Abstract

The keyhole status is a determining factor of weld quality in laser-metal active gas arc (MAG) hybrid welding process. For a better evaluation of the hybrid welding process, three different penetration welding experiments: partial penetration, normal penetration (or full penetration), and excessive penetration were conducted in this work. The instantaneous visual phenomena including metallic vapor, spatters and keyhole of bottom surface were used to evaluate the keyhole status by a double high-speed camera system. The Fourier transform was applied on the bottom weld pool image for removing the image noise around the keyhole, and then the bottom weld pool image was reconstructed through the inverse Fourier transform. Lastly, the keyhole bottom was extracted from the de-noised bottom weld pool image. By analyzing the visual features of the laser-MAG hybrid welding process, mechanism of the closed and opened keyhole bottom were revealed. The results show that the stable opened or closed status of keyhole bottom is directly affected by the MAG droplet transition in the normal penetration welding process, and the unstable opened or closed status of keyhole bottom would appear in excessive penetration welding and partial penetration welding. The analysis method proposed in this paper could be used to monitor the keyhole stability in laser-MAG hybrid welding process.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Direct observation of keyhole characteristics in deep penetration laser welding with a 10 kW fiber laser

Mingjun Zhang, Genyu Chen, Yu Zhou, and Shichun Li
Opt. Express 21(17) 19997-20004 (2013)

Optical techniques for real-time penetration monitoring for laser welding

Fabrice Bardin, Adolfo Cobo, Jose M. Lopez-Higuera, Olivier Collin, Pascal Aubry, Thierry Dubois, Mats Högström, Per Nylen, Peter Jonsson, Julian D. C. Jones, and Duncan P. Hand
Appl. Opt. 44(19) 3869-3876 (2005)

Dynamic balance of heat and mass in high power density laser welding

Hongze Wang, Motoki Nakanishi, and Yosuke Kawahito
Opt. Express 26(5) 6392-6399 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Wieshcemann, H. Kelle, and D. Dilthey, “Hybrid-welding and the HyDRA MAG+LASER processes in shipbuilding,” Welding Int. 7(10), 761–766 (2003).
    [Crossref]
  2. D. I. J. Neubert and D. I. S. Keitel, “Influence of tolerances on weld formation and quality of laser-GMA-hybrid girth welded pipe joints,” Weld. World 55(1–2), 50–57 (2011).
    [Crossref]
  3. H. Stauffer, M. Ruhrnossl, and G. Miessbacher, “Hybrid welding for the automotive industry,” Industrial Laser Solutions 10, 7–10 (2003).
  4. R. Fabbro, “Melt pool and keyhole behaviour analysis for deep penetration laser welding,” J. Phys. D Appl. Phys. 43(44), 445501 (2012).
    [Crossref]
  5. W. I. Cho, S. J. Na, C. Thomy, and F. Vollertsen, “Numerical simulation of molten pool dynamics in high power disk laser welding,” J. Mater. Process. Technol. 212(1), 262–275 (2012).
    [Crossref]
  6. M. J. Zhang, Z. Zhang, K. Tang, C. Mao, Y. L. Hu, and G. Y. Chen, “Analysis of mechanisms of underfill in full penetration laser welding of thick stainless steel with a 10 kW fiber laser,” Opt. Laser Technol. 98, 97–105 (2018).
    [Crossref]
  7. O. Seffer, R. Lahdo, A. Springer, and S. Kaierle, “Laser-GMA hybrid welding of API 5L X70 with 23mm plate thickness using 16kW disk laser and two GMA welding power sources,” J. Laser Appl. 26(4), 042005 (2014).
    [Crossref]
  8. M. Chen, X. Li, and L. Liu, “Effect of electric field on interaction between laser and arc plasma in laser-arc hybrid welding,” IEEE Trans. Plasma Sci. 40(8), 2045–2050 (2012).
    [Crossref]
  9. R. Fabbro, M. Hamadou, and F. Coste, “Metallic vapor ejection effect on melt pool dynamics in deep penetration laser welding,” J. Laser Appl. 16(1), 859–870 (2004).
    [Crossref]
  10. R. Fabbro, S. Slimani, I. Doudet, F. Coste, and F. Briand, “Experimental study of the dynamical coupling between the induced vapour plume and the melt pool for Nd-Yag CW laser welding,” J. Phys. D Appl. Phys. 39(2), 394–400 (2006).
    [Crossref]
  11. Y. X. Zhang, S. W. Han, J. Cheon, S. J. Na, and X. D. Gao, “Effect of joint gap on bead formation in laser butt welding of stainless steel,” J. Mater. Process. Technol. 249, 274–284 (2017).
    [Crossref]
  12. Q. Pang, M. Mizutani, Y. Kawahito, and S. Katayama, “High power disk laser-metal active gas arc hybrid welding of thick high tensile strength steel plates,” J. Laser Appl. 28(1), 012004 (2016).
    [Crossref]
  13. M. Zhang, G. Chen, Y. Zhou, and S. Li, “Direct observation of keyhole characteristics in deep penetration laser welding with a 10 kW fiber laser,” Opt. Express 21(17), 19997–20004 (2013).
    [Crossref] [PubMed]
  14. J. Zou, N. Ha, R. Xiao, Q. Wu, and Q. Zhang, “Interaction between the laser beam and keyhole wall during high power fiber laser keyhole welding,” Opt. Express 25(15), 17650–17656 (2017).
    [Crossref] [PubMed]
  15. U. Reisgen, A. Zabirov, I. Krivtsun, V. Demchenko, and I. Krikent, “Interaction of CO2-laser beam with argon plasma of gas tungsten arc,” Weld. World 59(5), 1–12 (2015).
    [Crossref]
  16. M. Chen and L. Liu, “Study on attraction of laser to arc plasma in laser-TIG hybrid welding on Magnesium Alloy,” IEEE Trans. Plasma Sci. 39(4), 1140 (2011).
  17. Q. Pan, M. Mizutani, Y. Kawahito, and S. Katayama, “Effect of shielding gas on laser-MAG hybrid welding results of thick high-tensile-strength steel plate,” Weld. World 60(4), 653–664 (2016).
    [Crossref]
  18. D. You, X. Gao, and S. Katayama, “Multisensor Fusion System for Monitoring High-Power Disk Laser Welding Using Support Vector Machine,” IEEE Trans. Industr. Inform. 10(2), 1285–1295 (2014).
    [Crossref]
  19. X. Hao and G. Song, “Spectral analysis of the plasma in low-power laser/arc hybrid welding of magnesium alloy,” IEEE Trans. Plasma Sci. 37(1), 76–82 (2008).
  20. D. Y. You, X. D. Gao, and S. J. Katayama, “Monitoring of high-power laser welding using high-speed photographing and image processing,” Mech. Syst. Signal Process. 49(1–2), 39–52 (2014).
    [Crossref]
  21. F. Bardin, A. Cobo, J. M. Lopez-Higuera, O. Collin, P. Aubry, T. Dubois, M. Högström, P. Nylen, P. Jonsson, J. D. C. Jones, and D. P. Hand, “Optical techniques for real-time penetration monitoring for laser welding,” Appl. Opt. 44(19), 3869–3876 (2005).
    [Crossref] [PubMed]
  22. M. Gao, Y. Kawahito, and S. Kajii, “Observation and understanding in laser welding of pure titanium at subatmospheric pressure,” Opt. Express 25(12), 13539–13548 (2017).
    [Crossref] [PubMed]
  23. Y. Luo, X. Tang, F. Lu, Q. Chen, and H. Cui, “Spatial distribution characteristics of plasma plume on attenuation of laser radiation under subatmospheric pressure,” Appl. Opt. 54(5), 1090–1096 (2015).
    [Crossref] [PubMed]
  24. P. Yao, K. Zhou, and Q. Zhu, “Quantitative evaluation method of arc sound spectrum based on sample entropy,” Mech. Syst. Signal Process. 92, 379–390 (2017).
    [Crossref]
  25. Z. Chen, X. Gao, S. Katayama, Z. Xiao, and X. Chen, “Elucidation of high-power disk laser welding phenomena by simultaneously observing both top and bottom of weldment,” Int. J. Adv. Manuf. Technol. 88(1–4), 1141–1150 (2016).

2018 (1)

M. J. Zhang, Z. Zhang, K. Tang, C. Mao, Y. L. Hu, and G. Y. Chen, “Analysis of mechanisms of underfill in full penetration laser welding of thick stainless steel with a 10 kW fiber laser,” Opt. Laser Technol. 98, 97–105 (2018).
[Crossref]

2017 (4)

Y. X. Zhang, S. W. Han, J. Cheon, S. J. Na, and X. D. Gao, “Effect of joint gap on bead formation in laser butt welding of stainless steel,” J. Mater. Process. Technol. 249, 274–284 (2017).
[Crossref]

P. Yao, K. Zhou, and Q. Zhu, “Quantitative evaluation method of arc sound spectrum based on sample entropy,” Mech. Syst. Signal Process. 92, 379–390 (2017).
[Crossref]

M. Gao, Y. Kawahito, and S. Kajii, “Observation and understanding in laser welding of pure titanium at subatmospheric pressure,” Opt. Express 25(12), 13539–13548 (2017).
[Crossref] [PubMed]

J. Zou, N. Ha, R. Xiao, Q. Wu, and Q. Zhang, “Interaction between the laser beam and keyhole wall during high power fiber laser keyhole welding,” Opt. Express 25(15), 17650–17656 (2017).
[Crossref] [PubMed]

2016 (3)

Z. Chen, X. Gao, S. Katayama, Z. Xiao, and X. Chen, “Elucidation of high-power disk laser welding phenomena by simultaneously observing both top and bottom of weldment,” Int. J. Adv. Manuf. Technol. 88(1–4), 1141–1150 (2016).

Q. Pang, M. Mizutani, Y. Kawahito, and S. Katayama, “High power disk laser-metal active gas arc hybrid welding of thick high tensile strength steel plates,” J. Laser Appl. 28(1), 012004 (2016).
[Crossref]

Q. Pan, M. Mizutani, Y. Kawahito, and S. Katayama, “Effect of shielding gas on laser-MAG hybrid welding results of thick high-tensile-strength steel plate,” Weld. World 60(4), 653–664 (2016).
[Crossref]

2015 (2)

U. Reisgen, A. Zabirov, I. Krivtsun, V. Demchenko, and I. Krikent, “Interaction of CO2-laser beam with argon plasma of gas tungsten arc,” Weld. World 59(5), 1–12 (2015).
[Crossref]

Y. Luo, X. Tang, F. Lu, Q. Chen, and H. Cui, “Spatial distribution characteristics of plasma plume on attenuation of laser radiation under subatmospheric pressure,” Appl. Opt. 54(5), 1090–1096 (2015).
[Crossref] [PubMed]

2014 (3)

D. Y. You, X. D. Gao, and S. J. Katayama, “Monitoring of high-power laser welding using high-speed photographing and image processing,” Mech. Syst. Signal Process. 49(1–2), 39–52 (2014).
[Crossref]

D. You, X. Gao, and S. Katayama, “Multisensor Fusion System for Monitoring High-Power Disk Laser Welding Using Support Vector Machine,” IEEE Trans. Industr. Inform. 10(2), 1285–1295 (2014).
[Crossref]

O. Seffer, R. Lahdo, A. Springer, and S. Kaierle, “Laser-GMA hybrid welding of API 5L X70 with 23mm plate thickness using 16kW disk laser and two GMA welding power sources,” J. Laser Appl. 26(4), 042005 (2014).
[Crossref]

2013 (1)

2012 (3)

M. Chen, X. Li, and L. Liu, “Effect of electric field on interaction between laser and arc plasma in laser-arc hybrid welding,” IEEE Trans. Plasma Sci. 40(8), 2045–2050 (2012).
[Crossref]

R. Fabbro, “Melt pool and keyhole behaviour analysis for deep penetration laser welding,” J. Phys. D Appl. Phys. 43(44), 445501 (2012).
[Crossref]

W. I. Cho, S. J. Na, C. Thomy, and F. Vollertsen, “Numerical simulation of molten pool dynamics in high power disk laser welding,” J. Mater. Process. Technol. 212(1), 262–275 (2012).
[Crossref]

2011 (2)

D. I. J. Neubert and D. I. S. Keitel, “Influence of tolerances on weld formation and quality of laser-GMA-hybrid girth welded pipe joints,” Weld. World 55(1–2), 50–57 (2011).
[Crossref]

M. Chen and L. Liu, “Study on attraction of laser to arc plasma in laser-TIG hybrid welding on Magnesium Alloy,” IEEE Trans. Plasma Sci. 39(4), 1140 (2011).

2008 (1)

X. Hao and G. Song, “Spectral analysis of the plasma in low-power laser/arc hybrid welding of magnesium alloy,” IEEE Trans. Plasma Sci. 37(1), 76–82 (2008).

2006 (1)

R. Fabbro, S. Slimani, I. Doudet, F. Coste, and F. Briand, “Experimental study of the dynamical coupling between the induced vapour plume and the melt pool for Nd-Yag CW laser welding,” J. Phys. D Appl. Phys. 39(2), 394–400 (2006).
[Crossref]

2005 (1)

2004 (1)

R. Fabbro, M. Hamadou, and F. Coste, “Metallic vapor ejection effect on melt pool dynamics in deep penetration laser welding,” J. Laser Appl. 16(1), 859–870 (2004).
[Crossref]

2003 (2)

H. Stauffer, M. Ruhrnossl, and G. Miessbacher, “Hybrid welding for the automotive industry,” Industrial Laser Solutions 10, 7–10 (2003).

A. Wieshcemann, H. Kelle, and D. Dilthey, “Hybrid-welding and the HyDRA MAG+LASER processes in shipbuilding,” Welding Int. 7(10), 761–766 (2003).
[Crossref]

Aubry, P.

Bardin, F.

Briand, F.

R. Fabbro, S. Slimani, I. Doudet, F. Coste, and F. Briand, “Experimental study of the dynamical coupling between the induced vapour plume and the melt pool for Nd-Yag CW laser welding,” J. Phys. D Appl. Phys. 39(2), 394–400 (2006).
[Crossref]

Chen, G.

Chen, G. Y.

M. J. Zhang, Z. Zhang, K. Tang, C. Mao, Y. L. Hu, and G. Y. Chen, “Analysis of mechanisms of underfill in full penetration laser welding of thick stainless steel with a 10 kW fiber laser,” Opt. Laser Technol. 98, 97–105 (2018).
[Crossref]

Chen, M.

M. Chen, X. Li, and L. Liu, “Effect of electric field on interaction between laser and arc plasma in laser-arc hybrid welding,” IEEE Trans. Plasma Sci. 40(8), 2045–2050 (2012).
[Crossref]

M. Chen and L. Liu, “Study on attraction of laser to arc plasma in laser-TIG hybrid welding on Magnesium Alloy,” IEEE Trans. Plasma Sci. 39(4), 1140 (2011).

Chen, Q.

Chen, X.

Z. Chen, X. Gao, S. Katayama, Z. Xiao, and X. Chen, “Elucidation of high-power disk laser welding phenomena by simultaneously observing both top and bottom of weldment,” Int. J. Adv. Manuf. Technol. 88(1–4), 1141–1150 (2016).

Chen, Z.

Z. Chen, X. Gao, S. Katayama, Z. Xiao, and X. Chen, “Elucidation of high-power disk laser welding phenomena by simultaneously observing both top and bottom of weldment,” Int. J. Adv. Manuf. Technol. 88(1–4), 1141–1150 (2016).

Cheon, J.

Y. X. Zhang, S. W. Han, J. Cheon, S. J. Na, and X. D. Gao, “Effect of joint gap on bead formation in laser butt welding of stainless steel,” J. Mater. Process. Technol. 249, 274–284 (2017).
[Crossref]

Cho, W. I.

W. I. Cho, S. J. Na, C. Thomy, and F. Vollertsen, “Numerical simulation of molten pool dynamics in high power disk laser welding,” J. Mater. Process. Technol. 212(1), 262–275 (2012).
[Crossref]

Cobo, A.

Collin, O.

Coste, F.

R. Fabbro, S. Slimani, I. Doudet, F. Coste, and F. Briand, “Experimental study of the dynamical coupling between the induced vapour plume and the melt pool for Nd-Yag CW laser welding,” J. Phys. D Appl. Phys. 39(2), 394–400 (2006).
[Crossref]

R. Fabbro, M. Hamadou, and F. Coste, “Metallic vapor ejection effect on melt pool dynamics in deep penetration laser welding,” J. Laser Appl. 16(1), 859–870 (2004).
[Crossref]

Cui, H.

Demchenko, V.

U. Reisgen, A. Zabirov, I. Krivtsun, V. Demchenko, and I. Krikent, “Interaction of CO2-laser beam with argon plasma of gas tungsten arc,” Weld. World 59(5), 1–12 (2015).
[Crossref]

Dilthey, D.

A. Wieshcemann, H. Kelle, and D. Dilthey, “Hybrid-welding and the HyDRA MAG+LASER processes in shipbuilding,” Welding Int. 7(10), 761–766 (2003).
[Crossref]

Doudet, I.

R. Fabbro, S. Slimani, I. Doudet, F. Coste, and F. Briand, “Experimental study of the dynamical coupling between the induced vapour plume and the melt pool for Nd-Yag CW laser welding,” J. Phys. D Appl. Phys. 39(2), 394–400 (2006).
[Crossref]

Dubois, T.

Fabbro, R.

R. Fabbro, “Melt pool and keyhole behaviour analysis for deep penetration laser welding,” J. Phys. D Appl. Phys. 43(44), 445501 (2012).
[Crossref]

R. Fabbro, S. Slimani, I. Doudet, F. Coste, and F. Briand, “Experimental study of the dynamical coupling between the induced vapour plume and the melt pool for Nd-Yag CW laser welding,” J. Phys. D Appl. Phys. 39(2), 394–400 (2006).
[Crossref]

R. Fabbro, M. Hamadou, and F. Coste, “Metallic vapor ejection effect on melt pool dynamics in deep penetration laser welding,” J. Laser Appl. 16(1), 859–870 (2004).
[Crossref]

Gao, M.

Gao, X.

Z. Chen, X. Gao, S. Katayama, Z. Xiao, and X. Chen, “Elucidation of high-power disk laser welding phenomena by simultaneously observing both top and bottom of weldment,” Int. J. Adv. Manuf. Technol. 88(1–4), 1141–1150 (2016).

D. You, X. Gao, and S. Katayama, “Multisensor Fusion System for Monitoring High-Power Disk Laser Welding Using Support Vector Machine,” IEEE Trans. Industr. Inform. 10(2), 1285–1295 (2014).
[Crossref]

Gao, X. D.

Y. X. Zhang, S. W. Han, J. Cheon, S. J. Na, and X. D. Gao, “Effect of joint gap on bead formation in laser butt welding of stainless steel,” J. Mater. Process. Technol. 249, 274–284 (2017).
[Crossref]

D. Y. You, X. D. Gao, and S. J. Katayama, “Monitoring of high-power laser welding using high-speed photographing and image processing,” Mech. Syst. Signal Process. 49(1–2), 39–52 (2014).
[Crossref]

Ha, N.

Hamadou, M.

R. Fabbro, M. Hamadou, and F. Coste, “Metallic vapor ejection effect on melt pool dynamics in deep penetration laser welding,” J. Laser Appl. 16(1), 859–870 (2004).
[Crossref]

Han, S. W.

Y. X. Zhang, S. W. Han, J. Cheon, S. J. Na, and X. D. Gao, “Effect of joint gap on bead formation in laser butt welding of stainless steel,” J. Mater. Process. Technol. 249, 274–284 (2017).
[Crossref]

Hand, D. P.

Hao, X.

X. Hao and G. Song, “Spectral analysis of the plasma in low-power laser/arc hybrid welding of magnesium alloy,” IEEE Trans. Plasma Sci. 37(1), 76–82 (2008).

Högström, M.

Hu, Y. L.

M. J. Zhang, Z. Zhang, K. Tang, C. Mao, Y. L. Hu, and G. Y. Chen, “Analysis of mechanisms of underfill in full penetration laser welding of thick stainless steel with a 10 kW fiber laser,” Opt. Laser Technol. 98, 97–105 (2018).
[Crossref]

Jones, J. D. C.

Jonsson, P.

Kaierle, S.

O. Seffer, R. Lahdo, A. Springer, and S. Kaierle, “Laser-GMA hybrid welding of API 5L X70 with 23mm plate thickness using 16kW disk laser and two GMA welding power sources,” J. Laser Appl. 26(4), 042005 (2014).
[Crossref]

Kajii, S.

Katayama, S.

Q. Pang, M. Mizutani, Y. Kawahito, and S. Katayama, “High power disk laser-metal active gas arc hybrid welding of thick high tensile strength steel plates,” J. Laser Appl. 28(1), 012004 (2016).
[Crossref]

Z. Chen, X. Gao, S. Katayama, Z. Xiao, and X. Chen, “Elucidation of high-power disk laser welding phenomena by simultaneously observing both top and bottom of weldment,” Int. J. Adv. Manuf. Technol. 88(1–4), 1141–1150 (2016).

Q. Pan, M. Mizutani, Y. Kawahito, and S. Katayama, “Effect of shielding gas on laser-MAG hybrid welding results of thick high-tensile-strength steel plate,” Weld. World 60(4), 653–664 (2016).
[Crossref]

D. You, X. Gao, and S. Katayama, “Multisensor Fusion System for Monitoring High-Power Disk Laser Welding Using Support Vector Machine,” IEEE Trans. Industr. Inform. 10(2), 1285–1295 (2014).
[Crossref]

Katayama, S. J.

D. Y. You, X. D. Gao, and S. J. Katayama, “Monitoring of high-power laser welding using high-speed photographing and image processing,” Mech. Syst. Signal Process. 49(1–2), 39–52 (2014).
[Crossref]

Kawahito, Y.

M. Gao, Y. Kawahito, and S. Kajii, “Observation and understanding in laser welding of pure titanium at subatmospheric pressure,” Opt. Express 25(12), 13539–13548 (2017).
[Crossref] [PubMed]

Q. Pang, M. Mizutani, Y. Kawahito, and S. Katayama, “High power disk laser-metal active gas arc hybrid welding of thick high tensile strength steel plates,” J. Laser Appl. 28(1), 012004 (2016).
[Crossref]

Q. Pan, M. Mizutani, Y. Kawahito, and S. Katayama, “Effect of shielding gas on laser-MAG hybrid welding results of thick high-tensile-strength steel plate,” Weld. World 60(4), 653–664 (2016).
[Crossref]

Keitel, D. I. S.

D. I. J. Neubert and D. I. S. Keitel, “Influence of tolerances on weld formation and quality of laser-GMA-hybrid girth welded pipe joints,” Weld. World 55(1–2), 50–57 (2011).
[Crossref]

Kelle, H.

A. Wieshcemann, H. Kelle, and D. Dilthey, “Hybrid-welding and the HyDRA MAG+LASER processes in shipbuilding,” Welding Int. 7(10), 761–766 (2003).
[Crossref]

Krikent, I.

U. Reisgen, A. Zabirov, I. Krivtsun, V. Demchenko, and I. Krikent, “Interaction of CO2-laser beam with argon plasma of gas tungsten arc,” Weld. World 59(5), 1–12 (2015).
[Crossref]

Krivtsun, I.

U. Reisgen, A. Zabirov, I. Krivtsun, V. Demchenko, and I. Krikent, “Interaction of CO2-laser beam with argon plasma of gas tungsten arc,” Weld. World 59(5), 1–12 (2015).
[Crossref]

Lahdo, R.

O. Seffer, R. Lahdo, A. Springer, and S. Kaierle, “Laser-GMA hybrid welding of API 5L X70 with 23mm plate thickness using 16kW disk laser and two GMA welding power sources,” J. Laser Appl. 26(4), 042005 (2014).
[Crossref]

Li, S.

Li, X.

M. Chen, X. Li, and L. Liu, “Effect of electric field on interaction between laser and arc plasma in laser-arc hybrid welding,” IEEE Trans. Plasma Sci. 40(8), 2045–2050 (2012).
[Crossref]

Liu, L.

M. Chen, X. Li, and L. Liu, “Effect of electric field on interaction between laser and arc plasma in laser-arc hybrid welding,” IEEE Trans. Plasma Sci. 40(8), 2045–2050 (2012).
[Crossref]

M. Chen and L. Liu, “Study on attraction of laser to arc plasma in laser-TIG hybrid welding on Magnesium Alloy,” IEEE Trans. Plasma Sci. 39(4), 1140 (2011).

Lopez-Higuera, J. M.

Lu, F.

Luo, Y.

Mao, C.

M. J. Zhang, Z. Zhang, K. Tang, C. Mao, Y. L. Hu, and G. Y. Chen, “Analysis of mechanisms of underfill in full penetration laser welding of thick stainless steel with a 10 kW fiber laser,” Opt. Laser Technol. 98, 97–105 (2018).
[Crossref]

Miessbacher, G.

H. Stauffer, M. Ruhrnossl, and G. Miessbacher, “Hybrid welding for the automotive industry,” Industrial Laser Solutions 10, 7–10 (2003).

Mizutani, M.

Q. Pan, M. Mizutani, Y. Kawahito, and S. Katayama, “Effect of shielding gas on laser-MAG hybrid welding results of thick high-tensile-strength steel plate,” Weld. World 60(4), 653–664 (2016).
[Crossref]

Q. Pang, M. Mizutani, Y. Kawahito, and S. Katayama, “High power disk laser-metal active gas arc hybrid welding of thick high tensile strength steel plates,” J. Laser Appl. 28(1), 012004 (2016).
[Crossref]

Na, S. J.

Y. X. Zhang, S. W. Han, J. Cheon, S. J. Na, and X. D. Gao, “Effect of joint gap on bead formation in laser butt welding of stainless steel,” J. Mater. Process. Technol. 249, 274–284 (2017).
[Crossref]

W. I. Cho, S. J. Na, C. Thomy, and F. Vollertsen, “Numerical simulation of molten pool dynamics in high power disk laser welding,” J. Mater. Process. Technol. 212(1), 262–275 (2012).
[Crossref]

Neubert, D. I. J.

D. I. J. Neubert and D. I. S. Keitel, “Influence of tolerances on weld formation and quality of laser-GMA-hybrid girth welded pipe joints,” Weld. World 55(1–2), 50–57 (2011).
[Crossref]

Nylen, P.

Pan, Q.

Q. Pan, M. Mizutani, Y. Kawahito, and S. Katayama, “Effect of shielding gas on laser-MAG hybrid welding results of thick high-tensile-strength steel plate,” Weld. World 60(4), 653–664 (2016).
[Crossref]

Pang, Q.

Q. Pang, M. Mizutani, Y. Kawahito, and S. Katayama, “High power disk laser-metal active gas arc hybrid welding of thick high tensile strength steel plates,” J. Laser Appl. 28(1), 012004 (2016).
[Crossref]

Reisgen, U.

U. Reisgen, A. Zabirov, I. Krivtsun, V. Demchenko, and I. Krikent, “Interaction of CO2-laser beam with argon plasma of gas tungsten arc,” Weld. World 59(5), 1–12 (2015).
[Crossref]

Ruhrnossl, M.

H. Stauffer, M. Ruhrnossl, and G. Miessbacher, “Hybrid welding for the automotive industry,” Industrial Laser Solutions 10, 7–10 (2003).

Seffer, O.

O. Seffer, R. Lahdo, A. Springer, and S. Kaierle, “Laser-GMA hybrid welding of API 5L X70 with 23mm plate thickness using 16kW disk laser and two GMA welding power sources,” J. Laser Appl. 26(4), 042005 (2014).
[Crossref]

Slimani, S.

R. Fabbro, S. Slimani, I. Doudet, F. Coste, and F. Briand, “Experimental study of the dynamical coupling between the induced vapour plume and the melt pool for Nd-Yag CW laser welding,” J. Phys. D Appl. Phys. 39(2), 394–400 (2006).
[Crossref]

Song, G.

X. Hao and G. Song, “Spectral analysis of the plasma in low-power laser/arc hybrid welding of magnesium alloy,” IEEE Trans. Plasma Sci. 37(1), 76–82 (2008).

Springer, A.

O. Seffer, R. Lahdo, A. Springer, and S. Kaierle, “Laser-GMA hybrid welding of API 5L X70 with 23mm plate thickness using 16kW disk laser and two GMA welding power sources,” J. Laser Appl. 26(4), 042005 (2014).
[Crossref]

Stauffer, H.

H. Stauffer, M. Ruhrnossl, and G. Miessbacher, “Hybrid welding for the automotive industry,” Industrial Laser Solutions 10, 7–10 (2003).

Tang, K.

M. J. Zhang, Z. Zhang, K. Tang, C. Mao, Y. L. Hu, and G. Y. Chen, “Analysis of mechanisms of underfill in full penetration laser welding of thick stainless steel with a 10 kW fiber laser,” Opt. Laser Technol. 98, 97–105 (2018).
[Crossref]

Tang, X.

Thomy, C.

W. I. Cho, S. J. Na, C. Thomy, and F. Vollertsen, “Numerical simulation of molten pool dynamics in high power disk laser welding,” J. Mater. Process. Technol. 212(1), 262–275 (2012).
[Crossref]

Vollertsen, F.

W. I. Cho, S. J. Na, C. Thomy, and F. Vollertsen, “Numerical simulation of molten pool dynamics in high power disk laser welding,” J. Mater. Process. Technol. 212(1), 262–275 (2012).
[Crossref]

Wieshcemann, A.

A. Wieshcemann, H. Kelle, and D. Dilthey, “Hybrid-welding and the HyDRA MAG+LASER processes in shipbuilding,” Welding Int. 7(10), 761–766 (2003).
[Crossref]

Wu, Q.

Xiao, R.

Xiao, Z.

Z. Chen, X. Gao, S. Katayama, Z. Xiao, and X. Chen, “Elucidation of high-power disk laser welding phenomena by simultaneously observing both top and bottom of weldment,” Int. J. Adv. Manuf. Technol. 88(1–4), 1141–1150 (2016).

Yao, P.

P. Yao, K. Zhou, and Q. Zhu, “Quantitative evaluation method of arc sound spectrum based on sample entropy,” Mech. Syst. Signal Process. 92, 379–390 (2017).
[Crossref]

You, D.

D. You, X. Gao, and S. Katayama, “Multisensor Fusion System for Monitoring High-Power Disk Laser Welding Using Support Vector Machine,” IEEE Trans. Industr. Inform. 10(2), 1285–1295 (2014).
[Crossref]

You, D. Y.

D. Y. You, X. D. Gao, and S. J. Katayama, “Monitoring of high-power laser welding using high-speed photographing and image processing,” Mech. Syst. Signal Process. 49(1–2), 39–52 (2014).
[Crossref]

Zabirov, A.

U. Reisgen, A. Zabirov, I. Krivtsun, V. Demchenko, and I. Krikent, “Interaction of CO2-laser beam with argon plasma of gas tungsten arc,” Weld. World 59(5), 1–12 (2015).
[Crossref]

Zhang, M.

Zhang, M. J.

M. J. Zhang, Z. Zhang, K. Tang, C. Mao, Y. L. Hu, and G. Y. Chen, “Analysis of mechanisms of underfill in full penetration laser welding of thick stainless steel with a 10 kW fiber laser,” Opt. Laser Technol. 98, 97–105 (2018).
[Crossref]

Zhang, Q.

Zhang, Y. X.

Y. X. Zhang, S. W. Han, J. Cheon, S. J. Na, and X. D. Gao, “Effect of joint gap on bead formation in laser butt welding of stainless steel,” J. Mater. Process. Technol. 249, 274–284 (2017).
[Crossref]

Zhang, Z.

M. J. Zhang, Z. Zhang, K. Tang, C. Mao, Y. L. Hu, and G. Y. Chen, “Analysis of mechanisms of underfill in full penetration laser welding of thick stainless steel with a 10 kW fiber laser,” Opt. Laser Technol. 98, 97–105 (2018).
[Crossref]

Zhou, K.

P. Yao, K. Zhou, and Q. Zhu, “Quantitative evaluation method of arc sound spectrum based on sample entropy,” Mech. Syst. Signal Process. 92, 379–390 (2017).
[Crossref]

Zhou, Y.

Zhu, Q.

P. Yao, K. Zhou, and Q. Zhu, “Quantitative evaluation method of arc sound spectrum based on sample entropy,” Mech. Syst. Signal Process. 92, 379–390 (2017).
[Crossref]

Zou, J.

Appl. Opt. (2)

IEEE Trans. Industr. Inform. (1)

D. You, X. Gao, and S. Katayama, “Multisensor Fusion System for Monitoring High-Power Disk Laser Welding Using Support Vector Machine,” IEEE Trans. Industr. Inform. 10(2), 1285–1295 (2014).
[Crossref]

IEEE Trans. Plasma Sci. (3)

X. Hao and G. Song, “Spectral analysis of the plasma in low-power laser/arc hybrid welding of magnesium alloy,” IEEE Trans. Plasma Sci. 37(1), 76–82 (2008).

M. Chen, X. Li, and L. Liu, “Effect of electric field on interaction between laser and arc plasma in laser-arc hybrid welding,” IEEE Trans. Plasma Sci. 40(8), 2045–2050 (2012).
[Crossref]

M. Chen and L. Liu, “Study on attraction of laser to arc plasma in laser-TIG hybrid welding on Magnesium Alloy,” IEEE Trans. Plasma Sci. 39(4), 1140 (2011).

Industrial Laser Solutions (1)

H. Stauffer, M. Ruhrnossl, and G. Miessbacher, “Hybrid welding for the automotive industry,” Industrial Laser Solutions 10, 7–10 (2003).

Int. J. Adv. Manuf. Technol. (1)

Z. Chen, X. Gao, S. Katayama, Z. Xiao, and X. Chen, “Elucidation of high-power disk laser welding phenomena by simultaneously observing both top and bottom of weldment,” Int. J. Adv. Manuf. Technol. 88(1–4), 1141–1150 (2016).

J. Laser Appl. (3)

R. Fabbro, M. Hamadou, and F. Coste, “Metallic vapor ejection effect on melt pool dynamics in deep penetration laser welding,” J. Laser Appl. 16(1), 859–870 (2004).
[Crossref]

O. Seffer, R. Lahdo, A. Springer, and S. Kaierle, “Laser-GMA hybrid welding of API 5L X70 with 23mm plate thickness using 16kW disk laser and two GMA welding power sources,” J. Laser Appl. 26(4), 042005 (2014).
[Crossref]

Q. Pang, M. Mizutani, Y. Kawahito, and S. Katayama, “High power disk laser-metal active gas arc hybrid welding of thick high tensile strength steel plates,” J. Laser Appl. 28(1), 012004 (2016).
[Crossref]

J. Mater. Process. Technol. (2)

Y. X. Zhang, S. W. Han, J. Cheon, S. J. Na, and X. D. Gao, “Effect of joint gap on bead formation in laser butt welding of stainless steel,” J. Mater. Process. Technol. 249, 274–284 (2017).
[Crossref]

W. I. Cho, S. J. Na, C. Thomy, and F. Vollertsen, “Numerical simulation of molten pool dynamics in high power disk laser welding,” J. Mater. Process. Technol. 212(1), 262–275 (2012).
[Crossref]

J. Phys. D Appl. Phys. (2)

R. Fabbro, S. Slimani, I. Doudet, F. Coste, and F. Briand, “Experimental study of the dynamical coupling between the induced vapour plume and the melt pool for Nd-Yag CW laser welding,” J. Phys. D Appl. Phys. 39(2), 394–400 (2006).
[Crossref]

R. Fabbro, “Melt pool and keyhole behaviour analysis for deep penetration laser welding,” J. Phys. D Appl. Phys. 43(44), 445501 (2012).
[Crossref]

Mech. Syst. Signal Process. (2)

P. Yao, K. Zhou, and Q. Zhu, “Quantitative evaluation method of arc sound spectrum based on sample entropy,” Mech. Syst. Signal Process. 92, 379–390 (2017).
[Crossref]

D. Y. You, X. D. Gao, and S. J. Katayama, “Monitoring of high-power laser welding using high-speed photographing and image processing,” Mech. Syst. Signal Process. 49(1–2), 39–52 (2014).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (1)

M. J. Zhang, Z. Zhang, K. Tang, C. Mao, Y. L. Hu, and G. Y. Chen, “Analysis of mechanisms of underfill in full penetration laser welding of thick stainless steel with a 10 kW fiber laser,” Opt. Laser Technol. 98, 97–105 (2018).
[Crossref]

Weld. World (3)

D. I. J. Neubert and D. I. S. Keitel, “Influence of tolerances on weld formation and quality of laser-GMA-hybrid girth welded pipe joints,” Weld. World 55(1–2), 50–57 (2011).
[Crossref]

U. Reisgen, A. Zabirov, I. Krivtsun, V. Demchenko, and I. Krikent, “Interaction of CO2-laser beam with argon plasma of gas tungsten arc,” Weld. World 59(5), 1–12 (2015).
[Crossref]

Q. Pan, M. Mizutani, Y. Kawahito, and S. Katayama, “Effect of shielding gas on laser-MAG hybrid welding results of thick high-tensile-strength steel plate,” Weld. World 60(4), 653–664 (2016).
[Crossref]

Welding Int. (1)

A. Wieshcemann, H. Kelle, and D. Dilthey, “Hybrid-welding and the HyDRA MAG+LASER processes in shipbuilding,” Welding Int. 7(10), 761–766 (2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental system of laser-MAG hybrid welding process monitoring.
Fig. 2
Fig. 2 Four different laser-MAG hybrid welding process status; (a) weldment is melted by laser heat and is in a partial penetration welding status, (b) full penetration is obtained by increasing the absorbed energy of keyhole and the keyhole bottom is closed, (c) new molten metal from droplet transition is covering the top surface of keyhole and the keyhole bottom is opened, (d) the equilibrium of keyhole is broken resulting in a keyhole collapse.
Fig. 3
Fig. 3 Scheme of visual feature extraction.
Fig. 4
Fig. 4 Three dimensional graph of keyhole bottom; (a) original graph of keyhole bottom, (b) keyhole bottom after Fourier de-noising operate.
Fig. 5
Fig. 5 Visual phenomena captured from the double high-speed camera system.
Fig. 6
Fig. 6 Bottom visual features of partial penetration in laser-MAG hybrid welding process; experimental number 1 in Table 1.
Fig. 7
Fig. 7 Bottom visual features of full penetration in laser-MAG hybrid welding process; experimental number 2 in Table 1.
Fig. 8
Fig. 8 Bottom visual features of full penetration in laser-MAG hybrid welding process; experimental number 3 in Table 1.

Tables (1)

Tables Icon

Table 1 Experimental conditions.

Metrics