Abstract

A novel temperature sensor based on a Teflon capillary encapsulated 2 × 2 optical microfiber coupler (OMC) filled with refractive index matching liquids is described. The sealed capillary and the filling liquid are demonstrated to enhance the temperature sensing performance, achieving a high temperature sensitivity of 5.3 nm/°C. To the best of our knowledge, the temperature sensor described in this article exhibits the highest sensitivity among the OMC structure based fiber optic temperature sensors. Experimental results also show that it has good repeatability along with a fast response time of 243 ms.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Thermo-optic tuning of a packaged whispering gallery mode resonator filled with nematic liquid crystal

Vishnu Kavungal, Gerald Farrell, Qiang Wu, Arun Kumar Mallik, and Yuliya Semenova
Opt. Express 26(7) 8431-8442 (2018)

Compact optical fiber temperature sensor with high sensitivity based on liquid-filled silica capillary tube

Yu Mao, Yuxi Zhang, Ruikai Xue, Yi Liu, Kunjian Cao, and Shiliang Qu
Appl. Opt. 57(5) 1061-1066 (2018)

Miniature fiber-optic temperature sensors based on silica/polymer microfiber knot resonators

Yu Wu, Yun-Jiang Rao, Yi-huai Chen, and Yuan Gong
Opt. Express 17(20) 18142-18147 (2009)

References

  • View by:
  • |
  • |
  • |

  1. G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010).
    [Crossref]
  2. G. Brambilla, “Optical fibre nanotaper sensors,” Opt. Fiber Technol. 16(6), 331–342 (2010).
    [Crossref]
  3. Q. Wu, Y. Semenova, A. Sun, P. F. Wang, and G. Farrell, “High resolution temperature insensitive interrogation technique for FBG sensors,” Opt. Laser Technol. 42(4), 653–656 (2010).
    [Crossref]
  4. H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photonics Technol. Lett. 8(9), 1223–1225 (1999).
    [Crossref]
  5. G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, “High-Temperature Stability of Long-Period Fiber Gratings Produced Using an Electric Arc,” J. Lightwave Technol. 19(10), 1574–1579 (2001).
    [Crossref]
  6. M. S. Yoon, S. Park, and Y. G. Han, “Simultaneous Measurement of Strain and Temperature by Using a Micro-Tapered Fiber Grating,” J. Lightwave Technol. 30(8), 1156–1160 (2012).
    [Crossref]
  7. P. Wang, M. Ding, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “High temperature performance of an optical microfibre coupler and its potential use as a sensor,” Electron. Lett. 48(5), 283–284 (2012).
    [Crossref]
  8. P. Wang, M. Ding, L. Bo, C. Guan, Y. Semenova, Q. Wu, G. Farrell, and G. Brambilla, “Fiber-tip high-temperature sensor based on multimode interference,” Opt. Lett. 38(22), 4617–4620 (2013).
    [Crossref] [PubMed]
  9. H. Yang, S. Wang, X. Liao, and J. Wang, “Temperature sensing in seawater based on microfiber knot resonator,” Sensors (Basel) 14(10), 18515–18525 (2014).
    [Crossref] [PubMed]
  10. S. Wang, Y. Liao, H. Yang, X. Wang, and J. Wang, “Modeling seawater salinity and temperature sensing based on directional coupler assembled by polyimide-coated micro/nanofibers,” Appl. Opt. 54(34), 10283–10289 (2015).
    [Crossref] [PubMed]
  11. H. Guo, F. Pang, X. Zeng, N. Chen, Z. Chen, and T. Wang, “Temperature sensor using an optical fiber coupler with a thin film,” Appl. Opt. 47(19), 3530–3534 (2008).
    [Crossref] [PubMed]
  12. Y. Lu, M. T. Wang, C. J. Hao, Z. Q. Zhao, and J. Q. Yao, “Temperature Sensing Using Photonic Crystal Fiber Filled With Silver Nanowires and Liquid,” IEEE Photonics J. 6, 1–7 (2014).
  13. C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive Interferometer using a highly birefringent photonic Crystal fiber loop mirror,” IEEE Photonics Technol. Lett. 16(11), 2535–2537 (2004).
    [Crossref]
  14. J. Xie, B. Xu, Y. Li, J. Kang, C. Shen, J. Wang, Y. Jin, H. Liu, K. Ni, X. Dong, C. Zhao, and S. Jin, “High-sensitivity temperature sensor based on a droplet-like fiber circle,” Appl. Opt. 53(18), 4085–4088 (2014).
    [Crossref] [PubMed]
  15. W. Qian, C. L. Zhao, S. He, X. Dong, S. Zhang, Z. Zhang, S. Jin, J. Guo, and H. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett. 36(9), 1548–1550 (2011).
    [Crossref] [PubMed]
  16. H. Guo, F. Pang, X. Zeng, N. Chen, Z. Chen, and T. Wang, “Temperature sensor using an optical fiber coupler with a thin film,” Appl. Opt. 47(19), 3530–3534 (2008).
    [Crossref] [PubMed]
  17. D. J. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A Compact and Temperature-Sensitive Directional Coupler Based on Photonic Crystal Fiber Filled With Liquid Crystal 6CHBT,” IEEE Photonics J. 4(5), 2010–2016 (2012).
    [Crossref]
  18. M. Ding, P. Wang, and G. Brambilla, “Fast-Response High-Temperature Microfiber Coupler Tip Thermometer,” IEEE Photonics Technol. Lett. 24(14), 1209–1211 (2012).
    [Crossref]
  19. K. H. Park and K. T. Kim, “Fiber-Optic Temperature Sensor Based on Single Mode Fused Fiber Coupler,” J. Opt. Soc. Korea 12(3), 152–156 (2008).
    [Crossref]
  20. F. P. Payne, C. D. Hussey, and M. S. Yataki, “Modelling fused single-mode-fibre couplers,” Electron. Lett. 21(11), 461–462 (1985).
    [Crossref]
  21. R. X. Gao, Q. Wang, F. Zhao, B. Meng, and S. L. Qu, “Optimal design and fabrication of SMS fiber temperature sensor for liquid,” Opt. Commun. 283(16), 3149–3152 (2010).
    [Crossref]
  22. Y. Chen, Q. Han, T. Liu, and X. Lü, “Self-temperature-compensative refractometer based on singlemode–multimode–singlemode fiber structure,” Sens. Actuators B Chem. 212, 107–111 (2015).
    [Crossref]

2015 (2)

Y. Chen, Q. Han, T. Liu, and X. Lü, “Self-temperature-compensative refractometer based on singlemode–multimode–singlemode fiber structure,” Sens. Actuators B Chem. 212, 107–111 (2015).
[Crossref]

S. Wang, Y. Liao, H. Yang, X. Wang, and J. Wang, “Modeling seawater salinity and temperature sensing based on directional coupler assembled by polyimide-coated micro/nanofibers,” Appl. Opt. 54(34), 10283–10289 (2015).
[Crossref] [PubMed]

2014 (3)

J. Xie, B. Xu, Y. Li, J. Kang, C. Shen, J. Wang, Y. Jin, H. Liu, K. Ni, X. Dong, C. Zhao, and S. Jin, “High-sensitivity temperature sensor based on a droplet-like fiber circle,” Appl. Opt. 53(18), 4085–4088 (2014).
[Crossref] [PubMed]

H. Yang, S. Wang, X. Liao, and J. Wang, “Temperature sensing in seawater based on microfiber knot resonator,” Sensors (Basel) 14(10), 18515–18525 (2014).
[Crossref] [PubMed]

Y. Lu, M. T. Wang, C. J. Hao, Z. Q. Zhao, and J. Q. Yao, “Temperature Sensing Using Photonic Crystal Fiber Filled With Silver Nanowires and Liquid,” IEEE Photonics J. 6, 1–7 (2014).

2013 (1)

2012 (4)

D. J. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A Compact and Temperature-Sensitive Directional Coupler Based on Photonic Crystal Fiber Filled With Liquid Crystal 6CHBT,” IEEE Photonics J. 4(5), 2010–2016 (2012).
[Crossref]

M. Ding, P. Wang, and G. Brambilla, “Fast-Response High-Temperature Microfiber Coupler Tip Thermometer,” IEEE Photonics Technol. Lett. 24(14), 1209–1211 (2012).
[Crossref]

P. Wang, M. Ding, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “High temperature performance of an optical microfibre coupler and its potential use as a sensor,” Electron. Lett. 48(5), 283–284 (2012).
[Crossref]

M. S. Yoon, S. Park, and Y. G. Han, “Simultaneous Measurement of Strain and Temperature by Using a Micro-Tapered Fiber Grating,” J. Lightwave Technol. 30(8), 1156–1160 (2012).
[Crossref]

2011 (1)

2010 (4)

R. X. Gao, Q. Wang, F. Zhao, B. Meng, and S. L. Qu, “Optimal design and fabrication of SMS fiber temperature sensor for liquid,” Opt. Commun. 283(16), 3149–3152 (2010).
[Crossref]

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010).
[Crossref]

G. Brambilla, “Optical fibre nanotaper sensors,” Opt. Fiber Technol. 16(6), 331–342 (2010).
[Crossref]

Q. Wu, Y. Semenova, A. Sun, P. F. Wang, and G. Farrell, “High resolution temperature insensitive interrogation technique for FBG sensors,” Opt. Laser Technol. 42(4), 653–656 (2010).
[Crossref]

2008 (3)

2004 (1)

C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive Interferometer using a highly birefringent photonic Crystal fiber loop mirror,” IEEE Photonics Technol. Lett. 16(11), 2535–2537 (2004).
[Crossref]

2001 (1)

1999 (1)

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photonics Technol. Lett. 8(9), 1223–1225 (1999).
[Crossref]

1985 (1)

F. P. Payne, C. D. Hussey, and M. S. Yataki, “Modelling fused single-mode-fibre couplers,” Electron. Lett. 21(11), 461–462 (1985).
[Crossref]

Bo, L.

Brambilla, G.

P. Wang, M. Ding, L. Bo, C. Guan, Y. Semenova, Q. Wu, G. Farrell, and G. Brambilla, “Fiber-tip high-temperature sensor based on multimode interference,” Opt. Lett. 38(22), 4617–4620 (2013).
[Crossref] [PubMed]

P. Wang, M. Ding, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “High temperature performance of an optical microfibre coupler and its potential use as a sensor,” Electron. Lett. 48(5), 283–284 (2012).
[Crossref]

M. Ding, P. Wang, and G. Brambilla, “Fast-Response High-Temperature Microfiber Coupler Tip Thermometer,” IEEE Photonics Technol. Lett. 24(14), 1209–1211 (2012).
[Crossref]

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010).
[Crossref]

G. Brambilla, “Optical fibre nanotaper sensors,” Opt. Fiber Technol. 16(6), 331–342 (2010).
[Crossref]

Chen, N.

Chen, Y.

Y. Chen, Q. Han, T. Liu, and X. Lü, “Self-temperature-compensative refractometer based on singlemode–multimode–singlemode fiber structure,” Sens. Actuators B Chem. 212, 107–111 (2015).
[Crossref]

Chen, Z.

Cui, Y.

D. J. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A Compact and Temperature-Sensitive Directional Coupler Based on Photonic Crystal Fiber Filled With Liquid Crystal 6CHBT,” IEEE Photonics J. 4(5), 2010–2016 (2012).
[Crossref]

Demokan, M. S.

C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive Interferometer using a highly birefringent photonic Crystal fiber loop mirror,” IEEE Photonics Technol. Lett. 16(11), 2535–2537 (2004).
[Crossref]

Dianov, E.

Ding, M.

P. Wang, M. Ding, L. Bo, C. Guan, Y. Semenova, Q. Wu, G. Farrell, and G. Brambilla, “Fiber-tip high-temperature sensor based on multimode interference,” Opt. Lett. 38(22), 4617–4620 (2013).
[Crossref] [PubMed]

M. Ding, P. Wang, and G. Brambilla, “Fast-Response High-Temperature Microfiber Coupler Tip Thermometer,” IEEE Photonics Technol. Lett. 24(14), 1209–1211 (2012).
[Crossref]

P. Wang, M. Ding, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “High temperature performance of an optical microfibre coupler and its potential use as a sensor,” Electron. Lett. 48(5), 283–284 (2012).
[Crossref]

Dong, X.

Farrell, G.

P. Wang, M. Ding, L. Bo, C. Guan, Y. Semenova, Q. Wu, G. Farrell, and G. Brambilla, “Fiber-tip high-temperature sensor based on multimode interference,” Opt. Lett. 38(22), 4617–4620 (2013).
[Crossref] [PubMed]

P. Wang, M. Ding, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “High temperature performance of an optical microfibre coupler and its potential use as a sensor,” Electron. Lett. 48(5), 283–284 (2012).
[Crossref]

Q. Wu, Y. Semenova, A. Sun, P. F. Wang, and G. Farrell, “High resolution temperature insensitive interrogation technique for FBG sensors,” Opt. Laser Technol. 42(4), 653–656 (2010).
[Crossref]

Gao, R. X.

R. X. Gao, Q. Wang, F. Zhao, B. Meng, and S. L. Qu, “Optimal design and fabrication of SMS fiber temperature sensor for liquid,” Opt. Commun. 283(16), 3149–3152 (2010).
[Crossref]

Guan, C.

Guo, H.

Guo, J.

Han, Q.

Y. Chen, Q. Han, T. Liu, and X. Lü, “Self-temperature-compensative refractometer based on singlemode–multimode–singlemode fiber structure,” Sens. Actuators B Chem. 212, 107–111 (2015).
[Crossref]

Han, Y. G.

Hao, C. J.

Y. Lu, M. T. Wang, C. J. Hao, Z. Q. Zhao, and J. Q. Yao, “Temperature Sensing Using Photonic Crystal Fiber Filled With Silver Nanowires and Liquid,” IEEE Photonics J. 6, 1–7 (2014).

He, S.

Hu, D. J. J.

D. J. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A Compact and Temperature-Sensitive Directional Coupler Based on Photonic Crystal Fiber Filled With Liquid Crystal 6CHBT,” IEEE Photonics J. 4(5), 2010–2016 (2012).
[Crossref]

Hussey, C. D.

F. P. Payne, C. D. Hussey, and M. S. Yataki, “Modelling fused single-mode-fibre couplers,” Electron. Lett. 21(11), 461–462 (1985).
[Crossref]

Jin, S.

Jin, W.

C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive Interferometer using a highly birefringent photonic Crystal fiber loop mirror,” IEEE Photonics Technol. Lett. 16(11), 2535–2537 (2004).
[Crossref]

Jin, Y.

Kang, J.

Kersey, A. D.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photonics Technol. Lett. 8(9), 1223–1225 (1999).
[Crossref]

Kim, K. T.

Li, Y.

Liao, X.

H. Yang, S. Wang, X. Liao, and J. Wang, “Temperature sensing in seawater based on microfiber knot resonator,” Sensors (Basel) 14(10), 18515–18525 (2014).
[Crossref] [PubMed]

Liao, Y.

Lim, J. L.

D. J. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A Compact and Temperature-Sensitive Directional Coupler Based on Photonic Crystal Fiber Filled With Liquid Crystal 6CHBT,” IEEE Photonics J. 4(5), 2010–2016 (2012).
[Crossref]

Liu, H.

Liu, T.

Y. Chen, Q. Han, T. Liu, and X. Lü, “Self-temperature-compensative refractometer based on singlemode–multimode–singlemode fiber structure,” Sens. Actuators B Chem. 212, 107–111 (2015).
[Crossref]

Lu, C.

C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive Interferometer using a highly birefringent photonic Crystal fiber loop mirror,” IEEE Photonics Technol. Lett. 16(11), 2535–2537 (2004).
[Crossref]

Lu, Y.

Y. Lu, M. T. Wang, C. J. Hao, Z. Q. Zhao, and J. Q. Yao, “Temperature Sensing Using Photonic Crystal Fiber Filled With Silver Nanowires and Liquid,” IEEE Photonics J. 6, 1–7 (2014).

Lü, X.

Y. Chen, Q. Han, T. Liu, and X. Lü, “Self-temperature-compensative refractometer based on singlemode–multimode–singlemode fiber structure,” Sens. Actuators B Chem. 212, 107–111 (2015).
[Crossref]

Meng, B.

R. X. Gao, Q. Wang, F. Zhao, B. Meng, and S. L. Qu, “Optimal design and fabrication of SMS fiber temperature sensor for liquid,” Opt. Commun. 283(16), 3149–3152 (2010).
[Crossref]

Milenko, K.

D. J. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A Compact and Temperature-Sensitive Directional Coupler Based on Photonic Crystal Fiber Filled With Liquid Crystal 6CHBT,” IEEE Photonics J. 4(5), 2010–2016 (2012).
[Crossref]

Ni, K.

Okhotnikov, O.

Pang, F.

Park, K. H.

Park, S.

Patrick, H. J.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photonics Technol. Lett. 8(9), 1223–1225 (1999).
[Crossref]

Payne, F. P.

F. P. Payne, C. D. Hussey, and M. S. Yataki, “Modelling fused single-mode-fibre couplers,” Electron. Lett. 21(11), 461–462 (1985).
[Crossref]

Pedrazzani, J. R.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photonics Technol. Lett. 8(9), 1223–1225 (1999).
[Crossref]

Qian, W.

Qu, S. L.

R. X. Gao, Q. Wang, F. Zhao, B. Meng, and S. L. Qu, “Optimal design and fabrication of SMS fiber temperature sensor for liquid,” Opt. Commun. 283(16), 3149–3152 (2010).
[Crossref]

Rego, G.

Semenova, Y.

P. Wang, M. Ding, L. Bo, C. Guan, Y. Semenova, Q. Wu, G. Farrell, and G. Brambilla, “Fiber-tip high-temperature sensor based on multimode interference,” Opt. Lett. 38(22), 4617–4620 (2013).
[Crossref] [PubMed]

P. Wang, M. Ding, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “High temperature performance of an optical microfibre coupler and its potential use as a sensor,” Electron. Lett. 48(5), 283–284 (2012).
[Crossref]

Q. Wu, Y. Semenova, A. Sun, P. F. Wang, and G. Farrell, “High resolution temperature insensitive interrogation technique for FBG sensors,” Opt. Laser Technol. 42(4), 653–656 (2010).
[Crossref]

Shen, C.

Shum, P. P.

D. J. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A Compact and Temperature-Sensitive Directional Coupler Based on Photonic Crystal Fiber Filled With Liquid Crystal 6CHBT,” IEEE Photonics J. 4(5), 2010–2016 (2012).
[Crossref]

Sulimov, V.

Sun, A.

Q. Wu, Y. Semenova, A. Sun, P. F. Wang, and G. Farrell, “High resolution temperature insensitive interrogation technique for FBG sensors,” Opt. Laser Technol. 42(4), 653–656 (2010).
[Crossref]

Vengsarkar, A. M.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photonics Technol. Lett. 8(9), 1223–1225 (1999).
[Crossref]

Wang, J.

Wang, M. T.

Y. Lu, M. T. Wang, C. J. Hao, Z. Q. Zhao, and J. Q. Yao, “Temperature Sensing Using Photonic Crystal Fiber Filled With Silver Nanowires and Liquid,” IEEE Photonics J. 6, 1–7 (2014).

Wang, P.

P. Wang, M. Ding, L. Bo, C. Guan, Y. Semenova, Q. Wu, G. Farrell, and G. Brambilla, “Fiber-tip high-temperature sensor based on multimode interference,” Opt. Lett. 38(22), 4617–4620 (2013).
[Crossref] [PubMed]

P. Wang, M. Ding, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “High temperature performance of an optical microfibre coupler and its potential use as a sensor,” Electron. Lett. 48(5), 283–284 (2012).
[Crossref]

M. Ding, P. Wang, and G. Brambilla, “Fast-Response High-Temperature Microfiber Coupler Tip Thermometer,” IEEE Photonics Technol. Lett. 24(14), 1209–1211 (2012).
[Crossref]

Wang, P. F.

Q. Wu, Y. Semenova, A. Sun, P. F. Wang, and G. Farrell, “High resolution temperature insensitive interrogation technique for FBG sensors,” Opt. Laser Technol. 42(4), 653–656 (2010).
[Crossref]

Wang, Q.

R. X. Gao, Q. Wang, F. Zhao, B. Meng, and S. L. Qu, “Optimal design and fabrication of SMS fiber temperature sensor for liquid,” Opt. Commun. 283(16), 3149–3152 (2010).
[Crossref]

Wang, S.

Wang, T.

Wang, X.

Wang, Y.

D. J. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A Compact and Temperature-Sensitive Directional Coupler Based on Photonic Crystal Fiber Filled With Liquid Crystal 6CHBT,” IEEE Photonics J. 4(5), 2010–2016 (2012).
[Crossref]

Wei, H.

Williams, G. M.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photonics Technol. Lett. 8(9), 1223–1225 (1999).
[Crossref]

Wolinski, T.

D. J. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A Compact and Temperature-Sensitive Directional Coupler Based on Photonic Crystal Fiber Filled With Liquid Crystal 6CHBT,” IEEE Photonics J. 4(5), 2010–2016 (2012).
[Crossref]

Wu, Q.

P. Wang, M. Ding, L. Bo, C. Guan, Y. Semenova, Q. Wu, G. Farrell, and G. Brambilla, “Fiber-tip high-temperature sensor based on multimode interference,” Opt. Lett. 38(22), 4617–4620 (2013).
[Crossref] [PubMed]

P. Wang, M. Ding, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “High temperature performance of an optical microfibre coupler and its potential use as a sensor,” Electron. Lett. 48(5), 283–284 (2012).
[Crossref]

Q. Wu, Y. Semenova, A. Sun, P. F. Wang, and G. Farrell, “High resolution temperature insensitive interrogation technique for FBG sensors,” Opt. Laser Technol. 42(4), 653–656 (2010).
[Crossref]

Xie, J.

Xu, B.

Yang, H.

Yang, X.

C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive Interferometer using a highly birefringent photonic Crystal fiber loop mirror,” IEEE Photonics Technol. Lett. 16(11), 2535–2537 (2004).
[Crossref]

Yao, J. Q.

Y. Lu, M. T. Wang, C. J. Hao, Z. Q. Zhao, and J. Q. Yao, “Temperature Sensing Using Photonic Crystal Fiber Filled With Silver Nanowires and Liquid,” IEEE Photonics J. 6, 1–7 (2014).

Yataki, M. S.

F. P. Payne, C. D. Hussey, and M. S. Yataki, “Modelling fused single-mode-fibre couplers,” Electron. Lett. 21(11), 461–462 (1985).
[Crossref]

Yoon, M. S.

Zeng, X.

Zhang, S.

Zhang, Z.

Zhao, C.

Zhao, C. L.

W. Qian, C. L. Zhao, S. He, X. Dong, S. Zhang, Z. Zhang, S. Jin, J. Guo, and H. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett. 36(9), 1548–1550 (2011).
[Crossref] [PubMed]

C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive Interferometer using a highly birefringent photonic Crystal fiber loop mirror,” IEEE Photonics Technol. Lett. 16(11), 2535–2537 (2004).
[Crossref]

Zhao, F.

R. X. Gao, Q. Wang, F. Zhao, B. Meng, and S. L. Qu, “Optimal design and fabrication of SMS fiber temperature sensor for liquid,” Opt. Commun. 283(16), 3149–3152 (2010).
[Crossref]

Zhao, Z. Q.

Y. Lu, M. T. Wang, C. J. Hao, Z. Q. Zhao, and J. Q. Yao, “Temperature Sensing Using Photonic Crystal Fiber Filled With Silver Nanowires and Liquid,” IEEE Photonics J. 6, 1–7 (2014).

Appl. Opt. (4)

Electron. Lett. (2)

P. Wang, M. Ding, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “High temperature performance of an optical microfibre coupler and its potential use as a sensor,” Electron. Lett. 48(5), 283–284 (2012).
[Crossref]

F. P. Payne, C. D. Hussey, and M. S. Yataki, “Modelling fused single-mode-fibre couplers,” Electron. Lett. 21(11), 461–462 (1985).
[Crossref]

IEEE Photonics J. (2)

D. J. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A Compact and Temperature-Sensitive Directional Coupler Based on Photonic Crystal Fiber Filled With Liquid Crystal 6CHBT,” IEEE Photonics J. 4(5), 2010–2016 (2012).
[Crossref]

Y. Lu, M. T. Wang, C. J. Hao, Z. Q. Zhao, and J. Q. Yao, “Temperature Sensing Using Photonic Crystal Fiber Filled With Silver Nanowires and Liquid,” IEEE Photonics J. 6, 1–7 (2014).

IEEE Photonics Technol. Lett. (3)

C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive Interferometer using a highly birefringent photonic Crystal fiber loop mirror,” IEEE Photonics Technol. Lett. 16(11), 2535–2537 (2004).
[Crossref]

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photonics Technol. Lett. 8(9), 1223–1225 (1999).
[Crossref]

M. Ding, P. Wang, and G. Brambilla, “Fast-Response High-Temperature Microfiber Coupler Tip Thermometer,” IEEE Photonics Technol. Lett. 24(14), 1209–1211 (2012).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. (1)

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010).
[Crossref]

J. Opt. Soc. Korea (1)

Opt. Commun. (1)

R. X. Gao, Q. Wang, F. Zhao, B. Meng, and S. L. Qu, “Optimal design and fabrication of SMS fiber temperature sensor for liquid,” Opt. Commun. 283(16), 3149–3152 (2010).
[Crossref]

Opt. Fiber Technol. (1)

G. Brambilla, “Optical fibre nanotaper sensors,” Opt. Fiber Technol. 16(6), 331–342 (2010).
[Crossref]

Opt. Laser Technol. (1)

Q. Wu, Y. Semenova, A. Sun, P. F. Wang, and G. Farrell, “High resolution temperature insensitive interrogation technique for FBG sensors,” Opt. Laser Technol. 42(4), 653–656 (2010).
[Crossref]

Opt. Lett. (2)

Sens. Actuators B Chem. (1)

Y. Chen, Q. Han, T. Liu, and X. Lü, “Self-temperature-compensative refractometer based on singlemode–multimode–singlemode fiber structure,” Sens. Actuators B Chem. 212, 107–111 (2015).
[Crossref]

Sensors (Basel) (1)

H. Yang, S. Wang, X. Liao, and J. Wang, “Temperature sensing in seawater based on microfiber knot resonator,” Sensors (Basel) 14(10), 18515–18525 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a). Schematic of experimental setup for fabricating optical microfiber coupler; (b) Schematic of the fabricated packaged microfiber coupler filled with liquid, inset illustrates microscope image of the fabricated temperature sensor.
Fig. 2
Fig. 2 Schematic of the experimental setup for measuring the temperature sensing performance of the sensor.
Fig. 3
Fig. 3 Transmission spectrum of the fabricated microfiber coupler sample at a room temperature.
Fig. 4
Fig. 4 (a) Measured transmission spectrum of this sensor at different temperatures; (b) the relationship between transmission spectrum and temperature.
Fig. 5
Fig. 5 The Measured Temperature spectrum of the three different samples; (a) sample 2 made of Teflon capillary and anhydrous ethanol; (b) sample 3 made of silica capillary and anhydrous ethanol; (c) The resonance wavelength shift of the three samples with ambient temperature.
Fig. 6
Fig. 6 Six batches of experimental measurements, the error bars in this figure represent the standard deviation of four experimental measurements.
Fig. 7
Fig. 7 The measured response time of the proposed temperature sensor.

Tables (2)

Tables Icon

Table 1 Similar structure fiber sensors.

Tables Icon

Table 2 Sensing properties of the three samples.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C( λ )= 3πλ 31 a 2 n 1 1 (1+ 1 V ) 2
P= P 0 sin 2 (CL)

Metrics