Abstract

A compact and relatively stable structure is experimentally demonstrated to excite whispering gallery modes (WGMs) in a single chemically fabricated silica microparticles with a diameter of around 10.6 μm attached to an optical microfiber. The resonance dip with an extinction ratio of 14 dB and Q factor of around 300 has been achieved. Based on the WGMs in this structure, an in-line fiber-optic displacement sensor is presented with a high sensitivity of 33 dB/mm and a measurement range of over 400 μm. The measurement resolution of this displacement sensor can reach to ~10 μm. The good reversibility and repeatability are also verified. This work offers a scheme to observe the WGMs in a single silica microparticles and demonstrates their application for in-line highly-sensitive displacement sensing.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Strain-induced spectral tuning of the whispering gallery modes in a cylindrical micro-resonator formed by a polymer optical fiber

Vishnu Kavungal, Arun Kumar Mallik, Gerald Farrell, Qiang Wu, and Yuliya Semenova
Appl. Opt. 56(5) 1339-1345 (2017)

Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application

Yan Wang, Hanyang Li, Liyuan Zhao, Yongjun Liu, Shuangqiang Liu, and Jun Yang
Opt. Express 25(2) 918-926 (2017)

Wavelength tuning of the spirally drawn whispering gallery mode microfiber lasers and the perspectives for sensing applications

Shancheng Yang, Tay Yong Kang Eugene, Yue Wang, Xin Zhao, Hilmi Volkan Demir, and Handong Sun
Opt. Express 25(3) 2618-2626 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Zikmund and P. Ripka, “A magnetic distance sensor with high precision,” Sens. Actuat. A-Phys. 186, 137–142 (2012).
  2. H. Huang and U. Tata, “Simulation, implementation, and analysis of an optical fiber bundle distance sensor with single mode illumination,” Appl. Opt. 47(9), 1302–1309 (2008).
    [Crossref] [PubMed]
  3. Y. Chen, S. C. Yan, X. Zheng, F. Xu, and Y. Q. Lu, “A miniature reflective micro-force sensor based on a microfiber coupler,” Opt. Express 22(3), 2443–2450 (2014).
    [Crossref] [PubMed]
  4. Q. Sun, N. Chen, Y. Ding, Z. Chen, and T. Wang, “Distance detection with optical fiber extrinsic Fabry-Perot interference ultrasonic sensor,” in IET International Communication Conference on Wireless Mobile and Computing (IET, 2009), pp. 441–443.
  5. A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode Interference-Based Fiber-Optic Displacement Sensor,” IEEE Photon. Technol. Lett. 15(8), 1129–1131 (2003).
    [Crossref]
  6. A. Shimamoto and K. Tanaka, “Geometrical analysis of an optical fiber bundle displacement sensor,” Appl. Opt. 35(34), 6767–6774 (1996).
    [Crossref] [PubMed]
  7. G. He and F. W. Cuomo, “Displacement Response, Detection Limit, and Dynamic Range of Fiber-optic Lever Sensors,” J. Lightwave Technol. 9(11), 1618–1625 (1991).
    [Crossref]
  8. G. He and F. W. Cuomo, “A light intensity function suitable for multimode fiber optic sensors,” J. Lightwave Technol. 9(4), 545–551 (1991).
    [Crossref]
  9. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref] [PubMed]
  10. A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
    [Crossref]
  11. J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photonics Rev. 5(4), 553–570 (2011).
    [Crossref]
  12. L. He, S. K. Ozdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
    [Crossref]
  13. W. Chen, Ş. Kaya Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
    [Crossref] [PubMed]
  14. V. S. Ilchenko, M. L. Gorodetsky, and S. P. Vyatchanin, “Coupling and tunability of optical whispering-gallery modes: a basis for coordinate meter,” Opt. Commun. 107(1–2), 41–48 (1994).
    [Crossref]
  15. K. Kosma, K. Schuster, J. Kobelke, and S. Pissadakis, “An “in-fiber” Whispering-Gallery-Mode bi-sphere resonator, sensitive to nanometric displacements,” Appl. Phys. B 124(1), 1 (2018).
    [Crossref]
  16. I. S. Grudinin and N. Yu, “Finite-element modeling of coupled optical microdisk resonators for displacement sensing,” J. Opt. Soc. Am. B 29(11), 3010–3014 (2012).
    [Crossref]
  17. K. Kosma, G. Zito, K. Schuster, and S. Pissadakis, “Whispering gallery mode microsphere resonator integrated inside a microstructured optical fiber,” Opt. Lett. 38(8), 1301–1303 (2013).
    [Crossref] [PubMed]
  18. R. Wang, M. Fraser, J. Li, X. Qiao, and A. Wang, “Integrated in-fiber coupler for microsphere whispering-gallery modes resonator excitation,” Opt. Lett. 40(3), 308–311 (2015).
    [Crossref] [PubMed]
  19. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
    [Crossref] [PubMed]
  20. M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
    [Crossref] [PubMed]
  21. Y. Zhi, X. C. Yu, Q. Gong, L. Yang, and Y. F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29(12), 1604920 (2017).
    [Crossref] [PubMed]
  22. X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
    [Crossref] [PubMed]
  23. Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14(16), 3004–3010 (2014).
    [Crossref] [PubMed]
  24. S. L. Saval, T. Birks, W. Wadsworth, P. S. J. Russell, and M. Mason, “Supercontinuum generation in submicron fiber waveguides,” Opt. Express 12(13), 2864–2869 (2004).
    [Crossref] [PubMed]
  25. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [Crossref] [PubMed]
  26. P. Zhao, L. Shi, Y. Liu, Z. Wang, and X. Zhang, “Compact in-line optical notch filter based on an asymmetric microfiber coupler,” Appl. Opt. 52(36), 8834–8839 (2013).
    [Crossref] [PubMed]
  27. P. Zhao, L. Shi, Y. Liu, Z. Wang, S. Pu, and X. Zhang, “Iron-oxide nanoparticles embedded silica microsphere resonator exhibiting broadband all-optical wavelength tunability,” Opt. Lett. 39(13), 3845–3848 (2014).
    [Crossref] [PubMed]
  28. S. Zhu, Y. Liu, L. Shi, X. Xu, S. Yuan, N. Liu, and X. Zhang, “Tunable polarization beam splitter based on optofluidic ring resonator,” Opt. Express 24(15), 17511–17521 (2016).
    [Crossref] [PubMed]
  29. D. N. Payne, A. J. Barlow, and J. J. Ramskov-Hansen, “Development of low- and high-birefringence optical fibers,” IEEE Trans. Microw. Theory Tech. 30(4), 323–334 (1982).
    [Crossref]
  30. M. Segura, N. Vukovic, N. White, T. C. May-Smith, W. H. Loh, F. Poletti, and M. N. Zervas, “Low Birefringence Measurement and Temperature Dependence in Meter-Long Optical Fibers,” J. Lightwave Technol. 33(12), 2697–2702 (2015).
    [Crossref]
  31. D. Chowdhury and D. Wilcox, “Comparison between optical fiber birefringence induced by stress anisotropy and geometric deformation,” IEEE J. Sel. Top. Quantum Electron. 6(2), 227–232 (2000).
    [Crossref]
  32. K. Okamoto, T. Hosaka, and T. Edahiro, “Stress analysis of optical fibers by finite element method,” IEEE J. Quantum Electron. 17(10), 2123–2129 (1981).
    [Crossref]
  33. I. P. Kaminow, “Polarization in optical fibers,” IEEE J. Quantum Electron. 17(1), 15–22 (1981).
    [Crossref]
  34. P. Bianucci, C. R. Fietz, J. W. Robertson, G. Shvets, and C.-K. Shih, “Polarization conversion in a silica microsphere,” Opt. Express 15(11), 7000–7005 (2007).
    [Crossref] [PubMed]
  35. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
    [Crossref]
  36. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
    [Crossref]
  37. O. Svitelskiy, Y. Li, A. Darafsheh, M. Sumetsky, D. Carnegie, E. Rafailov, and V. N. Astratov, “Fiber coupling to BaTiO3 glass microspheres in an aqueous environment,” Opt. Lett. 36(15), 2862–2864 (2011).
    [Crossref] [PubMed]
  38. M. N. Mohd Nasir, G. Senthil Murugan, and M. N. Zervas, “Spectral cleaning and output modal transformations in whispering-gallery-mode microresonators,” J. Opt. Soc. Am. B 33(9), 1963–1970 (2016).
    [Crossref]

2018 (1)

K. Kosma, K. Schuster, J. Kobelke, and S. Pissadakis, “An “in-fiber” Whispering-Gallery-Mode bi-sphere resonator, sensitive to nanometric displacements,” Appl. Phys. B 124(1), 1 (2018).
[Crossref]

2017 (3)

W. Chen, Ş. Kaya Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
[Crossref] [PubMed]

Y. Zhi, X. C. Yu, Q. Gong, L. Yang, and Y. F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29(12), 1604920 (2017).
[Crossref] [PubMed]

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref] [PubMed]

2016 (2)

2015 (3)

2014 (3)

2013 (3)

2012 (2)

I. S. Grudinin and N. Yu, “Finite-element modeling of coupled optical microdisk resonators for displacement sensing,” J. Opt. Soc. Am. B 29(11), 3010–3014 (2012).
[Crossref]

A. Zikmund and P. Ripka, “A magnetic distance sensor with high precision,” Sens. Actuat. A-Phys. 186, 137–142 (2012).

2011 (2)

2010 (1)

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

2008 (2)

H. Huang and U. Tata, “Simulation, implementation, and analysis of an optical fiber bundle distance sensor with single mode illumination,” Appl. Opt. 47(9), 1302–1309 (2008).
[Crossref] [PubMed]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[Crossref]

2004 (1)

2003 (3)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode Interference-Based Fiber-Optic Displacement Sensor,” IEEE Photon. Technol. Lett. 15(8), 1129–1131 (2003).
[Crossref]

2000 (1)

D. Chowdhury and D. Wilcox, “Comparison between optical fiber birefringence induced by stress anisotropy and geometric deformation,” IEEE J. Sel. Top. Quantum Electron. 6(2), 227–232 (2000).
[Crossref]

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

1996 (1)

1994 (1)

V. S. Ilchenko, M. L. Gorodetsky, and S. P. Vyatchanin, “Coupling and tunability of optical whispering-gallery modes: a basis for coordinate meter,” Opt. Commun. 107(1–2), 41–48 (1994).
[Crossref]

1991 (2)

G. He and F. W. Cuomo, “Displacement Response, Detection Limit, and Dynamic Range of Fiber-optic Lever Sensors,” J. Lightwave Technol. 9(11), 1618–1625 (1991).
[Crossref]

G. He and F. W. Cuomo, “A light intensity function suitable for multimode fiber optic sensors,” J. Lightwave Technol. 9(4), 545–551 (1991).
[Crossref]

1982 (1)

D. N. Payne, A. J. Barlow, and J. J. Ramskov-Hansen, “Development of low- and high-birefringence optical fibers,” IEEE Trans. Microw. Theory Tech. 30(4), 323–334 (1982).
[Crossref]

1981 (2)

K. Okamoto, T. Hosaka, and T. Edahiro, “Stress analysis of optical fibers by finite element method,” IEEE J. Quantum Electron. 17(10), 2123–2129 (1981).
[Crossref]

I. P. Kaminow, “Polarization in optical fibers,” IEEE J. Quantum Electron. 17(1), 15–22 (1981).
[Crossref]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Astratov, V. N.

Barlow, A. J.

D. N. Payne, A. J. Barlow, and J. J. Ramskov-Hansen, “Development of low- and high-birefringence optical fibers,” IEEE Trans. Microw. Theory Tech. 30(4), 323–334 (1982).
[Crossref]

Benson, O.

J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photonics Rev. 5(4), 553–570 (2011).
[Crossref]

Bianucci, P.

Birks, T.

Carnegie, D.

Chen, N.

Q. Sun, N. Chen, Y. Ding, Z. Chen, and T. Wang, “Distance detection with optical fiber extrinsic Fabry-Perot interference ultrasonic sensor,” in IET International Communication Conference on Wireless Mobile and Computing (IET, 2009), pp. 441–443.

Chen, W.

W. Chen, Ş. Kaya Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
[Crossref] [PubMed]

Chen, Y.

Chen, Z.

Q. Sun, N. Chen, Y. Ding, Z. Chen, and T. Wang, “Distance detection with optical fiber extrinsic Fabry-Perot interference ultrasonic sensor,” in IET International Communication Conference on Wireless Mobile and Computing (IET, 2009), pp. 441–443.

Chiasera, A.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

Chowdhury, D.

D. Chowdhury and D. Wilcox, “Comparison between optical fiber birefringence induced by stress anisotropy and geometric deformation,” IEEE J. Sel. Top. Quantum Electron. 6(2), 227–232 (2000).
[Crossref]

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Conti, G. N.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

Cuomo, F. W.

G. He and F. W. Cuomo, “A light intensity function suitable for multimode fiber optic sensors,” J. Lightwave Technol. 9(4), 545–551 (1991).
[Crossref]

G. He and F. W. Cuomo, “Displacement Response, Detection Limit, and Dynamic Range of Fiber-optic Lever Sensors,” J. Lightwave Technol. 9(11), 1618–1625 (1991).
[Crossref]

Darafsheh, A.

Ding, Y.

Q. Sun, N. Chen, Y. Ding, Z. Chen, and T. Wang, “Distance detection with optical fiber extrinsic Fabry-Perot interference ultrasonic sensor,” in IET International Communication Conference on Wireless Mobile and Computing (IET, 2009), pp. 441–443.

Dumeige, Y.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

Edahiro, T.

K. Okamoto, T. Hosaka, and T. Edahiro, “Stress analysis of optical fibers by finite element method,” IEEE J. Quantum Electron. 17(10), 2123–2129 (1981).
[Crossref]

Feron, P.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

Ferrari, M.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

Fietz, C. R.

Foreman, M. R.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Fraser, M.

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Gong, Q.

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref] [PubMed]

Y. Zhi, X. C. Yu, Q. Gong, L. Yang, and Y. F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29(12), 1604920 (2017).
[Crossref] [PubMed]

Gorodetsky, M. L.

V. S. Ilchenko, M. L. Gorodetsky, and S. P. Vyatchanin, “Coupling and tunability of optical whispering-gallery modes: a basis for coordinate meter,” Opt. Commun. 107(1–2), 41–48 (1994).
[Crossref]

Grudinin, I. S.

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

He, G.

G. He and F. W. Cuomo, “A light intensity function suitable for multimode fiber optic sensors,” J. Lightwave Technol. 9(4), 545–551 (1991).
[Crossref]

G. He and F. W. Cuomo, “Displacement Response, Detection Limit, and Dynamic Range of Fiber-optic Lever Sensors,” J. Lightwave Technol. 9(11), 1618–1625 (1991).
[Crossref]

He, L.

L. He, S. K. Ozdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
[Crossref]

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Hosaka, T.

K. Okamoto, T. Hosaka, and T. Edahiro, “Stress analysis of optical fibers by finite element method,” IEEE J. Quantum Electron. 17(10), 2123–2129 (1981).
[Crossref]

Huang, H.

Ilchenko, V. S.

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[Crossref]

V. S. Ilchenko, M. L. Gorodetsky, and S. P. Vyatchanin, “Coupling and tunability of optical whispering-gallery modes: a basis for coordinate meter,” Opt. Commun. 107(1–2), 41–48 (1994).
[Crossref]

Jestin, Y.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

Jiang, X.

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref] [PubMed]

Johnson, E. G.

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode Interference-Based Fiber-Optic Displacement Sensor,” IEEE Photon. Technol. Lett. 15(8), 1129–1131 (2003).
[Crossref]

Kaminow, I. P.

I. P. Kaminow, “Polarization in optical fibers,” IEEE J. Quantum Electron. 17(1), 15–22 (1981).
[Crossref]

Kaya Özdemir, S.

W. Chen, Ş. Kaya Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
[Crossref] [PubMed]

Kobelke, J.

K. Kosma, K. Schuster, J. Kobelke, and S. Pissadakis, “An “in-fiber” Whispering-Gallery-Mode bi-sphere resonator, sensitive to nanometric displacements,” Appl. Phys. B 124(1), 1 (2018).
[Crossref]

Kosma, K.

K. Kosma, K. Schuster, J. Kobelke, and S. Pissadakis, “An “in-fiber” Whispering-Gallery-Mode bi-sphere resonator, sensitive to nanometric displacements,” Appl. Phys. B 124(1), 1 (2018).
[Crossref]

K. Kosma, G. Zito, K. Schuster, and S. Pissadakis, “Whispering gallery mode microsphere resonator integrated inside a microstructured optical fiber,” Opt. Lett. 38(8), 1301–1303 (2013).
[Crossref] [PubMed]

Laine, J. P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Li, J.

Li, Y.

Little, B. E.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Liu, N.

Liu, Y.

Loh, W. H.

Loncar, M.

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref] [PubMed]

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Lu, Y. Q.

Mason, M.

Matsko, A. B.

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[Crossref]

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

May-Smith, T. C.

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Mehta, A.

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode Interference-Based Fiber-Optic Displacement Sensor,” IEEE Photon. Technol. Lett. 15(8), 1129–1131 (2003).
[Crossref]

Mohammed, W.

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode Interference-Based Fiber-Optic Displacement Sensor,” IEEE Photon. Technol. Lett. 15(8), 1129–1131 (2003).
[Crossref]

Mohd Nasir, M. N.

Okamoto, K.

K. Okamoto, T. Hosaka, and T. Edahiro, “Stress analysis of optical fibers by finite element method,” IEEE J. Quantum Electron. 17(10), 2123–2129 (1981).
[Crossref]

Ozdemir, S. K.

L. He, S. K. Ozdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
[Crossref]

Payne, D. N.

D. N. Payne, A. J. Barlow, and J. J. Ramskov-Hansen, “Development of low- and high-birefringence optical fibers,” IEEE Trans. Microw. Theory Tech. 30(4), 323–334 (1982).
[Crossref]

Pelli, S.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

Pissadakis, S.

K. Kosma, K. Schuster, J. Kobelke, and S. Pissadakis, “An “in-fiber” Whispering-Gallery-Mode bi-sphere resonator, sensitive to nanometric displacements,” Appl. Phys. B 124(1), 1 (2018).
[Crossref]

K. Kosma, G. Zito, K. Schuster, and S. Pissadakis, “Whispering gallery mode microsphere resonator integrated inside a microstructured optical fiber,” Opt. Lett. 38(8), 1301–1303 (2013).
[Crossref] [PubMed]

Poletti, F.

Pu, S.

P. Zhao, L. Shi, Y. Liu, Z. Wang, S. Pu, and X. Zhang, “Iron-oxide nanoparticles embedded silica microsphere resonator exhibiting broadband all-optical wavelength tunability,” Opt. Lett. 39(13), 3845–3848 (2014).
[Crossref] [PubMed]

Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14(16), 3004–3010 (2014).
[Crossref] [PubMed]

Qiao, X.

Rafailov, E.

Ramskov-Hansen, J. J.

D. N. Payne, A. J. Barlow, and J. J. Ramskov-Hansen, “Development of low- and high-birefringence optical fibers,” IEEE Trans. Microw. Theory Tech. 30(4), 323–334 (1982).
[Crossref]

Righini, G. C.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

Ripka, P.

A. Zikmund and P. Ripka, “A magnetic distance sensor with high precision,” Sens. Actuat. A-Phys. 186, 137–142 (2012).

Robertson, J. W.

Russell, P. S. J.

Saval, S. L.

Schuster, K.

K. Kosma, K. Schuster, J. Kobelke, and S. Pissadakis, “An “in-fiber” Whispering-Gallery-Mode bi-sphere resonator, sensitive to nanometric displacements,” Appl. Phys. B 124(1), 1 (2018).
[Crossref]

K. Kosma, G. Zito, K. Schuster, and S. Pissadakis, “Whispering gallery mode microsphere resonator integrated inside a microstructured optical fiber,” Opt. Lett. 38(8), 1301–1303 (2013).
[Crossref] [PubMed]

Segura, M.

Senthil Murugan, G.

Shao, L.

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref] [PubMed]

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Shi, L.

Shih, C.-K.

Shimamoto, A.

Shvets, G.

Soria, S.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

Sumetsky, M.

Sun, Q.

Q. Sun, N. Chen, Y. Ding, Z. Chen, and T. Wang, “Distance detection with optical fiber extrinsic Fabry-Perot interference ultrasonic sensor,” in IET International Communication Conference on Wireless Mobile and Computing (IET, 2009), pp. 441–443.

Svitelskiy, O.

Swaim, J. D.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

Tanaka, K.

Tata, U.

Tong, L.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Vollmer, F.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Vukovic, N.

Vyatchanin, S. P.

V. S. Ilchenko, M. L. Gorodetsky, and S. P. Vyatchanin, “Coupling and tunability of optical whispering-gallery modes: a basis for coordinate meter,” Opt. Commun. 107(1–2), 41–48 (1994).
[Crossref]

Wadsworth, W.

Wang, A.

Wang, L.

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref] [PubMed]

Wang, R.

Wang, T.

Q. Sun, N. Chen, Y. Ding, Z. Chen, and T. Wang, “Distance detection with optical fiber extrinsic Fabry-Perot interference ultrasonic sensor,” in IET International Communication Conference on Wireless Mobile and Computing (IET, 2009), pp. 441–443.

Wang, Z.

Ward, J.

J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photonics Rev. 5(4), 553–570 (2011).
[Crossref]

White, N.

Wiersig, J.

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref] [PubMed]

W. Chen, Ş. Kaya Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
[Crossref] [PubMed]

Wilcox, D.

D. Chowdhury and D. Wilcox, “Comparison between optical fiber birefringence induced by stress anisotropy and geometric deformation,” IEEE J. Sel. Top. Quantum Electron. 6(2), 227–232 (2000).
[Crossref]

Xiao, Y. F.

Y. Zhi, X. C. Yu, Q. Gong, L. Yang, and Y. F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29(12), 1604920 (2017).
[Crossref] [PubMed]

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref] [PubMed]

Xu, F.

Xu, X.

S. Zhu, Y. Liu, L. Shi, X. Xu, S. Yuan, N. Liu, and X. Zhang, “Tunable polarization beam splitter based on optofluidic ring resonator,” Opt. Express 24(15), 17511–17521 (2016).
[Crossref] [PubMed]

Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14(16), 3004–3010 (2014).
[Crossref] [PubMed]

Yan, S. C.

Yang, L.

W. Chen, Ş. Kaya Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
[Crossref] [PubMed]

Y. Zhi, X. C. Yu, Q. Gong, L. Yang, and Y. F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29(12), 1604920 (2017).
[Crossref] [PubMed]

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref] [PubMed]

L. He, S. K. Ozdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
[Crossref]

Yi, X.

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref] [PubMed]

Yu, N.

Yu, X. C.

Y. Zhi, X. C. Yu, Q. Gong, L. Yang, and Y. F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29(12), 1604920 (2017).
[Crossref] [PubMed]

Yuan, S.

Zervas, M. N.

Zhang, S. X.

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref] [PubMed]

Zhang, X.

Zhao, G.

W. Chen, Ş. Kaya Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
[Crossref] [PubMed]

Zhao, P.

Zheng, X.

Zhi, Y.

Y. Zhi, X. C. Yu, Q. Gong, L. Yang, and Y. F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29(12), 1604920 (2017).
[Crossref] [PubMed]

Zhu, S.

Zikmund, A.

A. Zikmund and P. Ripka, “A magnetic distance sensor with high precision,” Sens. Actuat. A-Phys. 186, 137–142 (2012).

Zito, G.

Adv. Mater. (1)

Y. Zhi, X. C. Yu, Q. Gong, L. Yang, and Y. F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29(12), 1604920 (2017).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. B (1)

K. Kosma, K. Schuster, J. Kobelke, and S. Pissadakis, “An “in-fiber” Whispering-Gallery-Mode bi-sphere resonator, sensitive to nanometric displacements,” Appl. Phys. B 124(1), 1 (2018).
[Crossref]

IEEE J. Quantum Electron. (2)

K. Okamoto, T. Hosaka, and T. Edahiro, “Stress analysis of optical fibers by finite element method,” IEEE J. Quantum Electron. 17(10), 2123–2129 (1981).
[Crossref]

I. P. Kaminow, “Polarization in optical fibers,” IEEE J. Quantum Electron. 17(1), 15–22 (1981).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

D. Chowdhury and D. Wilcox, “Comparison between optical fiber birefringence induced by stress anisotropy and geometric deformation,” IEEE J. Sel. Top. Quantum Electron. 6(2), 227–232 (2000).
[Crossref]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode Interference-Based Fiber-Optic Displacement Sensor,” IEEE Photon. Technol. Lett. 15(8), 1129–1131 (2003).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

D. N. Payne, A. J. Barlow, and J. J. Ramskov-Hansen, “Development of low- and high-birefringence optical fibers,” IEEE Trans. Microw. Theory Tech. 30(4), 323–334 (1982).
[Crossref]

J. Lightwave Technol. (4)

M. Segura, N. Vukovic, N. White, T. C. May-Smith, W. H. Loh, F. Poletti, and M. N. Zervas, “Low Birefringence Measurement and Temperature Dependence in Meter-Long Optical Fibers,” J. Lightwave Technol. 33(12), 2697–2702 (2015).
[Crossref]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

G. He and F. W. Cuomo, “Displacement Response, Detection Limit, and Dynamic Range of Fiber-optic Lever Sensors,” J. Lightwave Technol. 9(11), 1618–1625 (1991).
[Crossref]

G. He and F. W. Cuomo, “A light intensity function suitable for multimode fiber optic sensors,” J. Lightwave Technol. 9(4), 545–551 (1991).
[Crossref]

J. Opt. Soc. Am. B (2)

Lab Chip (1)

Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14(16), 3004–3010 (2014).
[Crossref] [PubMed]

Laser Photonics Rev. (3)

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev. 4(3), 457–482 (2010).
[Crossref]

J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photonics Rev. 5(4), 553–570 (2011).
[Crossref]

L. He, S. K. Ozdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
[Crossref]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Nature (3)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

W. Chen, Ş. Kaya Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

V. S. Ilchenko, M. L. Gorodetsky, and S. P. Vyatchanin, “Coupling and tunability of optical whispering-gallery modes: a basis for coordinate meter,” Opt. Commun. 107(1–2), 41–48 (1994).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Science (1)

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref] [PubMed]

Sens. Actuat. A-Phys. (1)

A. Zikmund and P. Ripka, “A magnetic distance sensor with high precision,” Sens. Actuat. A-Phys. 186, 137–142 (2012).

Other (1)

Q. Sun, N. Chen, Y. Ding, Z. Chen, and T. Wang, “Distance detection with optical fiber extrinsic Fabry-Perot interference ultrasonic sensor,” in IET International Communication Conference on Wireless Mobile and Computing (IET, 2009), pp. 441–443.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Silica microparticless transferred by a fiber taper. (b) A single silica microparticles attached to an optical microfiber.
Fig. 2
Fig. 2 (a) Experimental setup for displacement sensing. (b) Sensing component.
Fig. 3
Fig. 3 (a) TE mode and (b) TM mode electric field distribution in the silica microparticles. The red arrow shows the electric field direction. (c) Effective RI of two orthogonal polarization modes and (d) corresponding effective RI difference as a function of the microparticles radius.
Fig. 4
Fig. 4 (a)-(d) Transmission spectra of the silica microparticles attached to the microfiber with different power ratios between the TE mode and the TM mode of the signal light.
Fig. 5
Fig. 5 WGM spectra of the silica microparticles with a radius of around 5.37 μm, corresponding to a distance range from 0 mm to 0.38 mm.
Fig. 6
Fig. 6 (a) Enlarged resonance dip of the WGM in the silica microparticles with a radius of around 5.37 μm in the rising process and (b) the falling process. ER change in (c) the rising process and (d) the falling process. (e-h) The same measurement process as in (a-d) using the silica microparticles with a radius of around 5.16 μm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E=[ E x E y ]=[ E 0 cosθexpj(ωt β x z) E 0 sinθexpj(ωt β y z) ]= E x [ 1 tanθexpj(Δβz) ]
Δβ= 1 2 k 0 n 3 ( p 11 p 12 )(1+ v p ) ( r R ) 2 + 1 2 n 2 ( p 11 p 12 ) (1+ v p )(23 v p ) (1 v p ) r R S xx
d P x dz =αz+h[ P x (z) P y (z)]
d P y dz =αzh[ P x (z) P y (z)]
P x (z)= P 0 e hz cosh(hz) e αz
P y (z)= P 0 e hz sinh(hz) e αz
η= P y P x =tanh(hz)

Metrics