Abstract

Considering that previous invisible gateways (an open entrance that only blocks electromagnetic waves) based on super-scatters designed by transformation optics cannot effectively work for narrow beams and light rays that do not touch negative refractive index material, we explore a new way to realize an improved invisible gateway that can give a good performance for both light waves and rays. In all previous invisible gateways, they require a finite thickness of the wall and the gateway. For the improved invisible gateway proposed in this study, there is no requirement on the thickness of the wall and gateway, i.e. the wall and gateway can be infinitely thin. Our study will go a further step to realize the invisible gateway in fiction.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Thermally sensitive scattering of terahertz waves by coated cylinders for tunable invisibility and masking

Andriy E. Serebryannikov, Kamil B. Alici, Ekmel Ozbay, and Akhlesh Lakhtakia
Opt. Express 26(1) 1-14 (2018)

Propagation of electromagnetic waves in stratified media with nonlinearity in both dielectric and magnetic responses

Kihong Kim, D. K. Phung, F. Rotermund, and H. Lim
Opt. Express 16(2) 1150-1164 (2008)

Photorealistic ray tracing of free-space invisibility cloaks made of uniaxial dielectrics

Jad C. Halimeh and Martin Wegener
Opt. Express 20(27) 28330-28340 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. R. Rowling, Harry Potter and the Chamber of Secrets (Bloomsbury, 1998).
  2. X. Luo, T. Yang, Y. Gu, H. Chen, and H. Ma, “Conceal an entrance by means of superscatterer,” Appl. Phys. Lett. 94(22), 223513 (2009).
    [Crossref]
  3. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref] [PubMed]
  4. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
    [Crossref] [PubMed]
  5. U. Leonhardt and T. Philbin, Geometry and Light: The Science of Invisibility (Courier Corporation, 2012).
  6. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostructures 6(1), 87–95 (2008).
    [Crossref]
  7. H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
    [Crossref] [PubMed]
  8. Y. Liu and X. Zhang, “Recent advances in transformation optics,” Nanoscale 4(17), 5277–5292 (2012).
    [Crossref] [PubMed]
  9. A. V. Kildishev and V. M. Shalaev, “Transformation optics and metamaterials,” Phys.- Usp. 54(1), 53–63 (2011).
    [Crossref]
  10. F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
    [Crossref]
  11. F. Sun and S. He, “Transformation magneto-statics and illusions for magnets,” Sci. Rep. 4(1), 6593 (2014).
    [Crossref] [PubMed]
  12. S. R. Boston, “Time travel in transformation optics: Metamaterials with closed null geodesics,” Phys. Rev. D Part. Fields Gravit. Cosmol. 91(12), 124035 (2015).
    [Crossref]
  13. P. Kinsler and M. W. McCall, “Cloaks, editors, and bubbles: applications of spacetime transformation theory,” Annalen der Physik 526, 51–62 (2014).
  14. F. Liu, Z. Liang, and J. Li, “Manipulating polarization and impedance signature: a reciprocal field transformation approach,” Phys. Rev. Lett. 111(3), 033901 (2013).
    [Crossref] [PubMed]
  15. F. Sun and S. He, “Optical Surface Transformation: Changing the optical surface by homogeneous optic-null medium at will,” Sci. Rep. 5(1), 16032 (2015).
    [Crossref] [PubMed]
  16. F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
    [Crossref]
  17. T. M. McManus, L. La Spada, and Y. Hao, “Isotropic and anisotropic surface wave cloaking techniques,” J. Opt. 18(4), 044005 (2016).
    [Crossref]
  18. L. La Spada, S. Haq, and Y. Hao, “Modeling and design for electromagnetic surface wave devices,” Radio Sci. 52(9), 1049–1057 (2017).
    [Crossref]
  19. Y. Min, W. Yan, and M. Qiu, “Cylindrical superlens by a coordinate transformation,” Phys. Rev. B 78(12), 125113 (2008).
    [Crossref]
  20. H. Wang, Y. Deng, B. Zheng, R. Li, Y. Jiang, S. Dehdashti, Z. Xu, and H. Chen, “Panoramic lens designed with transformation optics,” Sci. Rep. 7, 40083 (2017).
    [Crossref] [PubMed]
  21. J. Yi, P. H. Tichit, S. N. Burokur, and A. de Lustrac, “Illusion optics: Optically transforming the nature and the location of electromagnetic emissions,” J. Appl. Phys. 117(8), 084903 (2015).
    [Crossref]
  22. B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
    [Crossref]
  23. H. Chen, C. T. Chan, S. Liu, and Z. Lin, “A simple route to a tunable electromagnetic gateway,” New J. Phys. 11(8), 083012 (2009).
    [Crossref]
  24. C. Li, X. Meng, X. Liu, F. Li, G. Fang, H. Chen, and C. T. Chan, “Experimental realization of a circuit-based broadband illusion-optics analogue,” Phys. Rev. Lett. 105(23), 233906 (2010).
    [Crossref] [PubMed]
  25. G. D. Bai, F. Yang, W. X. Jiang, Z. L. Mei, and T. J. Cui, “Realization of a broadband electromagnetic gateway at microwave frequencies,” Appl. Phys. Lett. 107(15), 153503 (2015).
    [Crossref]
  26. X. Lin, Y. Jiang, J. Y. Jin, J. W. Yu, and S. He, “Understand and Realize an “Invisible Gateway” in a Classical Way,” Prog. Electromagnetics Res. 141, 739–749 (2013).
    [Crossref]
  27. F. Sun, Y. Liu, and S. He, “True dynamic imaging and image composition by the optical translational projector,” J. Opt. 18(4), 044012 (2016).
    [Crossref]
  28. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  29. T. Tyc, L. Herzánová, M. Šarbort, and K. Bering, “Absolute instruments and perfect imaging in geometrical optics,” New J. Phys. 13(11), 115004 (2011).
    [Crossref]
  30. J. C. Miñano, “Perfect imaging in a homogeneous three-dimensional region,” Opt. Express 14(21), 9627–9635 (2006).
    [Crossref] [PubMed]
  31. M. Šarbort and T. Tyc, “Spherical media and geodesic lenses in geometrical optics,” J. Opt. 14(7), 075705 (2012).
    [Crossref]
  32. Y. Zeng and D. H. Werner, “Two-dimensional inside-out Eaton Lens: Design technique and TM-polarized wave properties,” Opt. Express 20(3), 2335–2345 (2012).
    [Crossref] [PubMed]
  33. C. Qian, H. Wang, R. Li, B. Zheng, Z. Xu, and H. Chen, “Observing the transient buildup of a superscatterer in the time domain,” Opt. Express 25(5), 4967–4974 (2017).
    [Crossref] [PubMed]
  34. K. S. Novoselov, V. I. F. Colombo, L. P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for grapheme,” Nature 490(7419), 192–200 (2012).
    [Crossref] [PubMed]
  35. Y. R. Padooru, A. B. Yakovlev, C. S. Kaipa, G. W. Hanson, F. Medina, F. Mesa, and A. W. Glisson, “New absorbing boundary conditions and analytical model for multilayered mushroom-type metamaterials: Applications to wideband absorbers,” IEEE Trans. Antenn. Propag. 60(12), 5727–5742 (2012).
    [Crossref]
  36. L. La Spada, T. M. McManus, A. Dyke, S. Haq, L. Zhang, Q. Cheng, and Y. Hao, “Surface wave cloak from graded refractive index nanocomposites,” Sci. Rep. 6(1), 29363 (2016).
    [Crossref] [PubMed]
  37. I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
    [Crossref]

2017 (6)

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

L. La Spada, S. Haq, and Y. Hao, “Modeling and design for electromagnetic surface wave devices,” Radio Sci. 52(9), 1049–1057 (2017).
[Crossref]

H. Wang, Y. Deng, B. Zheng, R. Li, Y. Jiang, S. Dehdashti, Z. Xu, and H. Chen, “Panoramic lens designed with transformation optics,” Sci. Rep. 7, 40083 (2017).
[Crossref] [PubMed]

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

C. Qian, H. Wang, R. Li, B. Zheng, Z. Xu, and H. Chen, “Observing the transient buildup of a superscatterer in the time domain,” Opt. Express 25(5), 4967–4974 (2017).
[Crossref] [PubMed]

2016 (4)

L. La Spada, T. M. McManus, A. Dyke, S. Haq, L. Zhang, Q. Cheng, and Y. Hao, “Surface wave cloak from graded refractive index nanocomposites,” Sci. Rep. 6(1), 29363 (2016).
[Crossref] [PubMed]

B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
[Crossref]

F. Sun, Y. Liu, and S. He, “True dynamic imaging and image composition by the optical translational projector,” J. Opt. 18(4), 044012 (2016).
[Crossref]

T. M. McManus, L. La Spada, and Y. Hao, “Isotropic and anisotropic surface wave cloaking techniques,” J. Opt. 18(4), 044005 (2016).
[Crossref]

2015 (4)

S. R. Boston, “Time travel in transformation optics: Metamaterials with closed null geodesics,” Phys. Rev. D Part. Fields Gravit. Cosmol. 91(12), 124035 (2015).
[Crossref]

J. Yi, P. H. Tichit, S. N. Burokur, and A. de Lustrac, “Illusion optics: Optically transforming the nature and the location of electromagnetic emissions,” J. Appl. Phys. 117(8), 084903 (2015).
[Crossref]

G. D. Bai, F. Yang, W. X. Jiang, Z. L. Mei, and T. J. Cui, “Realization of a broadband electromagnetic gateway at microwave frequencies,” Appl. Phys. Lett. 107(15), 153503 (2015).
[Crossref]

F. Sun and S. He, “Optical Surface Transformation: Changing the optical surface by homogeneous optic-null medium at will,” Sci. Rep. 5(1), 16032 (2015).
[Crossref] [PubMed]

2014 (1)

F. Sun and S. He, “Transformation magneto-statics and illusions for magnets,” Sci. Rep. 4(1), 6593 (2014).
[Crossref] [PubMed]

2013 (2)

F. Liu, Z. Liang, and J. Li, “Manipulating polarization and impedance signature: a reciprocal field transformation approach,” Phys. Rev. Lett. 111(3), 033901 (2013).
[Crossref] [PubMed]

X. Lin, Y. Jiang, J. Y. Jin, J. W. Yu, and S. He, “Understand and Realize an “Invisible Gateway” in a Classical Way,” Prog. Electromagnetics Res. 141, 739–749 (2013).
[Crossref]

2012 (5)

K. S. Novoselov, V. I. F. Colombo, L. P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for grapheme,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Y. R. Padooru, A. B. Yakovlev, C. S. Kaipa, G. W. Hanson, F. Medina, F. Mesa, and A. W. Glisson, “New absorbing boundary conditions and analytical model for multilayered mushroom-type metamaterials: Applications to wideband absorbers,” IEEE Trans. Antenn. Propag. 60(12), 5727–5742 (2012).
[Crossref]

Y. Zeng and D. H. Werner, “Two-dimensional inside-out Eaton Lens: Design technique and TM-polarized wave properties,” Opt. Express 20(3), 2335–2345 (2012).
[Crossref] [PubMed]

M. Šarbort and T. Tyc, “Spherical media and geodesic lenses in geometrical optics,” J. Opt. 14(7), 075705 (2012).
[Crossref]

Y. Liu and X. Zhang, “Recent advances in transformation optics,” Nanoscale 4(17), 5277–5292 (2012).
[Crossref] [PubMed]

2011 (2)

A. V. Kildishev and V. M. Shalaev, “Transformation optics and metamaterials,” Phys.- Usp. 54(1), 53–63 (2011).
[Crossref]

T. Tyc, L. Herzánová, M. Šarbort, and K. Bering, “Absolute instruments and perfect imaging in geometrical optics,” New J. Phys. 13(11), 115004 (2011).
[Crossref]

2010 (2)

C. Li, X. Meng, X. Liu, F. Li, G. Fang, H. Chen, and C. T. Chan, “Experimental realization of a circuit-based broadband illusion-optics analogue,” Phys. Rev. Lett. 105(23), 233906 (2010).
[Crossref] [PubMed]

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[Crossref] [PubMed]

2009 (2)

X. Luo, T. Yang, Y. Gu, H. Chen, and H. Ma, “Conceal an entrance by means of superscatterer,” Appl. Phys. Lett. 94(22), 223513 (2009).
[Crossref]

H. Chen, C. T. Chan, S. Liu, and Z. Lin, “A simple route to a tunable electromagnetic gateway,” New J. Phys. 11(8), 083012 (2009).
[Crossref]

2008 (2)

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostructures 6(1), 87–95 (2008).
[Crossref]

Y. Min, W. Yan, and M. Qiu, “Cylindrical superlens by a coordinate transformation,” Phys. Rev. B 78(12), 125113 (2008).
[Crossref]

2006 (3)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref] [PubMed]

J. C. Miñano, “Perfect imaging in a homogeneous three-dimensional region,” Opt. Express 14(21), 9627–9635 (2006).
[Crossref] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Bai, G. D.

G. D. Bai, F. Yang, W. X. Jiang, Z. L. Mei, and T. J. Cui, “Realization of a broadband electromagnetic gateway at microwave frequencies,” Appl. Phys. Lett. 107(15), 153503 (2015).
[Crossref]

Bering, K.

T. Tyc, L. Herzánová, M. Šarbort, and K. Bering, “Absolute instruments and perfect imaging in geometrical optics,” New J. Phys. 13(11), 115004 (2011).
[Crossref]

Boston, S. R.

S. R. Boston, “Time travel in transformation optics: Metamaterials with closed null geodesics,” Phys. Rev. D Part. Fields Gravit. Cosmol. 91(12), 124035 (2015).
[Crossref]

Burokur, S. N.

J. Yi, P. H. Tichit, S. N. Burokur, and A. de Lustrac, “Illusion optics: Optically transforming the nature and the location of electromagnetic emissions,” J. Appl. Phys. 117(8), 084903 (2015).
[Crossref]

Chan, C. T.

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[Crossref] [PubMed]

C. Li, X. Meng, X. Liu, F. Li, G. Fang, H. Chen, and C. T. Chan, “Experimental realization of a circuit-based broadband illusion-optics analogue,” Phys. Rev. Lett. 105(23), 233906 (2010).
[Crossref] [PubMed]

H. Chen, C. T. Chan, S. Liu, and Z. Lin, “A simple route to a tunable electromagnetic gateway,” New J. Phys. 11(8), 083012 (2009).
[Crossref]

Chen, H.

C. Qian, H. Wang, R. Li, B. Zheng, Z. Xu, and H. Chen, “Observing the transient buildup of a superscatterer in the time domain,” Opt. Express 25(5), 4967–4974 (2017).
[Crossref] [PubMed]

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

H. Wang, Y. Deng, B. Zheng, R. Li, Y. Jiang, S. Dehdashti, Z. Xu, and H. Chen, “Panoramic lens designed with transformation optics,” Sci. Rep. 7, 40083 (2017).
[Crossref] [PubMed]

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
[Crossref]

C. Li, X. Meng, X. Liu, F. Li, G. Fang, H. Chen, and C. T. Chan, “Experimental realization of a circuit-based broadband illusion-optics analogue,” Phys. Rev. Lett. 105(23), 233906 (2010).
[Crossref] [PubMed]

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[Crossref] [PubMed]

X. Luo, T. Yang, Y. Gu, H. Chen, and H. Ma, “Conceal an entrance by means of superscatterer,” Appl. Phys. Lett. 94(22), 223513 (2009).
[Crossref]

H. Chen, C. T. Chan, S. Liu, and Z. Lin, “A simple route to a tunable electromagnetic gateway,” New J. Phys. 11(8), 083012 (2009).
[Crossref]

Cheng, Q.

L. La Spada, T. M. McManus, A. Dyke, S. Haq, L. Zhang, Q. Cheng, and Y. Hao, “Surface wave cloak from graded refractive index nanocomposites,” Sci. Rep. 6(1), 29363 (2016).
[Crossref] [PubMed]

Colombo, V. I. F.

K. S. Novoselov, V. I. F. Colombo, L. P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for grapheme,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Cui, T. J.

G. D. Bai, F. Yang, W. X. Jiang, Z. L. Mei, and T. J. Cui, “Realization of a broadband electromagnetic gateway at microwave frequencies,” Appl. Phys. Lett. 107(15), 153503 (2015).
[Crossref]

Cummer, S. A.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostructures 6(1), 87–95 (2008).
[Crossref]

de Lustrac, A.

J. Yi, P. H. Tichit, S. N. Burokur, and A. de Lustrac, “Illusion optics: Optically transforming the nature and the location of electromagnetic emissions,” J. Appl. Phys. 117(8), 084903 (2015).
[Crossref]

Dehdashti, S.

H. Wang, Y. Deng, B. Zheng, R. Li, Y. Jiang, S. Dehdashti, Z. Xu, and H. Chen, “Panoramic lens designed with transformation optics,” Sci. Rep. 7, 40083 (2017).
[Crossref] [PubMed]

Deng, Y.

H. Wang, Y. Deng, B. Zheng, R. Li, Y. Jiang, S. Dehdashti, Z. Xu, and H. Chen, “Panoramic lens designed with transformation optics,” Sci. Rep. 7, 40083 (2017).
[Crossref] [PubMed]

Dyke, A.

L. La Spada, T. M. McManus, A. Dyke, S. Haq, L. Zhang, Q. Cheng, and Y. Hao, “Surface wave cloak from graded refractive index nanocomposites,” Sci. Rep. 6(1), 29363 (2016).
[Crossref] [PubMed]

Engheta, N.

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

Fang, G.

C. Li, X. Meng, X. Liu, F. Li, G. Fang, H. Chen, and C. T. Chan, “Experimental realization of a circuit-based broadband illusion-optics analogue,” Phys. Rev. Lett. 105(23), 233906 (2010).
[Crossref] [PubMed]

Gellert, L. P. R.

K. S. Novoselov, V. I. F. Colombo, L. P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for grapheme,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Glisson, A. W.

Y. R. Padooru, A. B. Yakovlev, C. S. Kaipa, G. W. Hanson, F. Medina, F. Mesa, and A. W. Glisson, “New absorbing boundary conditions and analytical model for multilayered mushroom-type metamaterials: Applications to wideband absorbers,” IEEE Trans. Antenn. Propag. 60(12), 5727–5742 (2012).
[Crossref]

Gu, Y.

X. Luo, T. Yang, Y. Gu, H. Chen, and H. Ma, “Conceal an entrance by means of superscatterer,” Appl. Phys. Lett. 94(22), 223513 (2009).
[Crossref]

Guo, S.

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

Hanson, G. W.

Y. R. Padooru, A. B. Yakovlev, C. S. Kaipa, G. W. Hanson, F. Medina, F. Mesa, and A. W. Glisson, “New absorbing boundary conditions and analytical model for multilayered mushroom-type metamaterials: Applications to wideband absorbers,” IEEE Trans. Antenn. Propag. 60(12), 5727–5742 (2012).
[Crossref]

Hao, R.

B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
[Crossref]

Hao, Y.

L. La Spada, S. Haq, and Y. Hao, “Modeling and design for electromagnetic surface wave devices,” Radio Sci. 52(9), 1049–1057 (2017).
[Crossref]

T. M. McManus, L. La Spada, and Y. Hao, “Isotropic and anisotropic surface wave cloaking techniques,” J. Opt. 18(4), 044005 (2016).
[Crossref]

L. La Spada, T. M. McManus, A. Dyke, S. Haq, L. Zhang, Q. Cheng, and Y. Hao, “Surface wave cloak from graded refractive index nanocomposites,” Sci. Rep. 6(1), 29363 (2016).
[Crossref] [PubMed]

Haq, S.

L. La Spada, S. Haq, and Y. Hao, “Modeling and design for electromagnetic surface wave devices,” Radio Sci. 52(9), 1049–1057 (2017).
[Crossref]

L. La Spada, T. M. McManus, A. Dyke, S. Haq, L. Zhang, Q. Cheng, and Y. Hao, “Surface wave cloak from graded refractive index nanocomposites,” Sci. Rep. 6(1), 29363 (2016).
[Crossref] [PubMed]

He, S.

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

F. Sun, Y. Liu, and S. He, “True dynamic imaging and image composition by the optical translational projector,” J. Opt. 18(4), 044012 (2016).
[Crossref]

F. Sun and S. He, “Optical Surface Transformation: Changing the optical surface by homogeneous optic-null medium at will,” Sci. Rep. 5(1), 16032 (2015).
[Crossref] [PubMed]

F. Sun and S. He, “Transformation magneto-statics and illusions for magnets,” Sci. Rep. 4(1), 6593 (2014).
[Crossref] [PubMed]

X. Lin, Y. Jiang, J. Y. Jin, J. W. Yu, and S. He, “Understand and Realize an “Invisible Gateway” in a Classical Way,” Prog. Electromagnetics Res. 141, 739–749 (2013).
[Crossref]

Herzánová, L.

T. Tyc, L. Herzánová, M. Šarbort, and K. Bering, “Absolute instruments and perfect imaging in geometrical optics,” New J. Phys. 13(11), 115004 (2011).
[Crossref]

Jiang, W.

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

Jiang, W. X.

G. D. Bai, F. Yang, W. X. Jiang, Z. L. Mei, and T. J. Cui, “Realization of a broadband electromagnetic gateway at microwave frequencies,” Appl. Phys. Lett. 107(15), 153503 (2015).
[Crossref]

Jiang, Y.

H. Wang, Y. Deng, B. Zheng, R. Li, Y. Jiang, S. Dehdashti, Z. Xu, and H. Chen, “Panoramic lens designed with transformation optics,” Sci. Rep. 7, 40083 (2017).
[Crossref] [PubMed]

X. Lin, Y. Jiang, J. Y. Jin, J. W. Yu, and S. He, “Understand and Realize an “Invisible Gateway” in a Classical Way,” Prog. Electromagnetics Res. 141, 739–749 (2013).
[Crossref]

Jin, J. Y.

X. Lin, Y. Jiang, J. Y. Jin, J. W. Yu, and S. He, “Understand and Realize an “Invisible Gateway” in a Classical Way,” Prog. Electromagnetics Res. 141, 739–749 (2013).
[Crossref]

Kaipa, C. S.

Y. R. Padooru, A. B. Yakovlev, C. S. Kaipa, G. W. Hanson, F. Medina, F. Mesa, and A. W. Glisson, “New absorbing boundary conditions and analytical model for multilayered mushroom-type metamaterials: Applications to wideband absorbers,” IEEE Trans. Antenn. Propag. 60(12), 5727–5742 (2012).
[Crossref]

Kildishev, A. V.

A. V. Kildishev and V. M. Shalaev, “Transformation optics and metamaterials,” Phys.- Usp. 54(1), 53–63 (2011).
[Crossref]

Kim, K.

K. S. Novoselov, V. I. F. Colombo, L. P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for grapheme,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

La Spada, L.

L. La Spada, S. Haq, and Y. Hao, “Modeling and design for electromagnetic surface wave devices,” Radio Sci. 52(9), 1049–1057 (2017).
[Crossref]

T. M. McManus, L. La Spada, and Y. Hao, “Isotropic and anisotropic surface wave cloaking techniques,” J. Opt. 18(4), 044005 (2016).
[Crossref]

L. La Spada, T. M. McManus, A. Dyke, S. Haq, L. Zhang, Q. Cheng, and Y. Hao, “Surface wave cloak from graded refractive index nanocomposites,” Sci. Rep. 6(1), 29363 (2016).
[Crossref] [PubMed]

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref] [PubMed]

Li, C.

C. Li, X. Meng, X. Liu, F. Li, G. Fang, H. Chen, and C. T. Chan, “Experimental realization of a circuit-based broadband illusion-optics analogue,” Phys. Rev. Lett. 105(23), 233906 (2010).
[Crossref] [PubMed]

Li, E.

B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
[Crossref]

Li, F.

C. Li, X. Meng, X. Liu, F. Li, G. Fang, H. Chen, and C. T. Chan, “Experimental realization of a circuit-based broadband illusion-optics analogue,” Phys. Rev. Lett. 105(23), 233906 (2010).
[Crossref] [PubMed]

Li, J.

F. Liu, Z. Liang, and J. Li, “Manipulating polarization and impedance signature: a reciprocal field transformation approach,” Phys. Rev. Lett. 111(3), 033901 (2013).
[Crossref] [PubMed]

Li, R.

H. Wang, Y. Deng, B. Zheng, R. Li, Y. Jiang, S. Dehdashti, Z. Xu, and H. Chen, “Panoramic lens designed with transformation optics,” Sci. Rep. 7, 40083 (2017).
[Crossref] [PubMed]

C. Qian, H. Wang, R. Li, B. Zheng, Z. Xu, and H. Chen, “Observing the transient buildup of a superscatterer in the time domain,” Opt. Express 25(5), 4967–4974 (2017).
[Crossref] [PubMed]

Liang, Z.

F. Liu, Z. Liang, and J. Li, “Manipulating polarization and impedance signature: a reciprocal field transformation approach,” Phys. Rev. Lett. 111(3), 033901 (2013).
[Crossref] [PubMed]

Liberal, I.

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

Lin, X.

X. Lin, Y. Jiang, J. Y. Jin, J. W. Yu, and S. He, “Understand and Realize an “Invisible Gateway” in a Classical Way,” Prog. Electromagnetics Res. 141, 739–749 (2013).
[Crossref]

Lin, Z.

H. Chen, C. T. Chan, S. Liu, and Z. Lin, “A simple route to a tunable electromagnetic gateway,” New J. Phys. 11(8), 083012 (2009).
[Crossref]

Liu, F.

F. Liu, Z. Liang, and J. Li, “Manipulating polarization and impedance signature: a reciprocal field transformation approach,” Phys. Rev. Lett. 111(3), 033901 (2013).
[Crossref] [PubMed]

Liu, S.

H. Chen, C. T. Chan, S. Liu, and Z. Lin, “A simple route to a tunable electromagnetic gateway,” New J. Phys. 11(8), 083012 (2009).
[Crossref]

Liu, X.

B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
[Crossref]

C. Li, X. Meng, X. Liu, F. Li, G. Fang, H. Chen, and C. T. Chan, “Experimental realization of a circuit-based broadband illusion-optics analogue,” Phys. Rev. Lett. 105(23), 233906 (2010).
[Crossref] [PubMed]

Liu, Y.

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

F. Sun, Y. Liu, and S. He, “True dynamic imaging and image composition by the optical translational projector,” J. Opt. 18(4), 044012 (2016).
[Crossref]

Y. Liu and X. Zhang, “Recent advances in transformation optics,” Nanoscale 4(17), 5277–5292 (2012).
[Crossref] [PubMed]

Luo, X.

X. Luo, T. Yang, Y. Gu, H. Chen, and H. Ma, “Conceal an entrance by means of superscatterer,” Appl. Phys. Lett. 94(22), 223513 (2009).
[Crossref]

Ma, H.

X. Luo, T. Yang, Y. Gu, H. Chen, and H. Ma, “Conceal an entrance by means of superscatterer,” Appl. Phys. Lett. 94(22), 223513 (2009).
[Crossref]

Ma, Y.

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

Madni, H. A.

B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
[Crossref]

McManus, T. M.

T. M. McManus, L. La Spada, and Y. Hao, “Isotropic and anisotropic surface wave cloaking techniques,” J. Opt. 18(4), 044005 (2016).
[Crossref]

L. La Spada, T. M. McManus, A. Dyke, S. Haq, L. Zhang, Q. Cheng, and Y. Hao, “Surface wave cloak from graded refractive index nanocomposites,” Sci. Rep. 6(1), 29363 (2016).
[Crossref] [PubMed]

Medina, F.

Y. R. Padooru, A. B. Yakovlev, C. S. Kaipa, G. W. Hanson, F. Medina, F. Mesa, and A. W. Glisson, “New absorbing boundary conditions and analytical model for multilayered mushroom-type metamaterials: Applications to wideband absorbers,” IEEE Trans. Antenn. Propag. 60(12), 5727–5742 (2012).
[Crossref]

Mei, Z. L.

G. D. Bai, F. Yang, W. X. Jiang, Z. L. Mei, and T. J. Cui, “Realization of a broadband electromagnetic gateway at microwave frequencies,” Appl. Phys. Lett. 107(15), 153503 (2015).
[Crossref]

Meng, X.

C. Li, X. Meng, X. Liu, F. Li, G. Fang, H. Chen, and C. T. Chan, “Experimental realization of a circuit-based broadband illusion-optics analogue,” Phys. Rev. Lett. 105(23), 233906 (2010).
[Crossref] [PubMed]

Mesa, F.

Y. R. Padooru, A. B. Yakovlev, C. S. Kaipa, G. W. Hanson, F. Medina, F. Mesa, and A. W. Glisson, “New absorbing boundary conditions and analytical model for multilayered mushroom-type metamaterials: Applications to wideband absorbers,” IEEE Trans. Antenn. Propag. 60(12), 5727–5742 (2012).
[Crossref]

Min, Y.

Y. Min, W. Yan, and M. Qiu, “Cylindrical superlens by a coordinate transformation,” Phys. Rev. B 78(12), 125113 (2008).
[Crossref]

Miñano, J. C.

Novoselov, K. S.

K. S. Novoselov, V. I. F. Colombo, L. P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for grapheme,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Padooru, Y. R.

Y. R. Padooru, A. B. Yakovlev, C. S. Kaipa, G. W. Hanson, F. Medina, F. Mesa, and A. W. Glisson, “New absorbing boundary conditions and analytical model for multilayered mushroom-type metamaterials: Applications to wideband absorbers,” IEEE Trans. Antenn. Propag. 60(12), 5727–5742 (2012).
[Crossref]

Pendry, J. B.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostructures 6(1), 87–95 (2008).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Qian, C.

Qiu, M.

Y. Min, W. Yan, and M. Qiu, “Cylindrical superlens by a coordinate transformation,” Phys. Rev. B 78(12), 125113 (2008).
[Crossref]

Rahm, M.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostructures 6(1), 87–95 (2008).
[Crossref]

Roberts, D. A.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostructures 6(1), 87–95 (2008).
[Crossref]

Šarbort, M.

M. Šarbort and T. Tyc, “Spherical media and geodesic lenses in geometrical optics,” J. Opt. 14(7), 075705 (2012).
[Crossref]

T. Tyc, L. Herzánová, M. Šarbort, and K. Bering, “Absolute instruments and perfect imaging in geometrical optics,” New J. Phys. 13(11), 115004 (2011).
[Crossref]

Schurig, D.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostructures 6(1), 87–95 (2008).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Schwab, M. G.

K. S. Novoselov, V. I. F. Colombo, L. P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for grapheme,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Shalaev, V. M.

A. V. Kildishev and V. M. Shalaev, “Transformation optics and metamaterials,” Phys.- Usp. 54(1), 53–63 (2011).
[Crossref]

Sheng, P.

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[Crossref] [PubMed]

Smith, D. R.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostructures 6(1), 87–95 (2008).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Sun, F.

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

F. Sun, Y. Liu, and S. He, “True dynamic imaging and image composition by the optical translational projector,” J. Opt. 18(4), 044012 (2016).
[Crossref]

F. Sun and S. He, “Optical Surface Transformation: Changing the optical surface by homogeneous optic-null medium at will,” Sci. Rep. 5(1), 16032 (2015).
[Crossref] [PubMed]

F. Sun and S. He, “Transformation magneto-statics and illusions for magnets,” Sci. Rep. 4(1), 6593 (2014).
[Crossref] [PubMed]

Tichit, P. H.

J. Yi, P. H. Tichit, S. N. Burokur, and A. de Lustrac, “Illusion optics: Optically transforming the nature and the location of electromagnetic emissions,” J. Appl. Phys. 117(8), 084903 (2015).
[Crossref]

Tyc, T.

M. Šarbort and T. Tyc, “Spherical media and geodesic lenses in geometrical optics,” J. Opt. 14(7), 075705 (2012).
[Crossref]

T. Tyc, L. Herzánová, M. Šarbort, and K. Bering, “Absolute instruments and perfect imaging in geometrical optics,” New J. Phys. 13(11), 115004 (2011).
[Crossref]

Wang, H.

C. Qian, H. Wang, R. Li, B. Zheng, Z. Xu, and H. Chen, “Observing the transient buildup of a superscatterer in the time domain,” Opt. Express 25(5), 4967–4974 (2017).
[Crossref] [PubMed]

H. Wang, Y. Deng, B. Zheng, R. Li, Y. Jiang, S. Dehdashti, Z. Xu, and H. Chen, “Panoramic lens designed with transformation optics,” Sci. Rep. 7, 40083 (2017).
[Crossref] [PubMed]

Werner, D. H.

Xu, Z.

C. Qian, H. Wang, R. Li, B. Zheng, Z. Xu, and H. Chen, “Observing the transient buildup of a superscatterer in the time domain,” Opt. Express 25(5), 4967–4974 (2017).
[Crossref] [PubMed]

H. Wang, Y. Deng, B. Zheng, R. Li, Y. Jiang, S. Dehdashti, Z. Xu, and H. Chen, “Panoramic lens designed with transformation optics,” Sci. Rep. 7, 40083 (2017).
[Crossref] [PubMed]

Yakovlev, A. B.

Y. R. Padooru, A. B. Yakovlev, C. S. Kaipa, G. W. Hanson, F. Medina, F. Mesa, and A. W. Glisson, “New absorbing boundary conditions and analytical model for multilayered mushroom-type metamaterials: Applications to wideband absorbers,” IEEE Trans. Antenn. Propag. 60(12), 5727–5742 (2012).
[Crossref]

Yan, W.

Y. Min, W. Yan, and M. Qiu, “Cylindrical superlens by a coordinate transformation,” Phys. Rev. B 78(12), 125113 (2008).
[Crossref]

Yang, F.

G. D. Bai, F. Yang, W. X. Jiang, Z. L. Mei, and T. J. Cui, “Realization of a broadband electromagnetic gateway at microwave frequencies,” Appl. Phys. Lett. 107(15), 153503 (2015).
[Crossref]

Yang, T.

X. Luo, T. Yang, Y. Gu, H. Chen, and H. Ma, “Conceal an entrance by means of superscatterer,” Appl. Phys. Lett. 94(22), 223513 (2009).
[Crossref]

Yi, J.

J. Yi, P. H. Tichit, S. N. Burokur, and A. de Lustrac, “Illusion optics: Optically transforming the nature and the location of electromagnetic emissions,” J. Appl. Phys. 117(8), 084903 (2015).
[Crossref]

Yu, J. W.

X. Lin, Y. Jiang, J. Y. Jin, J. W. Yu, and S. He, “Understand and Realize an “Invisible Gateway” in a Classical Way,” Prog. Electromagnetics Res. 141, 739–749 (2013).
[Crossref]

Zeng, Y.

Zhang, L.

L. La Spada, T. M. McManus, A. Dyke, S. Haq, L. Zhang, Q. Cheng, and Y. Hao, “Surface wave cloak from graded refractive index nanocomposites,” Sci. Rep. 6(1), 29363 (2016).
[Crossref] [PubMed]

Zhang, X.

B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
[Crossref]

Y. Liu and X. Zhang, “Recent advances in transformation optics,” Nanoscale 4(17), 5277–5292 (2012).
[Crossref] [PubMed]

Zheng, B.

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

H. Wang, Y. Deng, B. Zheng, R. Li, Y. Jiang, S. Dehdashti, Z. Xu, and H. Chen, “Panoramic lens designed with transformation optics,” Sci. Rep. 7, 40083 (2017).
[Crossref] [PubMed]

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

C. Qian, H. Wang, R. Li, B. Zheng, Z. Xu, and H. Chen, “Observing the transient buildup of a superscatterer in the time domain,” Opt. Express 25(5), 4967–4974 (2017).
[Crossref] [PubMed]

B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
[Crossref]

Appl. Phys. Lett. (2)

X. Luo, T. Yang, Y. Gu, H. Chen, and H. Ma, “Conceal an entrance by means of superscatterer,” Appl. Phys. Lett. 94(22), 223513 (2009).
[Crossref]

G. D. Bai, F. Yang, W. X. Jiang, Z. L. Mei, and T. J. Cui, “Realization of a broadband electromagnetic gateway at microwave frequencies,” Appl. Phys. Lett. 107(15), 153503 (2015).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

Y. R. Padooru, A. B. Yakovlev, C. S. Kaipa, G. W. Hanson, F. Medina, F. Mesa, and A. W. Glisson, “New absorbing boundary conditions and analytical model for multilayered mushroom-type metamaterials: Applications to wideband absorbers,” IEEE Trans. Antenn. Propag. 60(12), 5727–5742 (2012).
[Crossref]

J. Appl. Phys. (1)

J. Yi, P. H. Tichit, S. N. Burokur, and A. de Lustrac, “Illusion optics: Optically transforming the nature and the location of electromagnetic emissions,” J. Appl. Phys. 117(8), 084903 (2015).
[Crossref]

J. Opt. (3)

T. M. McManus, L. La Spada, and Y. Hao, “Isotropic and anisotropic surface wave cloaking techniques,” J. Opt. 18(4), 044005 (2016).
[Crossref]

F. Sun, Y. Liu, and S. He, “True dynamic imaging and image composition by the optical translational projector,” J. Opt. 18(4), 044012 (2016).
[Crossref]

M. Šarbort and T. Tyc, “Spherical media and geodesic lenses in geometrical optics,” J. Opt. 14(7), 075705 (2012).
[Crossref]

Laser Photonics Rev. (2)

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

Light Sci. Appl. (1)

B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
[Crossref]

Nanoscale (1)

Y. Liu and X. Zhang, “Recent advances in transformation optics,” Nanoscale 4(17), 5277–5292 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

Nature (1)

K. S. Novoselov, V. I. F. Colombo, L. P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for grapheme,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

New J. Phys. (2)

T. Tyc, L. Herzánová, M. Šarbort, and K. Bering, “Absolute instruments and perfect imaging in geometrical optics,” New J. Phys. 13(11), 115004 (2011).
[Crossref]

H. Chen, C. T. Chan, S. Liu, and Z. Lin, “A simple route to a tunable electromagnetic gateway,” New J. Phys. 11(8), 083012 (2009).
[Crossref]

Opt. Express (3)

Photon. Nanostructures (1)

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostructures 6(1), 87–95 (2008).
[Crossref]

Phys. Rev. B (1)

Y. Min, W. Yan, and M. Qiu, “Cylindrical superlens by a coordinate transformation,” Phys. Rev. B 78(12), 125113 (2008).
[Crossref]

Phys. Rev. D Part. Fields Gravit. Cosmol. (1)

S. R. Boston, “Time travel in transformation optics: Metamaterials with closed null geodesics,” Phys. Rev. D Part. Fields Gravit. Cosmol. 91(12), 124035 (2015).
[Crossref]

Phys. Rev. Lett. (3)

F. Liu, Z. Liang, and J. Li, “Manipulating polarization and impedance signature: a reciprocal field transformation approach,” Phys. Rev. Lett. 111(3), 033901 (2013).
[Crossref] [PubMed]

C. Li, X. Meng, X. Liu, F. Li, G. Fang, H. Chen, and C. T. Chan, “Experimental realization of a circuit-based broadband illusion-optics analogue,” Phys. Rev. Lett. 105(23), 233906 (2010).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Phys.- Usp. (1)

A. V. Kildishev and V. M. Shalaev, “Transformation optics and metamaterials,” Phys.- Usp. 54(1), 53–63 (2011).
[Crossref]

Prog. Electromagnetics Res. (1)

X. Lin, Y. Jiang, J. Y. Jin, J. W. Yu, and S. He, “Understand and Realize an “Invisible Gateway” in a Classical Way,” Prog. Electromagnetics Res. 141, 739–749 (2013).
[Crossref]

Radio Sci. (1)

L. La Spada, S. Haq, and Y. Hao, “Modeling and design for electromagnetic surface wave devices,” Radio Sci. 52(9), 1049–1057 (2017).
[Crossref]

Sci. Rep. (4)

H. Wang, Y. Deng, B. Zheng, R. Li, Y. Jiang, S. Dehdashti, Z. Xu, and H. Chen, “Panoramic lens designed with transformation optics,” Sci. Rep. 7, 40083 (2017).
[Crossref] [PubMed]

L. La Spada, T. M. McManus, A. Dyke, S. Haq, L. Zhang, Q. Cheng, and Y. Hao, “Surface wave cloak from graded refractive index nanocomposites,” Sci. Rep. 6(1), 29363 (2016).
[Crossref] [PubMed]

F. Sun and S. He, “Optical Surface Transformation: Changing the optical surface by homogeneous optic-null medium at will,” Sci. Rep. 5(1), 16032 (2015).
[Crossref] [PubMed]

F. Sun and S. He, “Transformation magneto-statics and illusions for magnets,” Sci. Rep. 4(1), 6593 (2014).
[Crossref] [PubMed]

Science (2)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref] [PubMed]

Other (3)

U. Leonhardt and T. Philbin, Geometry and Light: The Science of Invisibility (Courier Corporation, 2012).

J. R. Rowling, Harry Potter and the Chamber of Secrets (Bloomsbury, 1998).

P. Kinsler and M. W. McCall, “Cloaks, editors, and bubbles: applications of spacetime transformation theory,” Annalen der Physik 526, 51–62 (2014).

Supplementary Material (2)

NameDescription
» Visualization 1       2D ray optic simulations: when a narrow beam/ray impinges onto the air region of the invisible gateway. In this case, nearly no beam/ray touches negative refractive index materials of the invisible gateway, and hence, no invisible gateway effect (i.e
» Visualization 2       2D ray tracing numerical simulation result when a type C ray incidents onto the air hole between two walls. Inside-out Eaton lens can redirect the type C ray back even if the ray does not touch either the real gateway or super-lens. Simulation is mad

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) The basic schematic diagram of an invisible gateway designed by TO (Left) and a real gateway (Right). The red regions are PECs (i.e. the walls that electromagnetic waves cannot go through). The yellow and white regions are negative refractive index materials (μr = εr = −1) and free space, respectively, which are complementary medium pairs. The invisible gateway blocks electromagnetic waves produced by a source on the right side. Other materials, e.g. a human from left, can go through this gateway. However, for a real gateway, both electromagnetic waves and other materials (e.g. a human) cannot go through it. (b) Full-wave 2D simulations for the normalized amplitude of electric field distributions when a unit line current on the right side of the invisible gateway (Left) and real gateway (Right). Since the wave touches the negative refractive index materials in the invisible gateway, some surface plasmon polaritons are excited. In this case, no electromagnetic waves enter into the other side of the wall. (c) Full wave 2D simulations (Left) and ray optic simulations (Right), when a narrow beam/ray impinges onto the air region of the invisible gateway. In this case, nearly no beam/ray touches negative refractive index materials of the invisible gateway, and hence, no invisible gateway effect (i.e. narrow beam/ray passes through the wall). The ray propagates with time is given in Visualization 1. The black arrow indicates the direction of the incident light. The invisible gateway we use here is from Ref. 18.

Fig. 2
Fig. 2

(a) The basic schematic diagram of our method to realize an invisible gateway. The purple region indicates the lens that can produce an image of the real gateway, i.e. the virtual gateway, at the center air region of the wall. (b) The composite lens we use in this study: an inside-out Eaton lens (colored green) and a super-lens (negative refractive index material slab) μr = εr = −1 (colored yellow). The red long lines and the red short line indicate the wall and the real gateway, respectively, which are both metals (modeled by extremely thin PEC boundaries in our later numerical simulations). All white regions are air. Note that there is an opening in the middle of the wall. H and d indicate the height and thickness of this opening air region. The function of the composite structure is to form an image of the real gateway exactly at the middle of the wall (i.e. the location of the opening). The thickness of the wall and real gateway can be infinitely thin in our method.

Fig. 3
Fig. 3

(a) Three types of light rays. Type A rays directly incident onto the real PEC wall and are reflected by Snell’s law. The type B rays are guided by superlens (colored by yellow) and reflected, which look like directly reflected by a virtual PEC wall (indicated by the dash red line). Type C rays are redirected by the inside-out Eaton lens (not shown here), which also look like directly reflected by the virtual PEC wall (the dash red line). (b) 2D ray tracing numerical simulation result when type C ray incidents onto the air hole between two walls. Inside-out Eaton lens can redirect the type C ray back even if the ray does not touch either the real gateway or super-lens. The color of the ray trace indicates different time.

Fig. 4
Fig. 4

2D full wave numerical simulations for the normalized amplitude of electric field distributions. (a) and (c): a line source in front of a real gateway. (b) and (d): a line source in front of an invisible gateway achieved by our composite lens.

Fig. 5
Fig. 5

(a) The proposed invisible gateway with an air corridor at the middle of the inside-out Eaton lens. (b) and (c) are 2D full wave numerical simulations for the normalized amplitude of electric field distributions. The positions of the line current source in (b) and (c) are the same as the ones in Fig. 4(b) and (d), respectively. (d) The integral of power flow density on the boundary of the air corridor when the position of the line current source changes along the y direction for the cases when our composite lens is applied (blue line) or only PEC wall (red line) is used.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n={ 1,ra 2a r 1 ,a<r2a ,