 423–434 (2004).
[Crossref]

J. Li and S. T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
[Crossref]

2003 (1)

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

2001 (1)

A. V. Zakharov and R. Y. Dong, “Dielectric and elastic properties of liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(3 Pt 1), 031701 (2001).
[Crossref] [PubMed]

2000 (1)

Z. Zhuang, Y. J. Kim, and J. S. Patel, “Achromatic linear polarization rotator using twisted nematic liquid crystals,” Appl. Phys. Lett. 76(26), 3995–3997 (2000).
[Crossref]

Aksyuk, V. A.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Albores-Mejia, A.

R. Stabile, A. Albores-Mejia, A. Rohit, and K. A. Williams, “Integrated optical switch matrices for packet data networks,” Microsystems & Nanoengineering 2, 15042 (2016).
[Crossref]

Alonso-Ramos, C.

Arney, S.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Baets, R.

Basavanhally, N. R.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Beccherelli, R.

D. C. Zografopoulos and R. Beccherelli, “Design of a vertically coupled liquid-crystal long-range plasmonic optical switch,” Appl. Phys. Lett. 102(10), 101103 (2013).
[Crossref]

Bogaerts, W.

Bolle, C. A.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Bowers, J. E.

Buczynski, R.

Chamber, J. J.

L. Colombo, J. J. Chamber, and H. Niimi, “Gate dielectric process technology for the sub-1 nm equivalent oxide thickness (EOT) era,” Electrochem. Soc. Interface 16(3), 51–55 (2007).

Chan, H.

R. Jones, O. Cohen, H. Chan, D. Rubin, A. Fang, and M. Paniccia, “Integration of SiON gratings with SOI,” IEEE International Conference on Group IV Photonics, 2005, 192–194 (2005).

Chan, H. B.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Chau, F.

H. Du, F. Chau, and G. Zhou, “Mechanically-tunable photonic devices with on-chip integrated MEMS/NEMS actuators,” Micromachines (Basel) 7(4), 69 (2016).
[Crossref]

Cheben, P.

Chen, G.

Chen, H.

Chen, K.

K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen, and Y. Chen, “OSA: an optical switching architecture for data center networks with unprecedented flexibility,” IEEE/ACM Trans. Netw. 22(2), 498–511 (2014).
[Crossref]

Chen, L.

Chen, X.

Chen, Y.

P. Xu, Y. Zhang, Z. Shao, L. Liu, L. Zhou, C. Yang, Y. Chen, and S. Yu, “High-efficiency wideband SiNx-on-SOI grating coupler with low fabrication complexity,” Opt. Lett. 42(17), 3391–3394 (2017).
[Crossref] [PubMed]

K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen, and Y. Chen, “OSA: an optical switching architecture for data center networks with unprecedented flexibility,” IEEE/ACM Trans. Netw. 22(2), 498–511 (2014).
[Crossref]

Chen, Y. K.

Cheng, Q.

Q. Cheng, M. Ding, A. Wonfor, and I. H. White, “The feasibility of building a 64 x 64 port count SOA-based optical switch,” in 2015International Conference on Photonics in Switching (PS2015), pp. 199–201.
[Crossref]

Chigrinov, V. G.

A. G. Maksimochkin, S. V. Pasechnik, G. I. Maksimochkin, and V. G. Chigrinov, “Electrically controlled waveguide mode in LC layer for fiber optic applications,” Opt. Commun. 283(16), 3136–3141 (2010).
[Crossref]

Chu, D.

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3(10), 1–10 (2014).
[Crossref]

Chu, T.

Cohen, O.

R. Jones, O. Cohen, H. Chan, D. Rubin, A. Fang, and M. Paniccia, “Integration of SiON gratings with SOI,” IEEE International Conference on Group IV Photonics, 2005, 192–194 (2005).

Colombo, L.

L. Colombo, J. J. Chamber, and H. Niimi, “Gate dielectric process technology for the sub-1 nm equivalent oxide thickness (EOT) era,” Electrochem. Soc. Interface 16(3), 51–55 (2007).

Costa, R.

A. Melloni, R. Costa, G. Cusmai, and F. Morichetti, “The role of index contrast in dielectric optical waveguides,” Int. J. Mater. Prod. Technol. 34(4), 421–437 (2009).
[Crossref]

Cusmai, G.

A. Melloni, R. Costa, G. Cusmai, and F. Morichetti, “The role of index contrast in dielectric optical waveguides,” Int. J. Mater. Prod. Technol. 34(4), 421–437 (2009).
[Crossref]

Dabrowski, R.

Dai, D.

Ding, J.

Ding, M.

Q. Cheng, M. Ding, A. Wonfor, and I. H. White, “The feasibility of building a 64 x 64 port count SOA-based optical switch,” in 2015International Conference on Photonics in Switching (PS2015), pp. 199–201.
[Crossref]

Dong, R. Y.

A. V. Zakharov and R. Y. Dong, “Dielectric and elastic properties of liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(3 Pt 1), 031701 (2001).
[Crossref] [PubMed]

Du, H.

H. Du, F. Chau, and G. Zhou, “Mechanically-tunable photonic devices with on-chip integrated MEMS/NEMS actuators,” Micromachines (Basel) 7(4), 69 (2016).
[Crossref]

Dumon, P.

Ertman, S.

Fang, A.

R. Jones, O. Cohen, H. Chan, D. Rubin, A. Fang, and M. Paniccia, “Integration of SiON gratings with SOI,” IEEE International Conference on Group IV Photonics, 2005, 192–194 (2005).

Farrell, G.

Flaim, T. D.

T. D. Flaim, Y. Wang, and R. Mercado, “High refractive index polymer coatings for optoelectronic applications,” Proc. SPIE 5250, 423–434 (2004).
[Crossref]

Frahm, R. E.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Fu, Y.

Gao, P. X.

Y. J. Liu, P. X. Gao, B. Wong, and S. Keshav, “Quartz: a new design element for low-latency DCNs,” in Proceedings of the 2014 ACM conference on SIGCOMM, Chicago, 2014, 283–294.
[Crossref]

Gasparyan, A.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Gates, J. V.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Gong, Q.

Q. Gong, S. Gong, H. Zhang, L. Liu, and Y. Wang, “Synthesis of a novel polyimide used as liquid crystal vertical alignment layers,” RSC Advances 5(70), 57245–57253 (2015).
[Crossref]

Gong, S.

Q. Gong, S. Gong, H. Zhang, L. Liu, and Y. Wang, “Synthesis of a novel polyimide used as liquid crystal vertical alignment layers,” RSC Advances 5(70), 57245–57253 (2015).
[Crossref]

Halir, R.

Hamelinck, P. J.

P. J. Hamelinck and W. T. S. Huck, “Homeotropic alignment on surface-initiated liquid crystalline polymer brushes,” J. Mater. Chem. 15(3), 381–385 (2005).
[Crossref]

Han, S.

Haueis, M.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Huang, M. H.

W. J. Zheng and M. H. Huang, “Use of polydimethylsiloxane thin film as vertical liquid crystal alignment layer,” Thin Solid Films 520(7), 2841–2845 (2012).
[Crossref]

Huck, W. T. S.

P. J. Hamelinck and W. T. S. Huck, “Homeotropic alignment on surface-initiated liquid crystalline polymer brushes,” J. Mater. Chem. 15(3), 381–385 (2005).
[Crossref]

Ji, R.

Jones, R.

R. Jones, O. Cohen, H. Chan, D. Rubin, A. Fang, and M. Paniccia, “Integration of SiON gratings with SOI,” IEEE International Conference on Group IV Photonics, 2005, 192–194 (2005).

Kachris, C.

C. Kachris, K. Kanonakis, and I. Tomkos, “Optical interconnection networks in data centers: recent rrends and future challenges,” IEEE Commun. Mag. 51(9), 39–45 (2013).
[Crossref]

Kang, J. U.

Kanonakis, K.

C. Kachris, K. Kanonakis, and I. Tomkos, “Optical interconnection networks in data centers: recent rrends and future challenges,” IEEE Commun. Mag. 51(9), 39–45 (2013).
[Crossref]

Keshav, S.

Y. J. Liu, P. X. Gao, B. Wong, and S. Keshav, “Quartz: a new design element for low-latency DCNs,” in Proceedings of the 2014 ACM conference on SIGCOMM, Chicago, 2014, 283–294.
[Crossref]

Kim, J.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Kim, Y. J.

Z. Zhuang, Y. J. Kim, and J. S. Patel, “Achromatic linear polarization rotator using twisted nematic liquid crystals,” Appl. Phys. Lett. 76(26), 3995–3997 (2000).
[Crossref]

Kolodner, P. R.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Kraus, J. S.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Kriezis, E. E.

Kumar, B.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Kumar, S.

Q. Wang and S. Kumar, “Submillisecond switching of nematic liquid crystal in cells fabricated by anisotropic phase-separation of liquid crystal and polymer mixture,” Appl. Phys. Lett. 86(7), 071119 (2005).
[Crossref]

Li, J.

J. Li and S. T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
[Crossref]

Lichtenwalner, C. P.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Lieuwen, D. F.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Lifton, V.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Liu, L.

P. Xu, Y. Zhang, Z. Shao, L. Liu, L. Zhou, C. Yang, Y. Chen, and S. Yu, “High-efficiency wideband SiNx-on-SOI grating coupler with low fabrication complexity,” Opt. Lett. 42(17), 3391–3394 (2017).
[Crossref] [PubMed]

Q. Gong, S. Gong, H. Zhang, L. Liu, and Y. Wang, “Synthesis of a novel polyimide used as liquid crystal vertical alignment layers,” RSC Advances 5(70), 57245–57253 (2015).
[Crossref]

Liu, Y. J.

Y. J. Liu, P. X. Gao, B. Wong, and S. Keshav, “Quartz: a new design element for low-latency DCNs,” in Proceedings of the 2014 ACM conference on SIGCOMM, Chicago, 2014, 283–294.
[Crossref]

Lu, Y.

Maksimochkin, A. G.

A. G. Maksimochkin, S. V. Pasechnik, G. I. Maksimochkin, and V. G. Chigrinov, “Electrically controlled waveguide mode in LC layer for fiber optic applications,” Opt. Commun. 283(16), 3136–3141 (2010).
[Crossref]

Maksimochkin, G. I.

A. G. Maksimochkin, S. V. Pasechnik, G. I. Maksimochkin, and V. G. Chigrinov, “Electrically controlled waveguide mode in LC layer for fiber optic applications,” Opt. Commun. 283(16), 3136–3141 (2010).
[Crossref]

Masanovic, G.

Melloni, A.

A. Melloni, R. Costa, G. Cusmai, and F. Morichetti, “The role of index contrast in dielectric optical waveguides,” Int. J. Mater. Prod. Technol. 34(4), 421–437 (2009).
[Crossref]

Mercado, R.

T. D. Flaim, Y. Wang, and R. Mercado, “High refractive index polymer coatings for optoelectronic applications,” Proc. SPIE 5250, 423–434 (2004).
[Crossref]

Molina-Fernández, I.

Morichetti, F.

A. Melloni, R. Costa, G. Cusmai, and F. Morichetti, “The role of index contrast in dielectric optical waveguides,” Int. J. Mater. Prod. Technol. 34(4), 421–437 (2009).
[Crossref]

Muller, R. S.

Neilson, D. T.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Niimi, H.

L. Colombo, J. J. Chamber, and H. Niimi, “Gate dielectric process technology for the sub-1 nm equivalent oxide thickness (EOT) era,” Electrochem. Soc. Interface 16(3), 51–55 (2007).

Nowinowski-Kruszelnicki, E.

Nuzman, C. J.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Ortega-Moñux, A.

Paniccia, M.

R. Jones, O. Cohen, H. Chan, D. Rubin, A. Fang, and M. Paniccia, “Integration of SiON gratings with SOI,” IEEE International Conference on Group IV Photonics, 2005, 192–194 (2005).

Papazian, A. R.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Pardo, F.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Pasechnik, S. V.

A. G. Maksimochkin, S. V. Pasechnik, G. I. Maksimochkin, and V. G. Chigrinov, “Electrically controlled waveguide mode in LC layer for fiber optic applications,” Opt. Commun. 283(16), 3136–3141 (2010).
[Crossref]

Passaro, V.

Patel, J. S.

Z. Zhuang, Y. J. Kim, and J. S. Patel, “Achromatic linear polarization rotator using twisted nematic liquid crystals,” Appl. Phys. Lett. 76(26), 3995–3997 (2000).
[Crossref]

Pitilakis, A. K.

Pluk, E.

Pysz, D.

Quack, N.

Ramachandran, K.

K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen, and Y. Chen, “OSA: an optical switching architecture for data center networks with unprecedented flexibility,” IEEE/ACM Trans. Netw. 22(2), 498–511 (2014).
[Crossref]

Ramsey, D. A.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Rohit, A.

R. Stabile, A. Albores-Mejia, A. Rohit, and K. A. Williams, “Integrated optical switch matrices for packet data networks,” Microsystems & Nanoengineering 2, 15042 (2016).
[Crossref]

Rubin, D.

R. Jones, O. Cohen, H. Chan, D. Rubin, A. Fang, and M. Paniccia, “Integration of SiON gratings with SOI,” IEEE International Conference on Group IV Photonics, 2005, 192–194 (2005).

Ryf, R.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Seok, T.

Seok, T. J.

Shao, Z.

Shea, H. R.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Simon, M. E.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Singh, A.

K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen, and Y. Chen, “OSA: an optical switching architecture for data center networks with unprecedented flexibility,” IEEE/ACM Trans. Netw. 22(2), 498–511 (2014).
[Crossref]

Singla, A.

K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen, and Y. Chen, “OSA: an optical switching architecture for data center networks with unprecedented flexibility,” IEEE/ACM Trans. Netw. 22(2), 498–511 (2014).
[Crossref]

Stabile, R.

R. Stabile, A. Albores-Mejia, A. Rohit, and K. A. Williams, “Integrated optical switch matrices for packet data networks,” Microsystems & Nanoengineering 2, 15042 (2016).
[Crossref]

Taillaert, D.

Tang, W.

Tian, Y.

Tomkos, I.

C. Kachris, K. Kanonakis, and I. Tomkos, “Optical interconnection networks in data centers: recent rrends and future challenges,” IEEE Commun. Mag. 51(9), 39–45 (2013).
[Crossref]

Tsang, H. K.

Van Thourhout, D.

Wang, Q.

Q. Wang and G. Farrell, “Integrated liquid-crystal switch for both TE and TM modes: proposal and design,” J. Opt. Soc. Am. A 24(10), 3303–3308 (2007).
[Crossref] [PubMed]

Q. Wang and S. Kumar, “Submillisecond switching of nematic liquid crystal in cells fabricated by anisotropic phase-separation of liquid crystal and polymer mixture,” Appl. Phys. Lett. 86(7), 071119 (2005).
[Crossref]

Wang, Y.

Q. Gong, S. Gong, H. Zhang, L. Liu, and Y. Wang, “Synthesis of a novel polyimide used as liquid crystal vertical alignment layers,” RSC Advances 5(70), 57245–57253 (2015).
[Crossref]

T. D. Flaim, Y. Wang, and R. Mercado, “High refractive index polymer coatings for optoelectronic applications,” Proc. SPIE 5250, 423–434 (2004).
[Crossref]

Weiss, A.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Wen, X.

K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen, and Y. Chen, “OSA: an optical switching architecture for data center networks with unprecedented flexibility,” IEEE/ACM Trans. Netw. 22(2), 498–511 (2014).
[Crossref]

White, I. H.

Q. Cheng, M. Ding, A. Wonfor, and I. H. White, “The feasibility of building a 64 x 64 port count SOA-based optical switch,” in 2015International Conference on Photonics in Switching (PS2015), pp. 199–201.
[Crossref]

Williams, K. A.

R. Stabile, A. Albores-Mejia, A. Rohit, and K. A. Williams, “Integrated optical switch matrices for packet data networks,” Microsystems & Nanoengineering 2, 15042 (2016).
[Crossref]

Wolinski, T. R.

Wonfor, A.

Q. Cheng, M. Ding, A. Wonfor, and I. H. White, “The feasibility of building a 64 x 64 port count SOA-based optical switch,” in 2015International Conference on Photonics in Switching (PS2015), pp. 199–201.
[Crossref]

Wong, B.

Y. J. Liu, P. X. Gao, B. Wong, and S. Keshav, “Quartz: a new design element for low-latency DCNs,” in Proceedings of the 2014 ACM conference on SIGCOMM, Chicago, 2014, 283–294.
[Crossref]

Wu, M.

Wu, M. C.

Wu, S. T.

J. Li and S. T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
[Crossref]

Xu, L.

K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen, and Y. Chen, “OSA: an optical switching architecture for data center networks with unprecedented flexibility,” IEEE/ACM Trans. Netw. 22(2), 498–511 (2014).
[Crossref]

Xu, P.

Yang, C.

Yang, L.

Ye, T.

Yoo, B.

You, Z.

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3(10), 1–10 (2014).
[Crossref]

Yu, S.

Zakharov, A. V.

A. V. Zakharov and R. Y. Dong, “Dielectric and elastic properties of liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(3 Pt 1), 031701 (2001).
[Crossref] [PubMed]

Zavargo-Peche, L.

Zhang, H.

Q. Gong, S. Gong, H. Zhang, L. Liu, and Y. Wang, “Synthesis of a novel polyimide used as liquid crystal vertical alignment layers,” RSC Advances 5(70), 57245–57253 (2015).
[Crossref]

Zhang, L.

Zhang, Y.

P. Xu, Y. Zhang, Z. Shao, L. Liu, L. Zhou, C. Yang, Y. Chen, and S. Yu, “High-efficiency wideband SiNx-on-SOI grating coupler with low fabrication complexity,” Opt. Lett. 42(17), 3391–3394 (2017).
[Crossref] [PubMed]

K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen, and Y. Chen, “OSA: an optical switching architecture for data center networks with unprecedented flexibility,” IEEE/ACM Trans. Netw. 22(2), 498–511 (2014).
[Crossref]

Zhang, Z.

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3(10), 1–10 (2014).
[Crossref]

Zheng, W. J.

W. J. Zheng and M. H. Huang, “Use of polydimethylsiloxane thin film as vertical liquid crystal alignment layer,” Thin Solid Films 520(7), 2841–2845 (2012).
[Crossref]

Zhou, G.

H. Du, F. Chau, and G. Zhou, “Mechanically-tunable photonic devices with on-chip integrated MEMS/NEMS actuators,” Micromachines (Basel) 7(4), 69 (2016).
[Crossref]

Zhou, L.

Zhou, P.

Zhu, W.

Zhuang, Z.

Z. Zhuang, Y. J. Kim, and J. S. Patel, “Achromatic linear polarization rotator using twisted nematic liquid crystals,” Appl. Phys. Lett. 76(26), 3995–3997 (2000).
[Crossref]

Zografopoulos, D. C.

D. C. Zografopoulos and R. Beccherelli, “Design of a vertically coupled liquid-crystal long-range plasmonic optical switch,” Appl. Phys. Lett. 102(10), 101103 (2013).
[Crossref]

A. K. Pitilakis, D. C. Zografopoulos, and E. E. Kriezis, “In-line polarization controller based on liquid-crystal photonic crystal fibers,” J. Lightwave Technol. 29(17), 2560–2569 (2011).
[Crossref]

Appl. Phys. Lett. (3)

Z. Zhuang, Y. J. Kim, and J. S. Patel, “Achromatic linear polarization rotator using twisted nematic liquid crystals,” Appl. Phys. Lett. 76(26), 3995–3997 (2000).
[Crossref]

D. C. Zografopoulos and R. Beccherelli, “Design of a vertically coupled liquid-crystal long-range plasmonic optical switch,” Appl. Phys. Lett. 102(10), 101103 (2013).
[Crossref]

Q. Wang and S. Kumar, “Submillisecond switching of nematic liquid crystal in cells fabricated by anisotropic phase-separation of liquid crystal and polymer mixture,” Appl. Phys. Lett. 86(7), 071119 (2005).
[Crossref]

Electrochem. Soc. Interface (1)

L. Colombo, J. J. Chamber, and H. Niimi, “Gate dielectric process technology for the sub-1 nm equivalent oxide thickness (EOT) era,” Electrochem. Soc. Interface 16(3), 51–55 (2007).

IEEE Commun. Mag. (1)

C. Kachris, K. Kanonakis, and I. Tomkos, “Optical interconnection networks in data centers: recent rrends and future challenges,” IEEE Commun. Mag. 51(9), 39–45 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

IEEE/ACM Trans. Netw. (1)

K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen, and Y. Chen, “OSA: an optical switching architecture for data center networks with unprecedented flexibility,” IEEE/ACM Trans. Netw. 22(2), 498–511 (2014).
[Crossref]

Int. J. Mater. Prod. Technol. (1)

A. Melloni, R. Costa, G. Cusmai, and F. Morichetti, “The role of index contrast in dielectric optical waveguides,” Int. J. Mater. Prod. Technol. 34(4), 421–437 (2009).
[Crossref]

J. Appl. Phys. (1)

J. Li and S. T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
[Crossref]

J. Lightwave Technol. (1)

J. Mater. Chem. (1)

P. J. Hamelinck and W. T. S. Huck, “Homeotropic alignment on surface-initiated liquid crystalline polymer brushes,” J. Mater. Chem. 15(3), 381–385 (2005).
[Crossref]

J. Opt. Soc. Am. A (1)

Light Sci. Appl. (1)

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3(10), 1–10 (2014).
[Crossref]

Micromachines (Basel) (1)

H. Du, F. Chau, and G. Zhou, “Mechanically-tunable photonic devices with on-chip integrated MEMS/NEMS actuators,” Micromachines (Basel) 7(4), 69 (2016).
[Crossref]

Microsystems & Nanoengineering (1)

R. Stabile, A. Albores-Mejia, A. Rohit, and K. A. Williams, “Integrated optical switch matrices for packet data networks,” Microsystems & Nanoengineering 2, 15042 (2016).
[Crossref]

Opt. Commun. (1)

A. G. Maksimochkin, S. V. Pasechnik, G. I. Maksimochkin, and V. G. Chigrinov, “Electrically controlled waveguide mode in LC layer for fiber optic applications,” Opt. Commun. 283(16), 3136–3141 (2010).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Optica (2)

Photon. Res. (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

A. V. Zakharov and R. Y. Dong, “Dielectric and elastic properties of liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(3 Pt 1), 031701 (2001).
[Crossref] [PubMed]

Proc. SPIE (1)

T. D. Flaim, Y. Wang, and R. Mercado, “High refractive index polymer coatings for optoelectronic applications,” Proc. SPIE 5250, 423–434 (2004).
[Crossref]

RSC Advances (1)

Q. Gong, S. Gong, H. Zhang, L. Liu, and Y. Wang, “Synthesis of a novel polyimide used as liquid crystal vertical alignment layers,” RSC Advances 5(70), 57245–57253 (2015).
[Crossref]

Thin Solid Films (1)

W. J. Zheng and M. H. Huang, “Use of polydimethylsiloxane thin film as vertical liquid crystal alignment layer,” Thin Solid Films 520(7), 2841–2845 (2012).
[Crossref]

Other (16)

P. Fiala, C. Dorrer, and K. Marshall, “Twisted-nematic liquid crystal polarization rotators for broadband laser applications,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper JW2A.68.
[Crossref]

P. Wang, G. Brambilla, Y. Semenova, Q. Wu, J. Zheng, and G. Farrell, “Proposal for a simple polarization converter based on integrated optical ion exchanged waveguide,” Optical Communications and Networks (ICOCN 2010), 9th International Conference on, Nanjing, 2010, 441–444.

R. Jones, O. Cohen, H. Chan, D. Rubin, A. Fang, and M. Paniccia, “Integration of SiON gratings with SOI,” IEEE International Conference on Group IV Photonics, 2005, 192–194 (2005).

Norland Products, Inc., Norland Optical Adhesive 84, Available at https://www.norlandprod.com/adhesives/noa%2084.html .

D. K. Yang and S. T. Wu, Fundmentals of Liquid Crystal Devices (John Wiley & Sons, 2015), pp. 1–285.

T. S. El-Bawab, Optical Switching (Springer Press, 2006), pp. 1–32.

G. Wang, D. G. Andersen, M. Kaminsky, T. S. E. Ng, K. Papagiannaki, M. Glick, and L. Mummert, “Your data center is a router: the case for reconfigurable optical circuit switched paths,” in 2009 ACM HotNets-VIII, 1–6.

I.-C. Khoo, Liquid Crystals (John Wiley & Sons, 2007), pp. 1–190.

D. Hermann, Integrated Optics with Liquid Crystals, Available at http://fy.chalmers.se/-f9adh/pub/LCIO-Hermann.pdf , Chalmers Univ. of Tech., Goteberg, SE, (2000), 1–33.

Q. Cheng, M. Ding, A. Wonfor, and I. H. White, “The feasibility of building a 64 x 64 port count SOA-based optical switch,” in 2015International Conference on Photonics in Switching (PS2015), pp. 199–201.
[Crossref]

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Norland Products, Inc., Norland Optical Adhesive 61, Available at https://www.norlandprod.com/adhesives/noa%2061.html .

J. P. Barber, D. B. Conkey, M. M. Smith, J. R. Lee, B. A. Peeni, Z. A. George, A. R. Hawkins, D. Yin, and H. Schmidt, “Hollow waveguides on planar substrates with selectable geometry cores,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CTuD4.
[Crossref]

C.-C. Chiu and D.-W. Huang, “Polarization independent grating coupler for silicon-on-insulator waveguides,” in 2010 International Conference on Optical MEMS and Nanophotonics (OPT MEMS), 2010, 171–172.
[Crossref]

Y. J. Liu, P. X. Gao, B. Wong, and S. Keshav, “Quartz: a new design element for low-latency DCNs,” in Proceedings of the 2014 ACM conference on SIGCOMM, Chicago, 2014, 283–294.
[Crossref]

S. Aleksic, “The future of optical interconnects for data centers: a review of technology trends,” in Telecommunications (ConTEL), 2017 14th International Conference on, Zagreb, 2017, 41–46.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

(a) The P-OXC is sketched, with the five-layered structure of the unit cell shown in (b). The pattern of the NLC layer in the unit cell is shown in (c). Part I and Part II in (c) represent the polarization rotator and the PD waveguides, respectively.

Fig. 2
Fig. 2

The working principle of polarization-dependent routing in a single unit cell, including (a) the bending state and (b) the lead-in/lead-out state. The upper rows illustrate the paths of the light in each state, while the lower ones present the mechanisms of polarization-dependent waveguides. In the lower subfigures, the green dots stand for the NLC, the pink part for RI-matching core, and the grey ones for the outer claddings.

Fig. 3
Fig. 3

The mechanism of the in-plane polarization rotator.

Fig. 4
Fig. 4

(a) The pattern of the polarization-dependent waveguides. The blue portion stands for the NLC, the red one for the RI-core, and the gray one for the NOA84 outer cladding part. (b) The pattern of the polarization rotator. The blue portion stands for the NLC, the red for RI-core, the golden for Al and the gray for NOA84.

Fig. 5
Fig. 5

Definition of the orientation of the LC molecule’s director using the tilt angle θ and the twist angle φ.

Fig. 6
Fig. 6

(a) Distributions of the tilt angle θ along the waveguide center in the ideal case, the simplified model, and the sample device. (b) The θ distribution across the cross-section at the position Y = 0 μm in the sample device.

Fig. 7
Fig. 7

Conversion losses at different cross-sections.

Fig. 8
Fig. 8

Simulated propagation light field of the sample device in the TM-to-TE conversion, with (a) X-, (b) Y-, and (c) Z-polarization components. The cut plane for observation is perpendicular to the Z direction and locates at the center of the waveguide layer.

Fig. 9
Fig. 9

The cross-sectional mode fields near (a) the input at Y = −54 μm and (b) the output at Y = 6 μm, respectively. For the input, the Z-polarization component is shown, while for the output, the X-polarization component is presented.

Fig. 10
Fig. 10

Dispersion of the conversion loss over the O band in the TM-to-TE conversion.

Fig. 11
Fig. 11

Simulated propagation light fields (amplitude) in the perfectly-matched RI case, for the operations of (a) bending, (b) lead-in, and (c) lead-out. The cut plane for observation is perpendicular to the Z direction and locates at the center of the waveguide layer.

Fig. 12
Fig. 12

Total insertion loss for different port numbers at the wavelength of 1310 nm.

Fig. 13
Fig. 13

The polarization diversity is used for fiber-chip coupling in P-OXC, including (a) the space-based and (b) the mode-based method. Only the case of TE mode is shown for example.

Tables (3)

Tables Icon

Table 1 Main properties of the materials in the sample device

Tables Icon

Table 2 TM-to-TE conversion losses @ different wavelengths

Tables Icon

Table 3 Propagation losses with different RIs of RI-core @ 1310 nm

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

n=sin(θ)cos(ϕ) X ^ +sin(θ)sin(ϕ) Y ^ +cos(θ) Z ^ .
F tot = V f d dV = V f ela + f E dV ,
f ela = 1 2 K 11 ( n ) 2 + 1 2 K 22 ( n×n ) 2 + 1 2 K 33 ( n××n ) 2 ,
f E = 1 2 ED= 1 2 ε 0 [ ε E+Δε( En )n ]E= 1 2 ε 0 ε E 2 1 2 ε 0 Δε ( En ) 2 ,
ε=[ ε ε ε // ].
ε=[ ε +Δε n x n x Δε n y n x Δε n z n x Δε n x n y ε +Δε n y n y Δε n z n y Δε n x n z Δε n y n z ε +Δε n z n z ],
T=( T TMTM + L R T LC + T I + L I β T LC )×(N-1) +( T TMTE + T TETM +2 L R T LC + T B + L B T SiON ) +( T TMTM + L R T LC + T O + L O β T LC )×(N-1)+ T C ,