Abstract

The ink-jet technique was developed to print the wedge polymer microdisk lasers. The characterization of these lasers was implemented using a free-space optics measurement setup. It was found that disks of larger edge inclination angles have a larger free spectral range (FSR) and a lower resonance wavelength difference between the fundamental transverse electric (TE) and transverse magnetic (TM) whispering-gallery modes (WGMs). This behavior was also confirmed with simulations based on the modified Oxborrow’s model with perfectly matched layers (PMLs), which was adopted to accurately calculate the eigenfrequencies, electric field distributions, and quality parameters of modes in the axisymmetric microdisk resonators. Combined with the nearly equivalent quality factor (Q-factor) and finesse factor (F-factor) variations, the correlations between the TE and left adjacent TM modes were theoretically demonstrated. When the edge inclination angle is varied, the distinguishable mode distribution facilitates the precise estimation of a resonance wavelength shift. Therefore, the flexible and efficient nature of wedge polymer microdisk lasers extends their potential applications in precision sensing technology.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Comparison of various excitation and detection schemes for dye-doped polymeric whispering gallery mode micro-lasers

Tobias Siegle, Jonas Kellerer, Marielle Bonenberger, Sarah Krämmer, Carolin Klusmann, Marius Müller, and Heinz Kalt
Opt. Express 26(3) 3579-3593 (2018)

Broad tuning of whispering-gallery modes in silicon microdisks

Jeffrey M. Shainline, Gustavo Fernandes, Zhijun Liu, and Jimmy Xu
Opt. Express 18(14) 14345-14352 (2010)

Whispering-gallery mode lasing from optically free-standing InGaN microdisks

Xuhui Zhang, Yuk Fai Cheung, Yiyun Zhang, and H. W. Choi
Opt. Lett. 39(19) 5614-5617 (2014)

References

  • View by:
  • |
  • |
  • |

  1. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
    [PubMed]
  2. M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99(7), 073701 (2011).
  3. C. Zhang, T. Ling, S. L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1(11), 1093–1098 (2014).
  4. B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. X. Xiao, and Q. H. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
  5. L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).
  6. T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
  7. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
    [PubMed]
  8. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
  9. S. Krämmer, S. Rastjoo, T. Siegle, S. F. Wondimu, C. Klusmann, C. Koos, and H. Kalt, “Size-optimized polymeric whispering gallery mode lasers with enhanced sensing performance,” Opt. Express 25(7), 7884–7894 (2017).
    [PubMed]
  10. B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
  11. H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346(6212), 975–978 (2014).
    [PubMed]
  12. J. Yang and L. J. Guo, “Optical sensors based on active microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 143–147 (2006).
  13. L. He, S. K. Ozdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. Appl. 82(5), 053810 (2010).
  14. T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).
  15. H. Yoshioka, T. Ota, C. Chen, S. Ryu, K. Yasui, and Y. Oki, “Extreme ultra-low lasing threshold of full-polymeric fundamental microdisk printed with room-temperature atmospheric ink-jet technique,” Sci. Rep. 5, 10623 (2015).
    [PubMed]
  16. R. Schilling, H. Schütz, A. H. Ghadimi, V. Sudhir, D. J. Wilson, and T. J. Kippenberg, “Near-field integration of a SiN nanobeam and a SiO2 microcavity for heisenberg-limited displacement sensing,” Phys. Rev. Appl. 5(5), 054019 (2016).
  17. E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
    [PubMed]
  18. Y. Y. Lu, T. F. Shi, L. J. An, and Z. G. Wang, “Intrinsic viscosity of polymers: from linear chains to dendrimers,” EPL 97(6), 64003 (2012).
  19. H. Yoshioka, C. Chen, S. Ryu, J. Li, M. Ozawa, and Y. Oki, “Ultra-low threshold lasing at 0.8 µm from organic cavity by the ink-jet printing method,” in Conference on Lasers and Electro-Optics, 2016 OSA Technical Digest (Optical Society of America, 2016), paper JTh2A.81.
  20. M. Oxborrow, “How to simulate the whispering-gallery modes of dielectric microresonators in FEMLAB/COMSOL,” Proc. SPIE 6452, 64520J (2007).
  21. M. I. Cheema and A. G. Kirk, “Accurate determination of the quality factor and tunneling distance of axisymmetric resonators for biosensing applications,” Opt. Express 21(7), 8724–8735 (2013).
    [PubMed]
  22. D. Gandolfi, F. Ramiro-Manzano, F. J. Rebollo, M. Ghulinyan, G. Pucker, and L. Pavesi, “Role of edge inclination in an optical microdisk resonator for label-free sensing,” Sensors (Basel) 15(3), 4796–4809 (2015).
    [PubMed]
  23. J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photonics Rev. 5(4), 553–570 (2011).
  24. C. Chen, J. Li, S. Mitsui, S. Ryu, Y. Mikami, N. Nishimura, H. Yoshioka, and Y. Oki, “Investigation of protein adsorption for biosensors based on ink-jet printed active microdisk resonator,” in CLEO/Europe-EQEC (2017).

2017 (2)

S. Krämmer, S. Rastjoo, T. Siegle, S. F. Wondimu, C. Klusmann, C. Koos, and H. Kalt, “Size-optimized polymeric whispering gallery mode lasers with enhanced sensing performance,” Opt. Express 25(7), 7884–7894 (2017).
[PubMed]

L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).

2016 (1)

R. Schilling, H. Schütz, A. H. Ghadimi, V. Sudhir, D. J. Wilson, and T. J. Kippenberg, “Near-field integration of a SiN nanobeam and a SiO2 microcavity for heisenberg-limited displacement sensing,” Phys. Rev. Appl. 5(5), 054019 (2016).

2015 (2)

H. Yoshioka, T. Ota, C. Chen, S. Ryu, K. Yasui, and Y. Oki, “Extreme ultra-low lasing threshold of full-polymeric fundamental microdisk printed with room-temperature atmospheric ink-jet technique,” Sci. Rep. 5, 10623 (2015).
[PubMed]

D. Gandolfi, F. Ramiro-Manzano, F. J. Rebollo, M. Ghulinyan, G. Pucker, and L. Pavesi, “Role of edge inclination in an optical microdisk resonator for label-free sensing,” Sensors (Basel) 15(3), 4796–4809 (2015).
[PubMed]

2014 (3)

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).

H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346(6212), 975–978 (2014).
[PubMed]

C. Zhang, T. Ling, S. L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1(11), 1093–1098 (2014).

2013 (1)

2012 (3)

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[PubMed]

Y. Y. Lu, T. F. Shi, L. J. An, and Z. G. Wang, “Intrinsic viscosity of polymers: from linear chains to dendrimers,” EPL 97(6), 64003 (2012).

2011 (2)

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99(7), 073701 (2011).

J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photonics Rev. 5(4), 553–570 (2011).

2010 (4)

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. X. Xiao, and Q. H. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).

L. He, S. K. Ozdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. Appl. 82(5), 053810 (2010).

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).

2008 (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[PubMed]

2007 (1)

M. Oxborrow, “How to simulate the whispering-gallery modes of dielectric microresonators in FEMLAB/COMSOL,” Proc. SPIE 6452, 64520J (2007).

2006 (1)

J. Yang and L. J. Guo, “Optical sensors based on active microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 143–147 (2006).

2003 (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[PubMed]

An, L. J.

Y. Y. Lu, T. F. Shi, L. J. An, and Z. G. Wang, “Intrinsic viscosity of polymers: from linear chains to dendrimers,” EPL 97(6), 64003 (2012).

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[PubMed]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[PubMed]

Beck, T.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).

Bender, C. M.

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).

Benson, O.

J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photonics Rev. 5(4), 553–570 (2011).

Boriskina, S. V.

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99(7), 073701 (2011).

Chandrahalim, H.

L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).

Cheema, M. I.

Chen, C.

L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).

H. Yoshioka, T. Ota, C. Chen, S. Ryu, K. Yasui, and Y. Oki, “Extreme ultra-low lasing threshold of full-polymeric fundamental microdisk printed with room-temperature atmospheric ink-jet technique,” Sci. Rep. 5, 10623 (2015).
[PubMed]

C. Chen, J. Li, S. Mitsui, S. Ryu, Y. Mikami, N. Nishimura, H. Yoshioka, and Y. Oki, “Investigation of protein adsorption for biosensors based on ink-jet printed active microdisk resonator,” in CLEO/Europe-EQEC (2017).

Chen, Q. S.

L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).

Chen, S. L.

C. Zhang, T. Ling, S. L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1(11), 1093–1098 (2014).

Chen, T.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).

Christiansen, M. B.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).

Christodoulides, D. N.

H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346(6212), 975–978 (2014).
[PubMed]

Demirel, M. C.

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99(7), 073701 (2011).

Eschenbaum, C.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).

Fan, S.

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).

Fan, X. D.

L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).

Fuchs, J.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).

Gandolfi, D.

D. Gandolfi, F. Ramiro-Manzano, F. J. Rebollo, M. Ghulinyan, G. Pucker, and L. Pavesi, “Role of edge inclination in an optical microdisk resonator for label-free sensing,” Sensors (Basel) 15(3), 4796–4809 (2015).
[PubMed]

Gavartin, E.

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[PubMed]

Ghadimi, A. H.

R. Schilling, H. Schütz, A. H. Ghadimi, V. Sudhir, D. J. Wilson, and T. J. Kippenberg, “Near-field integration of a SiN nanobeam and a SiO2 microcavity for heisenberg-limited displacement sensing,” Phys. Rev. Appl. 5(5), 054019 (2016).

Ghulinyan, M.

D. Gandolfi, F. Ramiro-Manzano, F. J. Rebollo, M. Ghulinyan, G. Pucker, and L. Pavesi, “Role of edge inclination in an optical microdisk resonator for label-free sensing,” Sensors (Basel) 15(3), 4796–4809 (2015).
[PubMed]

Gianfreda, M.

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).

Gohn-Kreuz, C.

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).

Gong, Q. H.

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. X. Xiao, and Q. H. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).

Grossmann, T.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).

Guo, L. J.

L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).

C. Zhang, T. Ling, S. L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1(11), 1093–1098 (2014).

J. Yang and L. J. Guo, “Optical sensors based on active microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 143–147 (2006).

Hauser, M.

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).

He, L.

L. He, S. K. Ozdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. Appl. 82(5), 053810 (2010).

Heinrich, M.

H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346(6212), 975–978 (2014).
[PubMed]

Hodaei, H.

H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346(6212), 975–978 (2014).
[PubMed]

Jeon, S.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).

Jiang, X. F.

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. X. Xiao, and Q. H. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).

Kalt, H.

S. Krämmer, S. Rastjoo, T. Siegle, S. F. Wondimu, C. Klusmann, C. Koos, and H. Kalt, “Size-optimized polymeric whispering gallery mode lasers with enhanced sensing performance,” Opt. Express 25(7), 7884–7894 (2017).
[PubMed]

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).

Karl, M.

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).

Khajavikhan, M.

H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346(6212), 975–978 (2014).
[PubMed]

Kippenberg, T. J.

R. Schilling, H. Schütz, A. H. Ghadimi, V. Sudhir, D. J. Wilson, and T. J. Kippenberg, “Near-field integration of a SiN nanobeam and a SiO2 microcavity for heisenberg-limited displacement sensing,” Phys. Rev. Appl. 5(5), 054019 (2016).

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[PubMed]

Kirk, A. G.

Klinkhammer, S.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).

Klusmann, C.

Koos, C.

Krämmer, S.

Kristensen, A.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).

Lee, H.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).

Lei, F.

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).

Lemmer, U.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).

Li, B. B.

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. X. Xiao, and Q. H. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).

Li, J.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).

C. Chen, J. Li, S. Mitsui, S. Ryu, Y. Mikami, N. Nishimura, H. Yoshioka, and Y. Oki, “Investigation of protein adsorption for biosensors based on ink-jet printed active microdisk resonator,” in CLEO/Europe-EQEC (2017).

Li, Y.

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. X. Xiao, and Q. H. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).

Ling, T.

C. Zhang, T. Ling, S. L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1(11), 1093–1098 (2014).

Long, G. L.

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).

Lu, Y. Y.

Y. Y. Lu, T. F. Shi, L. J. An, and Z. G. Wang, “Intrinsic viscosity of polymers: from linear chains to dendrimers,” EPL 97(6), 64003 (2012).

Mappes, T.

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).

Mei, T.

L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).

Mikami, Y.

C. Chen, J. Li, S. Mitsui, S. Ryu, Y. Mikami, N. Nishimura, H. Yoshioka, and Y. Oki, “Investigation of protein adsorption for biosensors based on ink-jet printed active microdisk resonator,” in CLEO/Europe-EQEC (2017).

Miri, M. A.

H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346(6212), 975–978 (2014).
[PubMed]

Mitsui, S.

C. Chen, J. Li, S. Mitsui, S. Ryu, Y. Mikami, N. Nishimura, H. Yoshioka, and Y. Oki, “Investigation of protein adsorption for biosensors based on ink-jet printed active microdisk resonator,” in CLEO/Europe-EQEC (2017).

Monifi, F.

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).

Nienhaus, G. U.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).

Nishimura, N.

L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).

C. Chen, J. Li, S. Mitsui, S. Ryu, Y. Mikami, N. Nishimura, H. Yoshioka, and Y. Oki, “Investigation of protein adsorption for biosensors based on ink-jet printed active microdisk resonator,” in CLEO/Europe-EQEC (2017).

Nori, F.

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).

Oki, Y.

L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).

H. Yoshioka, T. Ota, C. Chen, S. Ryu, K. Yasui, and Y. Oki, “Extreme ultra-low lasing threshold of full-polymeric fundamental microdisk printed with room-temperature atmospheric ink-jet technique,” Sci. Rep. 5, 10623 (2015).
[PubMed]

C. Chen, J. Li, S. Mitsui, S. Ryu, Y. Mikami, N. Nishimura, H. Yoshioka, and Y. Oki, “Investigation of protein adsorption for biosensors based on ink-jet printed active microdisk resonator,” in CLEO/Europe-EQEC (2017).

Ota, T.

H. Yoshioka, T. Ota, C. Chen, S. Ryu, K. Yasui, and Y. Oki, “Extreme ultra-low lasing threshold of full-polymeric fundamental microdisk printed with room-temperature atmospheric ink-jet technique,” Sci. Rep. 5, 10623 (2015).
[PubMed]

Oxborrow, M.

M. Oxborrow, “How to simulate the whispering-gallery modes of dielectric microresonators in FEMLAB/COMSOL,” Proc. SPIE 6452, 64520J (2007).

Ozdemir, S. K.

L. He, S. K. Ozdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. Appl. 82(5), 053810 (2010).

Özdemir, S. K.

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).

Painter, O.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).

Pavesi, L.

D. Gandolfi, F. Ramiro-Manzano, F. J. Rebollo, M. Ghulinyan, G. Pucker, and L. Pavesi, “Role of edge inclination in an optical microdisk resonator for label-free sensing,” Sensors (Basel) 15(3), 4796–4809 (2015).
[PubMed]

Peng, B.

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).

Pucker, G.

D. Gandolfi, F. Ramiro-Manzano, F. J. Rebollo, M. Ghulinyan, G. Pucker, and L. Pavesi, “Role of edge inclination in an optical microdisk resonator for label-free sensing,” Sensors (Basel) 15(3), 4796–4809 (2015).
[PubMed]

Ramiro-Manzano, F.

D. Gandolfi, F. Ramiro-Manzano, F. J. Rebollo, M. Ghulinyan, G. Pucker, and L. Pavesi, “Role of edge inclination in an optical microdisk resonator for label-free sensing,” Sensors (Basel) 15(3), 4796–4809 (2015).
[PubMed]

Rastjoo, S.

Rebollo, F. J.

D. Gandolfi, F. Ramiro-Manzano, F. J. Rebollo, M. Ghulinyan, G. Pucker, and L. Pavesi, “Role of edge inclination in an optical microdisk resonator for label-free sensing,” Sensors (Basel) 15(3), 4796–4809 (2015).
[PubMed]

Ryu, S.

H. Yoshioka, T. Ota, C. Chen, S. Ryu, K. Yasui, and Y. Oki, “Extreme ultra-low lasing threshold of full-polymeric fundamental microdisk printed with room-temperature atmospheric ink-jet technique,” Sci. Rep. 5, 10623 (2015).
[PubMed]

C. Chen, J. Li, S. Mitsui, S. Ryu, Y. Mikami, N. Nishimura, H. Yoshioka, and Y. Oki, “Investigation of protein adsorption for biosensors based on ink-jet printed active microdisk resonator,” in CLEO/Europe-EQEC (2017).

Santiago-Cordoba, M. A.

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99(7), 073701 (2011).

Schilling, R.

R. Schilling, H. Schütz, A. H. Ghadimi, V. Sudhir, D. J. Wilson, and T. J. Kippenberg, “Near-field integration of a SiN nanobeam and a SiO2 microcavity for heisenberg-limited displacement sensing,” Phys. Rev. Appl. 5(5), 054019 (2016).

Schleede, S.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).

Schütz, H.

R. Schilling, H. Schütz, A. H. Ghadimi, V. Sudhir, D. J. Wilson, and T. J. Kippenberg, “Near-field integration of a SiN nanobeam and a SiO2 microcavity for heisenberg-limited displacement sensing,” Phys. Rev. Appl. 5(5), 054019 (2016).

Shi, T. F.

Y. Y. Lu, T. F. Shi, L. J. An, and Z. G. Wang, “Intrinsic viscosity of polymers: from linear chains to dendrimers,” EPL 97(6), 64003 (2012).

Siegle, T.

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[PubMed]

Sudhir, V.

R. Schilling, H. Schütz, A. H. Ghadimi, V. Sudhir, D. J. Wilson, and T. J. Kippenberg, “Near-field integration of a SiN nanobeam and a SiO2 microcavity for heisenberg-limited displacement sensing,” Phys. Rev. Appl. 5(5), 054019 (2016).

Vahala, K. J.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[PubMed]

Vannahme, C.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).

Verlot, P.

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[PubMed]

Vollmer, F.

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99(7), 073701 (2011).

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[PubMed]

Wan, L.

L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).

Wang, Q. Y.

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. X. Xiao, and Q. H. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).

Wang, Z. G.

Y. Y. Lu, T. F. Shi, L. J. An, and Z. G. Wang, “Intrinsic viscosity of polymers: from linear chains to dendrimers,” EPL 97(6), 64003 (2012).

Ward, J.

J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photonics Rev. 5(4), 553–570 (2011).

Wilson, D. J.

R. Schilling, H. Schütz, A. H. Ghadimi, V. Sudhir, D. J. Wilson, and T. J. Kippenberg, “Near-field integration of a SiN nanobeam and a SiO2 microcavity for heisenberg-limited displacement sensing,” Phys. Rev. Appl. 5(5), 054019 (2016).

Wondimu, S. F.

Xiao, L. X.

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. X. Xiao, and Q. H. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).

Xiao, Y. F.

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. X. Xiao, and Q. H. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).

Yang, J.

J. Yang and L. J. Guo, “Optical sensors based on active microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 143–147 (2006).

Yang, K. Y.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).

Yang, L.

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).

L. He, S. K. Ozdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. Appl. 82(5), 053810 (2010).

Yasui, K.

H. Yoshioka, T. Ota, C. Chen, S. Ryu, K. Yasui, and Y. Oki, “Extreme ultra-low lasing threshold of full-polymeric fundamental microdisk printed with room-temperature atmospheric ink-jet technique,” Sci. Rep. 5, 10623 (2015).
[PubMed]

Yoshioka, H.

H. Yoshioka, T. Ota, C. Chen, S. Ryu, K. Yasui, and Y. Oki, “Extreme ultra-low lasing threshold of full-polymeric fundamental microdisk printed with room-temperature atmospheric ink-jet technique,” Sci. Rep. 5, 10623 (2015).
[PubMed]

C. Chen, J. Li, S. Mitsui, S. Ryu, Y. Mikami, N. Nishimura, H. Yoshioka, and Y. Oki, “Investigation of protein adsorption for biosensors based on ink-jet printed active microdisk resonator,” in CLEO/Europe-EQEC (2017).

Zhang, C.

C. Zhang, T. Ling, S. L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1(11), 1093–1098 (2014).

Zhu, J.

L. He, S. K. Ozdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. Appl. 82(5), 053810 (2010).

ACS Photonics (1)

C. Zhang, T. Ling, S. L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1(11), 1093–1098 (2014).

Appl. Phys. Lett. (5)

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. X. Xiao, and Q. H. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).

L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99(7), 073701 (2011).

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).

EPL (1)

Y. Y. Lu, T. F. Shi, L. J. An, and Z. G. Wang, “Intrinsic viscosity of polymers: from linear chains to dendrimers,” EPL 97(6), 64003 (2012).

IEEE J. Sel. Top. Quantum Electron. (1)

J. Yang and L. J. Guo, “Optical sensors based on active microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 143–147 (2006).

Laser Photonics Rev. (1)

J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photonics Rev. 5(4), 553–570 (2011).

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[PubMed]

Nat. Nanotechnol. (1)

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[PubMed]

Nat. Photonics (1)

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).

Nat. Phys. (1)

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).

Nature (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[PubMed]

Opt. Express (2)

Phys. Rev. Appl. (2)

L. He, S. K. Ozdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. Appl. 82(5), 053810 (2010).

R. Schilling, H. Schütz, A. H. Ghadimi, V. Sudhir, D. J. Wilson, and T. J. Kippenberg, “Near-field integration of a SiN nanobeam and a SiO2 microcavity for heisenberg-limited displacement sensing,” Phys. Rev. Appl. 5(5), 054019 (2016).

Proc. SPIE (1)

M. Oxborrow, “How to simulate the whispering-gallery modes of dielectric microresonators in FEMLAB/COMSOL,” Proc. SPIE 6452, 64520J (2007).

Sci. Rep. (1)

H. Yoshioka, T. Ota, C. Chen, S. Ryu, K. Yasui, and Y. Oki, “Extreme ultra-low lasing threshold of full-polymeric fundamental microdisk printed with room-temperature atmospheric ink-jet technique,” Sci. Rep. 5, 10623 (2015).
[PubMed]

Science (1)

H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346(6212), 975–978 (2014).
[PubMed]

Sensors (Basel) (1)

D. Gandolfi, F. Ramiro-Manzano, F. J. Rebollo, M. Ghulinyan, G. Pucker, and L. Pavesi, “Role of edge inclination in an optical microdisk resonator for label-free sensing,” Sensors (Basel) 15(3), 4796–4809 (2015).
[PubMed]

Other (2)

H. Yoshioka, C. Chen, S. Ryu, J. Li, M. Ozawa, and Y. Oki, “Ultra-low threshold lasing at 0.8 µm from organic cavity by the ink-jet printing method,” in Conference on Lasers and Electro-Optics, 2016 OSA Technical Digest (Optical Society of America, 2016), paper JTh2A.81.

C. Chen, J. Li, S. Mitsui, S. Ryu, Y. Mikami, N. Nishimura, H. Yoshioka, and Y. Oki, “Investigation of protein adsorption for biosensors based on ink-jet printed active microdisk resonator,” in CLEO/Europe-EQEC (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) The schematic of fabrication processes of a wedge microdisk laser based on the ink-jet technique. The SEM images of (b) top-view and (c) side-view of a wedge microdisk laser. (d) The comparison of the edge profiles between the DiskA and DiskB wedge resonators.
Fig. 2
Fig. 2 Experimental measurement setup of a printed WGMs microdisk laser, which is consist of the pump and aligned probe systems.
Fig. 3
Fig. 3 The comparison of lasing spectra of the polymer microdisk lasers with edge inclination angles of 8.4° (DiskA) and 13.1° (DiskB).
Fig. 4
Fig. 4 (a) The model of a wedge microdisk resonator. (b) The electric field distributions of the fundamental TE and TM modes at the edge inclination angles of 4, 9, 14, 19, 29, 49, 69 and 89 degrees.
Fig. 5
Fig. 5 (a) The correlations between the edge inclination angles and (a) radial positions, (b) resonance wavelength shift, (c) FSR for the TE and TM modes. (d) The correlations between the edge inclination angles and resonance wavelength differences between the TE and TM modes. The inserts show the error bars of the both microdisk lasers.
Fig. 6
Fig. 6 (a) The correlations between the edge inclination angles and Q-factors. (b) The correlations between the edge inclination angles and F-factors.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F=Q× FSR f 0

Metrics