Abstract

We propose and develop an intensity-detection-based refractive-index (RI) sensor for low-cost, rapid RI sensing. The sensor is composed of a polymer bent ridge waveguide (BRWG) structure on a low-cost glass substrate and is integrated with a microfluidic channel. Different-RI solutions flowing through the BRWG sensing region induce output optical power variations caused by optical bend losses, enabling simple and real-time RI detection. Additionally, the sensors are fabricated using rapid and cost-effective vacuum-less processes, attaining the low cost and high throughput required for mass production. A good RI solution of 5.31 10−4 × RIU−1 is achieved from the RI experiments. This study demonstrates mass-producible and compact RI sensors for rapid and sensitive chemical analysis and biomedical sensing.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Refractive index sensing using disk-hole coupling plasmonic structures fabricated on fiber facet

Shijie Li and Wen-Di Li
Opt. Express 25(23) 29380-29388 (2017)

In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber

Nan Zhang, Georges Humbert, Zhifang Wu, Kaiwei Li, Perry Ping Shum, Nancy Meng Ying Zhang, Ying Cui, Jean-Louis Auguste, Xuan Quyen Dinh, and Lei Wei
Opt. Express 24(24) 27674-27682 (2016)

Refractive index sensor based on a multi-notched plastic optical fiber

Chuanxin Teng, Ning Jing, Fangda Yu, Yue Ding, and Jie Zheng
Appl. Opt. 56(7) 1833-1838 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid. Nanofluid. 4, 33–52 (2008).
    [Crossref] [PubMed]
  2. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
    [Crossref] [PubMed]
  3. H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photon. 5, 598–604 (2011).
    [Crossref]
  4. X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photon. 5, 591–597 (2011).
    [Crossref]
  5. M. Puiu and C. Bala, “SPR and SPR imaging: Recent trends in developing nanodevices for detection and real-time monitoring of biomolecular events,” Sensors 16, 870 (2016).
    [Crossref]
  6. P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88, 093513 (2006).
    [Crossref]
  7. Z.-M. Qi, N. Matsuda, J. H. Santos, A. Takatsu, and K. Kato, “Prism-coupled multimode waveguide refractometer,” Opt. Lett. 27, 689–691 (2002).
    [Crossref]
  8. T. Okamoto, M. Yamamoto, and I. Yamaguchi, “Optical waveguide absorption sensor using a single coupling prism,” J. Opt. Soc. Am. A 17, 1880–1886 (2000).
    [Crossref]
  9. S. Dante, D. Duval, B. Sepúlveda, A. B. González-Guerrero, J. R. Sendra, and L. M. Lechuga, “All-optical phase modulation for integrated interferometric biosensors,” Opt. Express 20, 7195–7205 (2012).
    [Crossref] [PubMed]
  10. M. I. Lapsley, I.-K. Chiang, Y. B. Zheng, X. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic mach-zehnder interferometer for label-free detection,” Lab Chip 11, 1795–1800 (2011).
    [Crossref] [PubMed]
  11. V. Toccafondo and C. J. Oton, “Robust and low-cost interrogation technique for integrated photonic biochemical sensors based on mach-zehnder interferometers,” Photon. Res. 4, 57–60 (2016).
    [Crossref]
  12. R. Robelek and J. Wegener, “Label-free and time-resolved measurements of cell volume changes by surface plasmon resonance (SPR) spectroscopy,” Biosens. Bioelectron. 25, 1221–1224 (2010).
    [Crossref]
  13. L. Malic, M. G. Sandros, and M. Tabrizian, “Designed biointerface using near-infrared quantum dots for ultrasensitive surface plasmon resonance imaging biosensors,” Anal. Chem. 83, 5222–5229 (2011).
    [Crossref] [PubMed]
  14. H. H. Nguyen, J. Park, S. Kang, and M. Kim, “Surface plasmon resonance: A versatile technique for biosensor applications,” Sensors 15, 10481–10510 (2015).
    [Crossref] [PubMed]
  15. P. Singh, “SPR biosensors: Historical perspectives and current challenges,” Sens. Actuators B: Chem. 229, 110–130 (2016).
    [Crossref]
  16. W.-T. Hsu, W.-H. Hsieh, S.-F. Cheng, C.-P. Jen, C.-C. Wu, C.-H. Li, C.-Y. Lee, W.-Y. Li, L.-K. Chau, C.-Y. Chiang, and S.-R. Lyu, “Integration of fiber optic-particle plasmon resonance biosensor with microfluidic chip,” Anal. Chim. Acta 697, 75–82 (2011).
    [Crossref] [PubMed]
  17. C.-W. Wu, C.-Y. Chiang, C.-H. Chen, C.-S. Chiang, C.-T. Wang, and L.-K. Chau, “Self-referencing fiber optic particle plasmon resonance sensing system for real-time biological monitoring,” Talanta 146, 291–298 (2016).
    [Crossref]
  18. G. Liang, Z. Luo, K. Liu, Y. Wang, J. Dai, and Y. Duan, “Fiber optic surface plasmon resonance based biosensor technique: Fabrication, advancement, and application,” Crit. Rev. Anal. Chem. 46, 213–223 (2016).
    [Crossref] [PubMed]
  19. L.-K. Chau, Y.-F. Lin, S.-F. Cheng, and T.-J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sens. Actuators B: Chem. 113, 100–105 (2006).
    [Crossref]
  20. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15, 2307–2314 (2007).
    [Crossref] [PubMed]
  21. C. S. Burke, L. Polerecky, and B. D. MacCraith, “Design and fabrication of enhanced polymer waveguide platforms for absorption-based optical chemical sensors,” Meas. Sci. Technol. 15, 1140 (2004).
    [Crossref]
  22. F. Bahrami, M. Maisonneuve, M. Meunier, J. S. Aitchison, and M. Mojahedi, “An improved refractive index sensor based on genetic optimization of plasmon waveguide resonance,” Opt. Express 21, 20863–20872 (2013).
    [Crossref] [PubMed]
  23. Y. Nazirizadeh, U. Bog, S. Sekula, T. Mappes, U. Lemmer, and M. Gerken, “Low-cost label-free biosensors using photonic crystals embedded between crossed polarizers,” Opt. Express 18, 19120–19128 (2010).
    [Crossref] [PubMed]
  24. J. Jágerská, H. Zhang, Z. Diao, N. L. Thomas, and R. Houdré, “Refractive index sensing with an air-slot photonic crystal nanocavity,” Opt. Lett. 35, 2523–2525 (2010).
    [Crossref] [PubMed]
  25. A. D. Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009).
    [Crossref]
  26. S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12, 4403–4415 (2012).
    [Crossref] [PubMed]
  27. J. Voros, J. Ramsden, G. Csucs, I. Szendro, S. D. Paul, M. Textor, and N. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699–3710 (2002).
    [Crossref] [PubMed]
  28. W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B: Chem. 131, 279–284 (2008).
    [Crossref]
  29. H.-Y. Li, W.-C. Hsu, K.-C. Liu, Y.-L. Chen, L.-K. Chau, S. Hsieh, and W.-H. Hsieh, “A low cost, label-free biosensor based on a novel double-sided grating waveguide coupler with sub-surface cavities,” Sens. Actuators B: Chem. 206, 371–380 (2015).
    [Crossref]
  30. Y.-F. Ku, H.-Y. Li, W.-H. Hsieh, L.-K. Chau, and G.-E. Chang, “Enhanced sensitivity in injection-molded guided-mode-resonance sensors via low-index cavity layers,” Opt. Express 23, 14850–14859 (2015).
    [Crossref] [PubMed]
  31. Y.-C. Lin, W.-H. Hsieh, L.-K. Chau, and G.-E. Chang, “Intensity-detection-based guided-mode-resonance optofluidic biosensing system for rapid, low-cost, label-free detection,” Sens. Actuators B: Chem. 250, 659–666 (2017).
    [Crossref]
  32. S.-F. Lin, F.-C. Chang, Z.-H. Chen, C.-M. Wang, T.-H. Yang, W.-Y. Chen, and J.-Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors 14, 5198–5206 (2014).
    [Crossref] [PubMed]
  33. P. G. Hermannsson, K. T. Sørensen, C. Vannahme, C. L. Smith, J. J. Klein, M.-M. Russew, G. Grützner, and A. Kristensen, “All-polymer photonic crystal slab sensor,” Opt. Express 23, 16529–16539 (2015).
    [Crossref] [PubMed]
  34. S. L. Chuang, Physics of Photonic Devices (Wiley, 2009), 2nd ed.
  35. G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (Wiley, 2004).
    [Crossref]
  36. Y. Fu, T. Ye, W. Tang, and T. Chu, “Efficient adiabatic silicon-on-insulator waveguide taper,” Photon. Res. 2, A41–A44 (2014).
    [Crossref]
  37. A. N. Bashkatov and E. A. Genina, “Water Refractive Index in Dependence on Temperature and Wavelength: a Simple Approximation,” Proc. SPIE 5068, 393–395. (2003).
    [Crossref]

2017 (1)

Y.-C. Lin, W.-H. Hsieh, L.-K. Chau, and G.-E. Chang, “Intensity-detection-based guided-mode-resonance optofluidic biosensing system for rapid, low-cost, label-free detection,” Sens. Actuators B: Chem. 250, 659–666 (2017).
[Crossref]

2016 (5)

M. Puiu and C. Bala, “SPR and SPR imaging: Recent trends in developing nanodevices for detection and real-time monitoring of biomolecular events,” Sensors 16, 870 (2016).
[Crossref]

P. Singh, “SPR biosensors: Historical perspectives and current challenges,” Sens. Actuators B: Chem. 229, 110–130 (2016).
[Crossref]

C.-W. Wu, C.-Y. Chiang, C.-H. Chen, C.-S. Chiang, C.-T. Wang, and L.-K. Chau, “Self-referencing fiber optic particle plasmon resonance sensing system for real-time biological monitoring,” Talanta 146, 291–298 (2016).
[Crossref]

G. Liang, Z. Luo, K. Liu, Y. Wang, J. Dai, and Y. Duan, “Fiber optic surface plasmon resonance based biosensor technique: Fabrication, advancement, and application,” Crit. Rev. Anal. Chem. 46, 213–223 (2016).
[Crossref] [PubMed]

V. Toccafondo and C. J. Oton, “Robust and low-cost interrogation technique for integrated photonic biochemical sensors based on mach-zehnder interferometers,” Photon. Res. 4, 57–60 (2016).
[Crossref]

2015 (4)

Y.-F. Ku, H.-Y. Li, W.-H. Hsieh, L.-K. Chau, and G.-E. Chang, “Enhanced sensitivity in injection-molded guided-mode-resonance sensors via low-index cavity layers,” Opt. Express 23, 14850–14859 (2015).
[Crossref] [PubMed]

P. G. Hermannsson, K. T. Sørensen, C. Vannahme, C. L. Smith, J. J. Klein, M.-M. Russew, G. Grützner, and A. Kristensen, “All-polymer photonic crystal slab sensor,” Opt. Express 23, 16529–16539 (2015).
[Crossref] [PubMed]

H. H. Nguyen, J. Park, S. Kang, and M. Kim, “Surface plasmon resonance: A versatile technique for biosensor applications,” Sensors 15, 10481–10510 (2015).
[Crossref] [PubMed]

H.-Y. Li, W.-C. Hsu, K.-C. Liu, Y.-L. Chen, L.-K. Chau, S. Hsieh, and W.-H. Hsieh, “A low cost, label-free biosensor based on a novel double-sided grating waveguide coupler with sub-surface cavities,” Sens. Actuators B: Chem. 206, 371–380 (2015).
[Crossref]

2014 (2)

Y. Fu, T. Ye, W. Tang, and T. Chu, “Efficient adiabatic silicon-on-insulator waveguide taper,” Photon. Res. 2, A41–A44 (2014).
[Crossref]

S.-F. Lin, F.-C. Chang, Z.-H. Chen, C.-M. Wang, T.-H. Yang, W.-Y. Chen, and J.-Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors 14, 5198–5206 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (2)

S. Dante, D. Duval, B. Sepúlveda, A. B. González-Guerrero, J. R. Sendra, and L. M. Lechuga, “All-optical phase modulation for integrated interferometric biosensors,” Opt. Express 20, 7195–7205 (2012).
[Crossref] [PubMed]

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12, 4403–4415 (2012).
[Crossref] [PubMed]

2011 (5)

L. Malic, M. G. Sandros, and M. Tabrizian, “Designed biointerface using near-infrared quantum dots for ultrasensitive surface plasmon resonance imaging biosensors,” Anal. Chem. 83, 5222–5229 (2011).
[Crossref] [PubMed]

W.-T. Hsu, W.-H. Hsieh, S.-F. Cheng, C.-P. Jen, C.-C. Wu, C.-H. Li, C.-Y. Lee, W.-Y. Li, L.-K. Chau, C.-Y. Chiang, and S.-R. Lyu, “Integration of fiber optic-particle plasmon resonance biosensor with microfluidic chip,” Anal. Chim. Acta 697, 75–82 (2011).
[Crossref] [PubMed]

M. I. Lapsley, I.-K. Chiang, Y. B. Zheng, X. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic mach-zehnder interferometer for label-free detection,” Lab Chip 11, 1795–1800 (2011).
[Crossref] [PubMed]

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photon. 5, 598–604 (2011).
[Crossref]

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photon. 5, 591–597 (2011).
[Crossref]

2010 (3)

2009 (1)

A. D. Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009).
[Crossref]

2008 (2)

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B: Chem. 131, 279–284 (2008).
[Crossref]

D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid. Nanofluid. 4, 33–52 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (3)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref] [PubMed]

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88, 093513 (2006).
[Crossref]

L.-K. Chau, Y.-F. Lin, S.-F. Cheng, and T.-J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sens. Actuators B: Chem. 113, 100–105 (2006).
[Crossref]

2004 (1)

C. S. Burke, L. Polerecky, and B. D. MacCraith, “Design and fabrication of enhanced polymer waveguide platforms for absorption-based optical chemical sensors,” Meas. Sci. Technol. 15, 1140 (2004).
[Crossref]

2003 (1)

A. N. Bashkatov and E. A. Genina, “Water Refractive Index in Dependence on Temperature and Wavelength: a Simple Approximation,” Proc. SPIE 5068, 393–395. (2003).
[Crossref]

2002 (2)

J. Voros, J. Ramsden, G. Csucs, I. Szendro, S. D. Paul, M. Textor, and N. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699–3710 (2002).
[Crossref] [PubMed]

Z.-M. Qi, N. Matsuda, J. H. Santos, A. Takatsu, and K. Kato, “Prism-coupled multimode waveguide refractometer,” Opt. Lett. 27, 689–691 (2002).
[Crossref]

2000 (1)

Agarwal, A.

Aitchison, J. S.

Bahrami, F.

Bala, C.

M. Puiu and C. Bala, “SPR and SPR imaging: Recent trends in developing nanodevices for detection and real-time monitoring of biomolecular events,” Sensors 16, 870 (2016).
[Crossref]

Baldini, F.

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12, 4403–4415 (2012).
[Crossref] [PubMed]

Barillaro, G.

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12, 4403–4415 (2012).
[Crossref] [PubMed]

Bashkatov, A. N.

A. N. Bashkatov and E. A. Genina, “Water Refractive Index in Dependence on Temperature and Wavelength: a Simple Approximation,” Proc. SPIE 5068, 393–395. (2003).
[Crossref]

Block, I. D.

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B: Chem. 131, 279–284 (2008).
[Crossref]

Bog, U.

Burke, C. S.

C. S. Burke, L. Polerecky, and B. D. MacCraith, “Design and fabrication of enhanced polymer waveguide platforms for absorption-based optical chemical sensors,” Meas. Sci. Technol. 15, 1140 (2004).
[Crossref]

Carlie, N.

Carpignano, F.

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12, 4403–4415 (2012).
[Crossref] [PubMed]

Chang, F.-C.

S.-F. Lin, F.-C. Chang, Z.-H. Chen, C.-M. Wang, T.-H. Yang, W.-Y. Chen, and J.-Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors 14, 5198–5206 (2014).
[Crossref] [PubMed]

Chang, G.-E.

Y.-C. Lin, W.-H. Hsieh, L.-K. Chau, and G.-E. Chang, “Intensity-detection-based guided-mode-resonance optofluidic biosensing system for rapid, low-cost, label-free detection,” Sens. Actuators B: Chem. 250, 659–666 (2017).
[Crossref]

Y.-F. Ku, H.-Y. Li, W.-H. Hsieh, L.-K. Chau, and G.-E. Chang, “Enhanced sensitivity in injection-molded guided-mode-resonance sensors via low-index cavity layers,” Opt. Express 23, 14850–14859 (2015).
[Crossref] [PubMed]

Chang, J.-Y.

S.-F. Lin, F.-C. Chang, Z.-H. Chen, C.-M. Wang, T.-H. Yang, W.-Y. Chen, and J.-Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors 14, 5198–5206 (2014).
[Crossref] [PubMed]

Chau, L.-K.

Y.-C. Lin, W.-H. Hsieh, L.-K. Chau, and G.-E. Chang, “Intensity-detection-based guided-mode-resonance optofluidic biosensing system for rapid, low-cost, label-free detection,” Sens. Actuators B: Chem. 250, 659–666 (2017).
[Crossref]

C.-W. Wu, C.-Y. Chiang, C.-H. Chen, C.-S. Chiang, C.-T. Wang, and L.-K. Chau, “Self-referencing fiber optic particle plasmon resonance sensing system for real-time biological monitoring,” Talanta 146, 291–298 (2016).
[Crossref]

Y.-F. Ku, H.-Y. Li, W.-H. Hsieh, L.-K. Chau, and G.-E. Chang, “Enhanced sensitivity in injection-molded guided-mode-resonance sensors via low-index cavity layers,” Opt. Express 23, 14850–14859 (2015).
[Crossref] [PubMed]

H.-Y. Li, W.-C. Hsu, K.-C. Liu, Y.-L. Chen, L.-K. Chau, S. Hsieh, and W.-H. Hsieh, “A low cost, label-free biosensor based on a novel double-sided grating waveguide coupler with sub-surface cavities,” Sens. Actuators B: Chem. 206, 371–380 (2015).
[Crossref]

W.-T. Hsu, W.-H. Hsieh, S.-F. Cheng, C.-P. Jen, C.-C. Wu, C.-H. Li, C.-Y. Lee, W.-Y. Li, L.-K. Chau, C.-Y. Chiang, and S.-R. Lyu, “Integration of fiber optic-particle plasmon resonance biosensor with microfluidic chip,” Anal. Chim. Acta 697, 75–82 (2011).
[Crossref] [PubMed]

L.-K. Chau, Y.-F. Lin, S.-F. Cheng, and T.-J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sens. Actuators B: Chem. 113, 100–105 (2006).
[Crossref]

Chen, C.-H.

C.-W. Wu, C.-Y. Chiang, C.-H. Chen, C.-S. Chiang, C.-T. Wang, and L.-K. Chau, “Self-referencing fiber optic particle plasmon resonance sensing system for real-time biological monitoring,” Talanta 146, 291–298 (2016).
[Crossref]

Chen, W.-Y.

S.-F. Lin, F.-C. Chang, Z.-H. Chen, C.-M. Wang, T.-H. Yang, W.-Y. Chen, and J.-Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors 14, 5198–5206 (2014).
[Crossref] [PubMed]

Chen, Y.-L.

H.-Y. Li, W.-C. Hsu, K.-C. Liu, Y.-L. Chen, L.-K. Chau, S. Hsieh, and W.-H. Hsieh, “A low cost, label-free biosensor based on a novel double-sided grating waveguide coupler with sub-surface cavities,” Sens. Actuators B: Chem. 206, 371–380 (2015).
[Crossref]

Chen, Z.-H.

S.-F. Lin, F.-C. Chang, Z.-H. Chen, C.-M. Wang, T.-H. Yang, W.-Y. Chen, and J.-Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors 14, 5198–5206 (2014).
[Crossref] [PubMed]

Cheng, S.-F.

W.-T. Hsu, W.-H. Hsieh, S.-F. Cheng, C.-P. Jen, C.-C. Wu, C.-H. Li, C.-Y. Lee, W.-Y. Li, L.-K. Chau, C.-Y. Chiang, and S.-R. Lyu, “Integration of fiber optic-particle plasmon resonance biosensor with microfluidic chip,” Anal. Chim. Acta 697, 75–82 (2011).
[Crossref] [PubMed]

L.-K. Chau, Y.-F. Lin, S.-F. Cheng, and T.-J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sens. Actuators B: Chem. 113, 100–105 (2006).
[Crossref]

Chiang, C.-S.

C.-W. Wu, C.-Y. Chiang, C.-H. Chen, C.-S. Chiang, C.-T. Wang, and L.-K. Chau, “Self-referencing fiber optic particle plasmon resonance sensing system for real-time biological monitoring,” Talanta 146, 291–298 (2016).
[Crossref]

Chiang, C.-Y.

C.-W. Wu, C.-Y. Chiang, C.-H. Chen, C.-S. Chiang, C.-T. Wang, and L.-K. Chau, “Self-referencing fiber optic particle plasmon resonance sensing system for real-time biological monitoring,” Talanta 146, 291–298 (2016).
[Crossref]

W.-T. Hsu, W.-H. Hsieh, S.-F. Cheng, C.-P. Jen, C.-C. Wu, C.-H. Li, C.-Y. Lee, W.-Y. Li, L.-K. Chau, C.-Y. Chiang, and S.-R. Lyu, “Integration of fiber optic-particle plasmon resonance biosensor with microfluidic chip,” Anal. Chim. Acta 697, 75–82 (2011).
[Crossref] [PubMed]

Chiang, I.-K.

M. I. Lapsley, I.-K. Chiang, Y. B. Zheng, X. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic mach-zehnder interferometer for label-free detection,” Lab Chip 11, 1795–1800 (2011).
[Crossref] [PubMed]

Chu, T.

Chuang, S. L.

S. L. Chuang, Physics of Photonic Devices (Wiley, 2009), 2nd ed.

Cordovez, B.

D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid. Nanofluid. 4, 33–52 (2008).
[Crossref] [PubMed]

Cronin-Golomb, M.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88, 093513 (2006).
[Crossref]

Csucs, G.

J. Voros, J. Ramsden, G. Csucs, I. Szendro, S. D. Paul, M. Textor, and N. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699–3710 (2002).
[Crossref] [PubMed]

Cunningham, B. T.

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B: Chem. 131, 279–284 (2008).
[Crossref]

Dai, J.

G. Liang, Z. Luo, K. Liu, Y. Wang, J. Dai, and Y. Duan, “Fiber optic surface plasmon resonance based biosensor technique: Fabrication, advancement, and application,” Crit. Rev. Anal. Chem. 46, 213–223 (2016).
[Crossref] [PubMed]

Dante, S.

Diao, Z.

Ding, X.

M. I. Lapsley, I.-K. Chiang, Y. B. Zheng, X. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic mach-zehnder interferometer for label-free detection,” Lab Chip 11, 1795–1800 (2011).
[Crossref] [PubMed]

Domachuk, P.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88, 093513 (2006).
[Crossref]

Duan, Y.

G. Liang, Z. Luo, K. Liu, Y. Wang, J. Dai, and Y. Duan, “Fiber optic surface plasmon resonance based biosensor technique: Fabrication, advancement, and application,” Crit. Rev. Anal. Chem. 46, 213–223 (2016).
[Crossref] [PubMed]

Duval, D.

Eggleton, B. J.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88, 093513 (2006).
[Crossref]

Erickson, D.

D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid. Nanofluid. 4, 33–52 (2008).
[Crossref] [PubMed]

Falco, A. D.

A. D. Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009).
[Crossref]

Fan, X.

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photon. 5, 591–597 (2011).
[Crossref]

Fu, Y.

Ganesh, N.

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B: Chem. 131, 279–284 (2008).
[Crossref]

Genina, E. A.

A. N. Bashkatov and E. A. Genina, “Water Refractive Index in Dependence on Temperature and Wavelength: a Simple Approximation,” Proc. SPIE 5068, 393–395. (2003).
[Crossref]

Gerken, M.

Giannetti, A.

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12, 4403–4415 (2012).
[Crossref] [PubMed]

González-Guerrero, A. B.

Grützner, G.

Hawkins, A. R.

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photon. 5, 598–604 (2011).
[Crossref]

Hermannsson, P. G.

Houdré, R.

Hsieh, S.

H.-Y. Li, W.-C. Hsu, K.-C. Liu, Y.-L. Chen, L.-K. Chau, S. Hsieh, and W.-H. Hsieh, “A low cost, label-free biosensor based on a novel double-sided grating waveguide coupler with sub-surface cavities,” Sens. Actuators B: Chem. 206, 371–380 (2015).
[Crossref]

Hsieh, W.-H.

Y.-C. Lin, W.-H. Hsieh, L.-K. Chau, and G.-E. Chang, “Intensity-detection-based guided-mode-resonance optofluidic biosensing system for rapid, low-cost, label-free detection,” Sens. Actuators B: Chem. 250, 659–666 (2017).
[Crossref]

Y.-F. Ku, H.-Y. Li, W.-H. Hsieh, L.-K. Chau, and G.-E. Chang, “Enhanced sensitivity in injection-molded guided-mode-resonance sensors via low-index cavity layers,” Opt. Express 23, 14850–14859 (2015).
[Crossref] [PubMed]

H.-Y. Li, W.-C. Hsu, K.-C. Liu, Y.-L. Chen, L.-K. Chau, S. Hsieh, and W.-H. Hsieh, “A low cost, label-free biosensor based on a novel double-sided grating waveguide coupler with sub-surface cavities,” Sens. Actuators B: Chem. 206, 371–380 (2015).
[Crossref]

W.-T. Hsu, W.-H. Hsieh, S.-F. Cheng, C.-P. Jen, C.-C. Wu, C.-H. Li, C.-Y. Lee, W.-Y. Li, L.-K. Chau, C.-Y. Chiang, and S.-R. Lyu, “Integration of fiber optic-particle plasmon resonance biosensor with microfluidic chip,” Anal. Chim. Acta 697, 75–82 (2011).
[Crossref] [PubMed]

Hsu, W.-C.

H.-Y. Li, W.-C. Hsu, K.-C. Liu, Y.-L. Chen, L.-K. Chau, S. Hsieh, and W.-H. Hsieh, “A low cost, label-free biosensor based on a novel double-sided grating waveguide coupler with sub-surface cavities,” Sens. Actuators B: Chem. 206, 371–380 (2015).
[Crossref]

Hsu, W.-T.

W.-T. Hsu, W.-H. Hsieh, S.-F. Cheng, C.-P. Jen, C.-C. Wu, C.-H. Li, C.-Y. Lee, W.-Y. Li, L.-K. Chau, C.-Y. Chiang, and S.-R. Lyu, “Integration of fiber optic-particle plasmon resonance biosensor with microfluidic chip,” Anal. Chim. Acta 697, 75–82 (2011).
[Crossref] [PubMed]

Hu, J.

Huang, T. J.

M. I. Lapsley, I.-K. Chiang, Y. B. Zheng, X. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic mach-zehnder interferometer for label-free detection,” Lab Chip 11, 1795–1800 (2011).
[Crossref] [PubMed]

Jágerská, J.

Jen, C.-P.

W.-T. Hsu, W.-H. Hsieh, S.-F. Cheng, C.-P. Jen, C.-C. Wu, C.-H. Li, C.-Y. Lee, W.-Y. Li, L.-K. Chau, C.-Y. Chiang, and S.-R. Lyu, “Integration of fiber optic-particle plasmon resonance biosensor with microfluidic chip,” Anal. Chim. Acta 697, 75–82 (2011).
[Crossref] [PubMed]

Kang, S.

H. H. Nguyen, J. Park, S. Kang, and M. Kim, “Surface plasmon resonance: A versatile technique for biosensor applications,” Sensors 15, 10481–10510 (2015).
[Crossref] [PubMed]

Kato, K.

Kim, M.

H. H. Nguyen, J. Park, S. Kang, and M. Kim, “Surface plasmon resonance: A versatile technique for biosensor applications,” Sensors 15, 10481–10510 (2015).
[Crossref] [PubMed]

Kimerling, L.

Klein, J. J.

Knights, A. P.

G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (Wiley, 2004).
[Crossref]

Krauss, T. F.

A. D. Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009).
[Crossref]

Kristensen, A.

Ku, Y.-F.

Lapsley, M. I.

M. I. Lapsley, I.-K. Chiang, Y. B. Zheng, X. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic mach-zehnder interferometer for label-free detection,” Lab Chip 11, 1795–1800 (2011).
[Crossref] [PubMed]

Lechuga, L. M.

Lee, C.-Y.

W.-T. Hsu, W.-H. Hsieh, S.-F. Cheng, C.-P. Jen, C.-C. Wu, C.-H. Li, C.-Y. Lee, W.-Y. Li, L.-K. Chau, C.-Y. Chiang, and S.-R. Lyu, “Integration of fiber optic-particle plasmon resonance biosensor with microfluidic chip,” Anal. Chim. Acta 697, 75–82 (2011).
[Crossref] [PubMed]

Lemmer, U.

Li, C.-H.

W.-T. Hsu, W.-H. Hsieh, S.-F. Cheng, C.-P. Jen, C.-C. Wu, C.-H. Li, C.-Y. Lee, W.-Y. Li, L.-K. Chau, C.-Y. Chiang, and S.-R. Lyu, “Integration of fiber optic-particle plasmon resonance biosensor with microfluidic chip,” Anal. Chim. Acta 697, 75–82 (2011).
[Crossref] [PubMed]

Li, H.-Y.

Y.-F. Ku, H.-Y. Li, W.-H. Hsieh, L.-K. Chau, and G.-E. Chang, “Enhanced sensitivity in injection-molded guided-mode-resonance sensors via low-index cavity layers,” Opt. Express 23, 14850–14859 (2015).
[Crossref] [PubMed]

H.-Y. Li, W.-C. Hsu, K.-C. Liu, Y.-L. Chen, L.-K. Chau, S. Hsieh, and W.-H. Hsieh, “A low cost, label-free biosensor based on a novel double-sided grating waveguide coupler with sub-surface cavities,” Sens. Actuators B: Chem. 206, 371–380 (2015).
[Crossref]

Li, W.-Y.

W.-T. Hsu, W.-H. Hsieh, S.-F. Cheng, C.-P. Jen, C.-C. Wu, C.-H. Li, C.-Y. Lee, W.-Y. Li, L.-K. Chau, C.-Y. Chiang, and S.-R. Lyu, “Integration of fiber optic-particle plasmon resonance biosensor with microfluidic chip,” Anal. Chim. Acta 697, 75–82 (2011).
[Crossref] [PubMed]

Liang, G.

G. Liang, Z. Luo, K. Liu, Y. Wang, J. Dai, and Y. Duan, “Fiber optic surface plasmon resonance based biosensor technique: Fabrication, advancement, and application,” Crit. Rev. Anal. Chem. 46, 213–223 (2016).
[Crossref] [PubMed]

Lin, S.-F.

S.-F. Lin, F.-C. Chang, Z.-H. Chen, C.-M. Wang, T.-H. Yang, W.-Y. Chen, and J.-Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors 14, 5198–5206 (2014).
[Crossref] [PubMed]

Lin, T.-J.

L.-K. Chau, Y.-F. Lin, S.-F. Cheng, and T.-J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sens. Actuators B: Chem. 113, 100–105 (2006).
[Crossref]

Lin, Y.-C.

Y.-C. Lin, W.-H. Hsieh, L.-K. Chau, and G.-E. Chang, “Intensity-detection-based guided-mode-resonance optofluidic biosensing system for rapid, low-cost, label-free detection,” Sens. Actuators B: Chem. 250, 659–666 (2017).
[Crossref]

Lin, Y.-F.

L.-K. Chau, Y.-F. Lin, S.-F. Cheng, and T.-J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sens. Actuators B: Chem. 113, 100–105 (2006).
[Crossref]

Littler, I. C. M.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88, 093513 (2006).
[Crossref]

Liu, K.

G. Liang, Z. Luo, K. Liu, Y. Wang, J. Dai, and Y. Duan, “Fiber optic surface plasmon resonance based biosensor technique: Fabrication, advancement, and application,” Crit. Rev. Anal. Chem. 46, 213–223 (2016).
[Crossref] [PubMed]

Liu, K.-C.

H.-Y. Li, W.-C. Hsu, K.-C. Liu, Y.-L. Chen, L.-K. Chau, S. Hsieh, and W.-H. Hsieh, “A low cost, label-free biosensor based on a novel double-sided grating waveguide coupler with sub-surface cavities,” Sens. Actuators B: Chem. 206, 371–380 (2015).
[Crossref]

Luo, Z.

G. Liang, Z. Luo, K. Liu, Y. Wang, J. Dai, and Y. Duan, “Fiber optic surface plasmon resonance based biosensor technique: Fabrication, advancement, and application,” Crit. Rev. Anal. Chem. 46, 213–223 (2016).
[Crossref] [PubMed]

Lyu, S.-R.

W.-T. Hsu, W.-H. Hsieh, S.-F. Cheng, C.-P. Jen, C.-C. Wu, C.-H. Li, C.-Y. Lee, W.-Y. Li, L.-K. Chau, C.-Y. Chiang, and S.-R. Lyu, “Integration of fiber optic-particle plasmon resonance biosensor with microfluidic chip,” Anal. Chim. Acta 697, 75–82 (2011).
[Crossref] [PubMed]

MacCraith, B. D.

C. S. Burke, L. Polerecky, and B. D. MacCraith, “Design and fabrication of enhanced polymer waveguide platforms for absorption-based optical chemical sensors,” Meas. Sci. Technol. 15, 1140 (2004).
[Crossref]

Maisonneuve, M.

Malic, L.

L. Malic, M. G. Sandros, and M. Tabrizian, “Designed biointerface using near-infrared quantum dots for ultrasensitive surface plasmon resonance imaging biosensors,” Anal. Chem. 83, 5222–5229 (2011).
[Crossref] [PubMed]

Mandal, S.

D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid. Nanofluid. 4, 33–52 (2008).
[Crossref] [PubMed]

Mao, X.

M. I. Lapsley, I.-K. Chiang, Y. B. Zheng, X. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic mach-zehnder interferometer for label-free detection,” Lab Chip 11, 1795–1800 (2011).
[Crossref] [PubMed]

Mappes, T.

Matsuda, N.

Merlo, S.

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12, 4403–4415 (2012).
[Crossref] [PubMed]

Meunier, M.

Mojahedi, M.

Nazirizadeh, Y.

Nguyen, H. H.

H. H. Nguyen, J. Park, S. Kang, and M. Kim, “Surface plasmon resonance: A versatile technique for biosensor applications,” Sensors 15, 10481–10510 (2015).
[Crossref] [PubMed]

O’Faolain, L.

A. D. Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009).
[Crossref]

Okamoto, T.

Oton, C. J.

Park, J.

H. H. Nguyen, J. Park, S. Kang, and M. Kim, “Surface plasmon resonance: A versatile technique for biosensor applications,” Sensors 15, 10481–10510 (2015).
[Crossref] [PubMed]

Paul, S. D.

J. Voros, J. Ramsden, G. Csucs, I. Szendro, S. D. Paul, M. Textor, and N. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699–3710 (2002).
[Crossref] [PubMed]

Petit, L.

Polerecky, L.

C. S. Burke, L. Polerecky, and B. D. MacCraith, “Design and fabrication of enhanced polymer waveguide platforms for absorption-based optical chemical sensors,” Meas. Sci. Technol. 15, 1140 (2004).
[Crossref]

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref] [PubMed]

Puiu, M.

M. Puiu and C. Bala, “SPR and SPR imaging: Recent trends in developing nanodevices for detection and real-time monitoring of biomolecular events,” Sensors 16, 870 (2016).
[Crossref]

Qi, Z.-M.

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref] [PubMed]

Ramsden, J.

J. Voros, J. Ramsden, G. Csucs, I. Szendro, S. D. Paul, M. Textor, and N. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699–3710 (2002).
[Crossref] [PubMed]

Reed, G. T.

G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (Wiley, 2004).
[Crossref]

Richardson, K.

Robelek, R.

R. Robelek and J. Wegener, “Label-free and time-resolved measurements of cell volume changes by surface plasmon resonance (SPR) spectroscopy,” Biosens. Bioelectron. 25, 1221–1224 (2010).
[Crossref]

Russew, M.-M.

Sandros, M. G.

L. Malic, M. G. Sandros, and M. Tabrizian, “Designed biointerface using near-infrared quantum dots for ultrasensitive surface plasmon resonance imaging biosensors,” Anal. Chem. 83, 5222–5229 (2011).
[Crossref] [PubMed]

Santos, J. H.

Schmidt, H.

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photon. 5, 598–604 (2011).
[Crossref]

Sekula, S.

Sendra, J. R.

Sepúlveda, B.

Singh, P.

P. Singh, “SPR biosensors: Historical perspectives and current challenges,” Sens. Actuators B: Chem. 229, 110–130 (2016).
[Crossref]

Smith, C. L.

Sørensen, K. T.

Spencer, N.

J. Voros, J. Ramsden, G. Csucs, I. Szendro, S. D. Paul, M. Textor, and N. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699–3710 (2002).
[Crossref] [PubMed]

Strambini, L. M.

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12, 4403–4415 (2012).
[Crossref] [PubMed]

Surdo, S.

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12, 4403–4415 (2012).
[Crossref] [PubMed]

Szendro, I.

J. Voros, J. Ramsden, G. Csucs, I. Szendro, S. D. Paul, M. Textor, and N. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699–3710 (2002).
[Crossref] [PubMed]

Tabrizian, M.

L. Malic, M. G. Sandros, and M. Tabrizian, “Designed biointerface using near-infrared quantum dots for ultrasensitive surface plasmon resonance imaging biosensors,” Anal. Chem. 83, 5222–5229 (2011).
[Crossref] [PubMed]

Takatsu, A.

Tang, W.

Tarasov, V.

Textor, M.

J. Voros, J. Ramsden, G. Csucs, I. Szendro, S. D. Paul, M. Textor, and N. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699–3710 (2002).
[Crossref] [PubMed]

Thomas, N. L.

Toccafondo, V.

Trono, C.

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12, 4403–4415 (2012).
[Crossref] [PubMed]

Vannahme, C.

Voros, J.

J. Voros, J. Ramsden, G. Csucs, I. Szendro, S. D. Paul, M. Textor, and N. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699–3710 (2002).
[Crossref] [PubMed]

Wang, C.-M.

S.-F. Lin, F.-C. Chang, Z.-H. Chen, C.-M. Wang, T.-H. Yang, W.-Y. Chen, and J.-Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors 14, 5198–5206 (2014).
[Crossref] [PubMed]

Wang, C.-T.

C.-W. Wu, C.-Y. Chiang, C.-H. Chen, C.-S. Chiang, C.-T. Wang, and L.-K. Chau, “Self-referencing fiber optic particle plasmon resonance sensing system for real-time biological monitoring,” Talanta 146, 291–298 (2016).
[Crossref]

Wang, Y.

G. Liang, Z. Luo, K. Liu, Y. Wang, J. Dai, and Y. Duan, “Fiber optic surface plasmon resonance based biosensor technique: Fabrication, advancement, and application,” Crit. Rev. Anal. Chem. 46, 213–223 (2016).
[Crossref] [PubMed]

Wegener, J.

R. Robelek and J. Wegener, “Label-free and time-resolved measurements of cell volume changes by surface plasmon resonance (SPR) spectroscopy,” Biosens. Bioelectron. 25, 1221–1224 (2010).
[Crossref]

White, I. M.

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photon. 5, 591–597 (2011).
[Crossref]

Wu, C.-C.

W.-T. Hsu, W.-H. Hsieh, S.-F. Cheng, C.-P. Jen, C.-C. Wu, C.-H. Li, C.-Y. Lee, W.-Y. Li, L.-K. Chau, C.-Y. Chiang, and S.-R. Lyu, “Integration of fiber optic-particle plasmon resonance biosensor with microfluidic chip,” Anal. Chim. Acta 697, 75–82 (2011).
[Crossref] [PubMed]

Wu, C.-W.

C.-W. Wu, C.-Y. Chiang, C.-H. Chen, C.-S. Chiang, C.-T. Wang, and L.-K. Chau, “Self-referencing fiber optic particle plasmon resonance sensing system for real-time biological monitoring,” Talanta 146, 291–298 (2016).
[Crossref]

Yamaguchi, I.

Yamamoto, M.

Yang, A. H. J.

D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid. Nanofluid. 4, 33–52 (2008).
[Crossref] [PubMed]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref] [PubMed]

Yang, T.-H.

S.-F. Lin, F.-C. Chang, Z.-H. Chen, C.-M. Wang, T.-H. Yang, W.-Y. Chen, and J.-Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors 14, 5198–5206 (2014).
[Crossref] [PubMed]

Ye, T.

Zhang, H.

Zhang, W.

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B: Chem. 131, 279–284 (2008).
[Crossref]

Zheng, Y. B.

M. I. Lapsley, I.-K. Chiang, Y. B. Zheng, X. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic mach-zehnder interferometer for label-free detection,” Lab Chip 11, 1795–1800 (2011).
[Crossref] [PubMed]

Anal. Chem. (1)

L. Malic, M. G. Sandros, and M. Tabrizian, “Designed biointerface using near-infrared quantum dots for ultrasensitive surface plasmon resonance imaging biosensors,” Anal. Chem. 83, 5222–5229 (2011).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

W.-T. Hsu, W.-H. Hsieh, S.-F. Cheng, C.-P. Jen, C.-C. Wu, C.-H. Li, C.-Y. Lee, W.-Y. Li, L.-K. Chau, C.-Y. Chiang, and S.-R. Lyu, “Integration of fiber optic-particle plasmon resonance biosensor with microfluidic chip,” Anal. Chim. Acta 697, 75–82 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

A. D. Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009).
[Crossref]

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88, 093513 (2006).
[Crossref]

Biomaterials (1)

J. Voros, J. Ramsden, G. Csucs, I. Szendro, S. D. Paul, M. Textor, and N. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699–3710 (2002).
[Crossref] [PubMed]

Biosens. Bioelectron. (1)

R. Robelek and J. Wegener, “Label-free and time-resolved measurements of cell volume changes by surface plasmon resonance (SPR) spectroscopy,” Biosens. Bioelectron. 25, 1221–1224 (2010).
[Crossref]

Crit. Rev. Anal. Chem. (1)

G. Liang, Z. Luo, K. Liu, Y. Wang, J. Dai, and Y. Duan, “Fiber optic surface plasmon resonance based biosensor technique: Fabrication, advancement, and application,” Crit. Rev. Anal. Chem. 46, 213–223 (2016).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Lab Chip (2)

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12, 4403–4415 (2012).
[Crossref] [PubMed]

M. I. Lapsley, I.-K. Chiang, Y. B. Zheng, X. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic mach-zehnder interferometer for label-free detection,” Lab Chip 11, 1795–1800 (2011).
[Crossref] [PubMed]

Meas. Sci. Technol. (1)

C. S. Burke, L. Polerecky, and B. D. MacCraith, “Design and fabrication of enhanced polymer waveguide platforms for absorption-based optical chemical sensors,” Meas. Sci. Technol. 15, 1140 (2004).
[Crossref]

Microfluid. Nanofluid. (1)

D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid. Nanofluid. 4, 33–52 (2008).
[Crossref] [PubMed]

Nat. Photon. (2)

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photon. 5, 598–604 (2011).
[Crossref]

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photon. 5, 591–597 (2011).
[Crossref]

Nature (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (2)

Photon. Res. (2)

Proc. SPIE (1)

A. N. Bashkatov and E. A. Genina, “Water Refractive Index in Dependence on Temperature and Wavelength: a Simple Approximation,” Proc. SPIE 5068, 393–395. (2003).
[Crossref]

Sens. Actuators B: Chem. (5)

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B: Chem. 131, 279–284 (2008).
[Crossref]

H.-Y. Li, W.-C. Hsu, K.-C. Liu, Y.-L. Chen, L.-K. Chau, S. Hsieh, and W.-H. Hsieh, “A low cost, label-free biosensor based on a novel double-sided grating waveguide coupler with sub-surface cavities,” Sens. Actuators B: Chem. 206, 371–380 (2015).
[Crossref]

Y.-C. Lin, W.-H. Hsieh, L.-K. Chau, and G.-E. Chang, “Intensity-detection-based guided-mode-resonance optofluidic biosensing system for rapid, low-cost, label-free detection,” Sens. Actuators B: Chem. 250, 659–666 (2017).
[Crossref]

L.-K. Chau, Y.-F. Lin, S.-F. Cheng, and T.-J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sens. Actuators B: Chem. 113, 100–105 (2006).
[Crossref]

P. Singh, “SPR biosensors: Historical perspectives and current challenges,” Sens. Actuators B: Chem. 229, 110–130 (2016).
[Crossref]

Sensors (3)

M. Puiu and C. Bala, “SPR and SPR imaging: Recent trends in developing nanodevices for detection and real-time monitoring of biomolecular events,” Sensors 16, 870 (2016).
[Crossref]

H. H. Nguyen, J. Park, S. Kang, and M. Kim, “Surface plasmon resonance: A versatile technique for biosensor applications,” Sensors 15, 10481–10510 (2015).
[Crossref] [PubMed]

S.-F. Lin, F.-C. Chang, Z.-H. Chen, C.-M. Wang, T.-H. Yang, W.-Y. Chen, and J.-Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors 14, 5198–5206 (2014).
[Crossref] [PubMed]

Talanta (1)

C.-W. Wu, C.-Y. Chiang, C.-H. Chen, C.-S. Chiang, C.-T. Wang, and L.-K. Chau, “Self-referencing fiber optic particle plasmon resonance sensing system for real-time biological monitoring,” Talanta 146, 291–298 (2016).
[Crossref]

Other (2)

S. L. Chuang, Physics of Photonic Devices (Wiley, 2009), 2nd ed.

G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (Wiley, 2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematics of the proposed optofluidic waveguide refractive-index sensor, consisting of a tapered waveguide structure, bent waveguide sensing region, an output straight waveguide section, and microfluidic module.
Fig. 2
Fig. 2 Fabrication processes of the optofluidic waveguide refractive-index sensors integrated with microfluidic module.
Fig. 3
Fig. 3 Characterization of the polymer waveguide refractive-index sensors. (a) Measured topography of the SU8 straight waveguide structure, exhibiting a sharp and clear ridge structure. (b) Surface morphology of the waveguide along the X-direction, showing a flat surface of the SU-8 ridge waveguide. (c) Optical image of the SU-8 straight waveguide coupled with green light source, showing clear waveguiding behavior. (d) Optical image of the fabricated sensor chip.
Fig. 4
Fig. 4 Schematic of the transmission measurement system for the fabricated optofluidic waveguide refractive-index sensors.
Fig. 5
Fig. 5 (a) Real-time responses of the sensing system for solutions with different refractive indices (RIs). The inset shows the emission spectrum of the LED light source. (b) Calibration curves of the normalized average intensities and the RI of the sample solutions. The mean values and error bars (represents the standard deviation) are obtained from six experiments using three different RI sensor chips.
Fig. 6
Fig. 6 (a) Simulated intensity distribution of the fundamental mode for the waveguide structure with w = 10 µm and t = 24 µm, clearly showing optical confinement of light. (b) Simulated normalized field distribution of the bent ridge waveguide structures for different bending angles. The waveguide width and thickness are w = 1 µm and t = 24 µm, respectively.
Fig. 7
Fig. 7 (a) Calculated transmittances and (b) normalized transmittances as a function of refractive index of the solution for the bent ridge waveguide structure with different bending angles. (c) Calculated normalized sensitivity as a function of waveguide width and bending angle. The normalized sensitivity is more pronounced for narrow waveguide width and larger bending angle.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S n = d d n [ I avg ( n ) I 0 ]
R s = | σ S n |
T ( n ) = I out ( n ) I in
S n = d d n [ T ( n ) T 0 ]
n ( λ ) = 1.3199 + 6878 λ 2 1.132 × 10 9 λ 4 + 1.11 × 10 14 λ 6

Metrics