Abstract

A sliding sensor based on a fiber Bragg grating (FBG) was proposed to enable mechanical fingers to softly grasp an object. FBG strain sensors are embedded in a polymeric material as a sensing element to obtain sliding information. This study expounded the structural design of the sliding sensor and the mechanism of sliding sensation, which were verified using the finite element simulation. The static and dynamic performances of the sliding sensor were studied experimentally. Finally, the sensing signals were processed using fuzzy logic. Results show that the FBG sliding sensor with a simple structure has high sensitivity and can reliably detect the contact state of the target object, thereby providing a design scheme for the study of the sliding sense of mechanical fingers.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fiber Bragg grating-based sensor for torque and angle measurement in a series elastic actuator’s spring

Manuel R. A. Sanchez, Arnaldo G. Leal-Junior, Marcelo V. Segatto, Carlos Marques, Wilian M. dos Santos, Adriano A. G. Siqueira, and Anselmo Frizera
Appl. Opt. 57(27) 7883-7890 (2018)

Shear stress sensing with Bragg grating-based sensors in microstructured optical fibers

Sanne Sulejmani, Camille Sonnenfeld, Thomas Geernaert, Geert Luyckx, Danny Van Hemelrijck, Pawel Mergo, Waclaw Urbanczyk, Karima Chah, Christophe Caucheteur, Patrice Mégret, Hugo Thienpont, and Francis Berghmans
Opt. Express 21(17) 20404-20416 (2013)

Interrogation unit for fiber Bragg grating sensors that uses a slanted fiber grating

César Jáuregui, Antonio Quintela, and José Miguel López-Higuera
Opt. Lett. 29(7) 676-678 (2004)

References

  • View by:
  • |
  • |
  • |

  1. M. L. Hammock, A. Chortos, B. C. Tee, J. B. Tok, and Z. Bao, “25th anniversary article: the evolution of electronic skin (E-skin): A brief history, design considerations, and recent progress,” Adv. Mater. 25(42), 5997–6038 (2013).
    [PubMed]
  2. D. Goeger, N. Ecker, and H. Woern, “Tactile sensor and algorithm to detect slip in robot grasping processes,” in IEEE International Conference on Robotics and Biomimetics (IEEE, 2009), pp. 1480–1485.
  3. D. P. J. Cotton, P. H. Chappell, A. Cranny, N. M. White, and S. P. Beeby, “A novel thick- film piezoelectric slip sensor for a prosthetic hand,” IEEE Sens. J. 7, 752–761 (2007).
  4. K. Xi, Y. Wang, G. Mei, G. Liang, and Z. Chen, “A flexible tactile sensor array based on pressure conductive rubber for three- axis force and slip detection,” in IEEE International Conference on Advanced Intelligent Mechatronics 2015, (IEEE, 2015) pp. 464–469.
  5. C. Berger, “Optical sensor for velocity and slip measurement of automobile belt drives,” in Proceeding of IEEE 2002, (IEEE 2002) pp. 823–828.
  6. S. Kosaka, M. Nakajima, T. Fukuda, and H. Matsuura, “Slipping detection with integrated piezoelectric vibration tactile sensors,” in IEEE/SICE International Symposium on System Integration (IEEE, 2008), pp. 111–116.
  7. D. C. Xu and X. H. Guo, “Design and application of capacitive slip sensor,” Transduc.Microsyst. Technol. 34, 85–88 (2015).
  8. L. B. Yuan and Y. J. Liang, “Fiber optic sliding sensing system,” Chinese J. Sci. Instr. 20, 575–577 (1999).
  9. H. Wei, C. Tao, Y. Zhu, and S. Krishnaswamy, “Fiber Bragg grating dynamic strain sensor using an adaptive reflective semiconductor optical amplifier source,” Appl. Opt. 55(10), 2752–2759 (2016).
    [PubMed]
  10. D. Ganziy, B. Rose, and O. Bang, “Performance of low-cost few-mode fiber Bragg grating sensor systems: polarization sensitivity and linearity of temperature and strain response,” Appl. Opt. 55(23), 6156–6161 (2016).
    [PubMed]
  11. H. Li, L. Zhu, M. Dong, X. Lou, and Y. Guo, “Analysis on strain transfer of surface-bonding FBG on AI 7075-T6 alloy host,” Optik (Stuttg.) 127, 1233–1236 (2016).
  12. S. C. Tjin, R. Suresh, and N. Q. Ngo, “Fiber Bragg grating based shear-force sensor: modeling and testing,” J. Lightwave Technol. 22, 1728–1733 (2004).
  13. Z. Z. Luo and J. C. Yang, “The fuzzy processing of slip signal for an artificial- skin,” J. Transcl. Technol (1998).
  14. A. W. Zhang, “Statistical analysis of fuzzy linear regression model based on centroid method,” Fuzzy Syst. Math. 7, 579–586 (2016).
  15. M. J. Gangeh, M. Hanmandlu, and M. Bister, “A fuzzy-based texture analysis for tissue characterization of diffused liver diseases on B-scan images,” Biomed. Sci. Instrum. 38, 369–374 (2002).
    [PubMed]

2016 (4)

H. Wei, C. Tao, Y. Zhu, and S. Krishnaswamy, “Fiber Bragg grating dynamic strain sensor using an adaptive reflective semiconductor optical amplifier source,” Appl. Opt. 55(10), 2752–2759 (2016).
[PubMed]

D. Ganziy, B. Rose, and O. Bang, “Performance of low-cost few-mode fiber Bragg grating sensor systems: polarization sensitivity and linearity of temperature and strain response,” Appl. Opt. 55(23), 6156–6161 (2016).
[PubMed]

H. Li, L. Zhu, M. Dong, X. Lou, and Y. Guo, “Analysis on strain transfer of surface-bonding FBG on AI 7075-T6 alloy host,” Optik (Stuttg.) 127, 1233–1236 (2016).

A. W. Zhang, “Statistical analysis of fuzzy linear regression model based on centroid method,” Fuzzy Syst. Math. 7, 579–586 (2016).

2015 (1)

D. C. Xu and X. H. Guo, “Design and application of capacitive slip sensor,” Transduc.Microsyst. Technol. 34, 85–88 (2015).

2013 (1)

M. L. Hammock, A. Chortos, B. C. Tee, J. B. Tok, and Z. Bao, “25th anniversary article: the evolution of electronic skin (E-skin): A brief history, design considerations, and recent progress,” Adv. Mater. 25(42), 5997–6038 (2013).
[PubMed]

2007 (1)

D. P. J. Cotton, P. H. Chappell, A. Cranny, N. M. White, and S. P. Beeby, “A novel thick- film piezoelectric slip sensor for a prosthetic hand,” IEEE Sens. J. 7, 752–761 (2007).

2004 (1)

2002 (1)

M. J. Gangeh, M. Hanmandlu, and M. Bister, “A fuzzy-based texture analysis for tissue characterization of diffused liver diseases on B-scan images,” Biomed. Sci. Instrum. 38, 369–374 (2002).
[PubMed]

1999 (1)

L. B. Yuan and Y. J. Liang, “Fiber optic sliding sensing system,” Chinese J. Sci. Instr. 20, 575–577 (1999).

Bang, O.

Bao, Z.

M. L. Hammock, A. Chortos, B. C. Tee, J. B. Tok, and Z. Bao, “25th anniversary article: the evolution of electronic skin (E-skin): A brief history, design considerations, and recent progress,” Adv. Mater. 25(42), 5997–6038 (2013).
[PubMed]

Beeby, S. P.

D. P. J. Cotton, P. H. Chappell, A. Cranny, N. M. White, and S. P. Beeby, “A novel thick- film piezoelectric slip sensor for a prosthetic hand,” IEEE Sens. J. 7, 752–761 (2007).

Bister, M.

M. J. Gangeh, M. Hanmandlu, and M. Bister, “A fuzzy-based texture analysis for tissue characterization of diffused liver diseases on B-scan images,” Biomed. Sci. Instrum. 38, 369–374 (2002).
[PubMed]

Chappell, P. H.

D. P. J. Cotton, P. H. Chappell, A. Cranny, N. M. White, and S. P. Beeby, “A novel thick- film piezoelectric slip sensor for a prosthetic hand,” IEEE Sens. J. 7, 752–761 (2007).

Chen, Z.

K. Xi, Y. Wang, G. Mei, G. Liang, and Z. Chen, “A flexible tactile sensor array based on pressure conductive rubber for three- axis force and slip detection,” in IEEE International Conference on Advanced Intelligent Mechatronics 2015, (IEEE, 2015) pp. 464–469.

Chortos, A.

M. L. Hammock, A. Chortos, B. C. Tee, J. B. Tok, and Z. Bao, “25th anniversary article: the evolution of electronic skin (E-skin): A brief history, design considerations, and recent progress,” Adv. Mater. 25(42), 5997–6038 (2013).
[PubMed]

Cotton, D. P. J.

D. P. J. Cotton, P. H. Chappell, A. Cranny, N. M. White, and S. P. Beeby, “A novel thick- film piezoelectric slip sensor for a prosthetic hand,” IEEE Sens. J. 7, 752–761 (2007).

Cranny, A.

D. P. J. Cotton, P. H. Chappell, A. Cranny, N. M. White, and S. P. Beeby, “A novel thick- film piezoelectric slip sensor for a prosthetic hand,” IEEE Sens. J. 7, 752–761 (2007).

Dong, M.

H. Li, L. Zhu, M. Dong, X. Lou, and Y. Guo, “Analysis on strain transfer of surface-bonding FBG on AI 7075-T6 alloy host,” Optik (Stuttg.) 127, 1233–1236 (2016).

Ecker, N.

D. Goeger, N. Ecker, and H. Woern, “Tactile sensor and algorithm to detect slip in robot grasping processes,” in IEEE International Conference on Robotics and Biomimetics (IEEE, 2009), pp. 1480–1485.

Fukuda, T.

S. Kosaka, M. Nakajima, T. Fukuda, and H. Matsuura, “Slipping detection with integrated piezoelectric vibration tactile sensors,” in IEEE/SICE International Symposium on System Integration (IEEE, 2008), pp. 111–116.

Gangeh, M. J.

M. J. Gangeh, M. Hanmandlu, and M. Bister, “A fuzzy-based texture analysis for tissue characterization of diffused liver diseases on B-scan images,” Biomed. Sci. Instrum. 38, 369–374 (2002).
[PubMed]

Ganziy, D.

Goeger, D.

D. Goeger, N. Ecker, and H. Woern, “Tactile sensor and algorithm to detect slip in robot grasping processes,” in IEEE International Conference on Robotics and Biomimetics (IEEE, 2009), pp. 1480–1485.

Guo, X. H.

D. C. Xu and X. H. Guo, “Design and application of capacitive slip sensor,” Transduc.Microsyst. Technol. 34, 85–88 (2015).

Guo, Y.

H. Li, L. Zhu, M. Dong, X. Lou, and Y. Guo, “Analysis on strain transfer of surface-bonding FBG on AI 7075-T6 alloy host,” Optik (Stuttg.) 127, 1233–1236 (2016).

Hammock, M. L.

M. L. Hammock, A. Chortos, B. C. Tee, J. B. Tok, and Z. Bao, “25th anniversary article: the evolution of electronic skin (E-skin): A brief history, design considerations, and recent progress,” Adv. Mater. 25(42), 5997–6038 (2013).
[PubMed]

Hanmandlu, M.

M. J. Gangeh, M. Hanmandlu, and M. Bister, “A fuzzy-based texture analysis for tissue characterization of diffused liver diseases on B-scan images,” Biomed. Sci. Instrum. 38, 369–374 (2002).
[PubMed]

Kosaka, S.

S. Kosaka, M. Nakajima, T. Fukuda, and H. Matsuura, “Slipping detection with integrated piezoelectric vibration tactile sensors,” in IEEE/SICE International Symposium on System Integration (IEEE, 2008), pp. 111–116.

Krishnaswamy, S.

Li, H.

H. Li, L. Zhu, M. Dong, X. Lou, and Y. Guo, “Analysis on strain transfer of surface-bonding FBG on AI 7075-T6 alloy host,” Optik (Stuttg.) 127, 1233–1236 (2016).

Liang, G.

K. Xi, Y. Wang, G. Mei, G. Liang, and Z. Chen, “A flexible tactile sensor array based on pressure conductive rubber for three- axis force and slip detection,” in IEEE International Conference on Advanced Intelligent Mechatronics 2015, (IEEE, 2015) pp. 464–469.

Liang, Y. J.

L. B. Yuan and Y. J. Liang, “Fiber optic sliding sensing system,” Chinese J. Sci. Instr. 20, 575–577 (1999).

Lou, X.

H. Li, L. Zhu, M. Dong, X. Lou, and Y. Guo, “Analysis on strain transfer of surface-bonding FBG on AI 7075-T6 alloy host,” Optik (Stuttg.) 127, 1233–1236 (2016).

Matsuura, H.

S. Kosaka, M. Nakajima, T. Fukuda, and H. Matsuura, “Slipping detection with integrated piezoelectric vibration tactile sensors,” in IEEE/SICE International Symposium on System Integration (IEEE, 2008), pp. 111–116.

Mei, G.

K. Xi, Y. Wang, G. Mei, G. Liang, and Z. Chen, “A flexible tactile sensor array based on pressure conductive rubber for three- axis force and slip detection,” in IEEE International Conference on Advanced Intelligent Mechatronics 2015, (IEEE, 2015) pp. 464–469.

Nakajima, M.

S. Kosaka, M. Nakajima, T. Fukuda, and H. Matsuura, “Slipping detection with integrated piezoelectric vibration tactile sensors,” in IEEE/SICE International Symposium on System Integration (IEEE, 2008), pp. 111–116.

Ngo, N. Q.

Rose, B.

Suresh, R.

Tao, C.

Tee, B. C.

M. L. Hammock, A. Chortos, B. C. Tee, J. B. Tok, and Z. Bao, “25th anniversary article: the evolution of electronic skin (E-skin): A brief history, design considerations, and recent progress,” Adv. Mater. 25(42), 5997–6038 (2013).
[PubMed]

Tjin, S. C.

Tok, J. B.

M. L. Hammock, A. Chortos, B. C. Tee, J. B. Tok, and Z. Bao, “25th anniversary article: the evolution of electronic skin (E-skin): A brief history, design considerations, and recent progress,” Adv. Mater. 25(42), 5997–6038 (2013).
[PubMed]

Wang, Y.

K. Xi, Y. Wang, G. Mei, G. Liang, and Z. Chen, “A flexible tactile sensor array based on pressure conductive rubber for three- axis force and slip detection,” in IEEE International Conference on Advanced Intelligent Mechatronics 2015, (IEEE, 2015) pp. 464–469.

Wei, H.

White, N. M.

D. P. J. Cotton, P. H. Chappell, A. Cranny, N. M. White, and S. P. Beeby, “A novel thick- film piezoelectric slip sensor for a prosthetic hand,” IEEE Sens. J. 7, 752–761 (2007).

Woern, H.

D. Goeger, N. Ecker, and H. Woern, “Tactile sensor and algorithm to detect slip in robot grasping processes,” in IEEE International Conference on Robotics and Biomimetics (IEEE, 2009), pp. 1480–1485.

Xi, K.

K. Xi, Y. Wang, G. Mei, G. Liang, and Z. Chen, “A flexible tactile sensor array based on pressure conductive rubber for three- axis force and slip detection,” in IEEE International Conference on Advanced Intelligent Mechatronics 2015, (IEEE, 2015) pp. 464–469.

Xu, D. C.

D. C. Xu and X. H. Guo, “Design and application of capacitive slip sensor,” Transduc.Microsyst. Technol. 34, 85–88 (2015).

Yuan, L. B.

L. B. Yuan and Y. J. Liang, “Fiber optic sliding sensing system,” Chinese J. Sci. Instr. 20, 575–577 (1999).

Zhang, A. W.

A. W. Zhang, “Statistical analysis of fuzzy linear regression model based on centroid method,” Fuzzy Syst. Math. 7, 579–586 (2016).

Zhu, L.

H. Li, L. Zhu, M. Dong, X. Lou, and Y. Guo, “Analysis on strain transfer of surface-bonding FBG on AI 7075-T6 alloy host,” Optik (Stuttg.) 127, 1233–1236 (2016).

Zhu, Y.

Adv. Mater. (1)

M. L. Hammock, A. Chortos, B. C. Tee, J. B. Tok, and Z. Bao, “25th anniversary article: the evolution of electronic skin (E-skin): A brief history, design considerations, and recent progress,” Adv. Mater. 25(42), 5997–6038 (2013).
[PubMed]

Appl. Opt. (2)

Biomed. Sci. Instrum. (1)

M. J. Gangeh, M. Hanmandlu, and M. Bister, “A fuzzy-based texture analysis for tissue characterization of diffused liver diseases on B-scan images,” Biomed. Sci. Instrum. 38, 369–374 (2002).
[PubMed]

Chinese J. Sci. Instr. (1)

L. B. Yuan and Y. J. Liang, “Fiber optic sliding sensing system,” Chinese J. Sci. Instr. 20, 575–577 (1999).

Fuzzy Syst. Math. (1)

A. W. Zhang, “Statistical analysis of fuzzy linear regression model based on centroid method,” Fuzzy Syst. Math. 7, 579–586 (2016).

IEEE Sens. J. (1)

D. P. J. Cotton, P. H. Chappell, A. Cranny, N. M. White, and S. P. Beeby, “A novel thick- film piezoelectric slip sensor for a prosthetic hand,” IEEE Sens. J. 7, 752–761 (2007).

J. Lightwave Technol. (1)

Optik (Stuttg.) (1)

H. Li, L. Zhu, M. Dong, X. Lou, and Y. Guo, “Analysis on strain transfer of surface-bonding FBG on AI 7075-T6 alloy host,” Optik (Stuttg.) 127, 1233–1236 (2016).

Transduc.Microsyst. Technol. (1)

D. C. Xu and X. H. Guo, “Design and application of capacitive slip sensor,” Transduc.Microsyst. Technol. 34, 85–88 (2015).

Other (5)

D. Goeger, N. Ecker, and H. Woern, “Tactile sensor and algorithm to detect slip in robot grasping processes,” in IEEE International Conference on Robotics and Biomimetics (IEEE, 2009), pp. 1480–1485.

K. Xi, Y. Wang, G. Mei, G. Liang, and Z. Chen, “A flexible tactile sensor array based on pressure conductive rubber for three- axis force and slip detection,” in IEEE International Conference on Advanced Intelligent Mechatronics 2015, (IEEE, 2015) pp. 464–469.

C. Berger, “Optical sensor for velocity and slip measurement of automobile belt drives,” in Proceeding of IEEE 2002, (IEEE 2002) pp. 823–828.

S. Kosaka, M. Nakajima, T. Fukuda, and H. Matsuura, “Slipping detection with integrated piezoelectric vibration tactile sensors,” in IEEE/SICE International Symposium on System Integration (IEEE, 2008), pp. 111–116.

Z. Z. Luo and J. C. Yang, “The fuzzy processing of slip signal for an artificial- skin,” J. Transcl. Technol (1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Theoretical model of shear force sensing.
Fig. 2
Fig. 2 Schematic showing sensor construction: (a) 3D, (b) cross-sectional view.
Fig. 3
Fig. 3 Simulation results of the FBG slip sensor under x-axis positive shear force: (a) 3D view and (b) Sectional drawing of y-axis.
Fig. 4
Fig. 4 Influence of different embedded thicknesses.
Fig. 5
Fig. 5 Influence of different FBG lengths.
Fig. 6
Fig. 6 Influence of different embedding angles.
Fig. 7
Fig. 7 Experimental setup.
Fig. 8
Fig. 8 Wavelength-shift of FBGs when fx is loaded.
Fig. 9
Fig. 9 Wavelength-shift of FBGs when fy is loaded.
Fig. 10
Fig. 10 Sectional view of slide sensing array (1 × 2).
Fig. 11
Fig. 11 Slip response curves of FBG1.
Fig. 12
Fig. 12 Change in wavelength of FBG1–FBG3 for a small friction coefficient: (a) slow slip and (b) fast slip.
Fig. 13
Fig. 13 Change in wavelength of FBG1–FBG3 for a large friction coefficient: (a) slow slip and (b) fast slip.
Fig. 14
Fig. 14 Membership function: (a) pressure (Fz), (b) variance of the sliding signal (V’) and (c) opening or closing angle of mechanical fingers (θ) .

Tables (2)

Tables Icon

Table 1 Contact and Slide Signal Variance of Different Materials

Tables Icon

Table 2 Rules of Fuzzy Control: Output U

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Δ λ B λ B =( 1 P e ) ε z
γ= τ G
γ= Δl b
Δl b = F x hlG
G= E m 2( 1+ν m )
Δl= F x k m
k m = hl E m 2b( 1+ν m )
Δ l d =Δlcosθ= F x cosθ k m
ε= Δ l d l 2 + b 2 = F x cosθ k m l 2 + b 2
U=( SA and SC )

Metrics